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The performances of a tunable femtosecond dye laser are analyzed using accurate correlation techniques.
The source is a passively mode-locked dye laser, of which both the frequency and frequency modulation are
controlled by one or two intracavity prisms. Interferometric second-order autocorrelations, with a peak-to-
background ratio of 8 to 1, are used simultaneously with the conventional intensity autocorrelation and the
pulse spectrum to determine the pulse shape. The main advantages of the interferometric autocorrelations
are that they provide phase information otherwise not available, and they are more sensitive to the pulse
shape than the intensity autocorrelation. The phase sensitivity is demonstrated in an analysis of the Gauss-
ian pulses with a linear frequency modulation. Analytical expressions for the envelopes of the interferomet-
ric autocorrelations of typical pulse shapes are provided for quick pulse shape identification. A numerical
method is used to analyze the more complex pulse shapes and chirps that can be produced by the laser. A
series of examples demonstrates the control of this laser over various pulse shapes And frequency modula-
tions. Pulse broadening or compression by propagation through glass is calculated for the pulse shapes de-
termined from the fittings. Comparisons of autocorrelations and cross correlations calculated for the dis-
persed pulses, with the actual measurements, demonstrate the accuracy of the fitting procedure. The meth-
od of pulse shape determination demonstrated here requires a train of identical pulses. Indeed, it is shown
that, for example, a train of unchirped pulses randomly distributed in frequency can have the same interfer-
ometric autocorrelation than a single chirped pulse. In the case of the present source, a comparison of the
pulse spectrum, with that of the second harmonic, gives an additional proof that pulse-to-pulse fluctuations
are negligible.

1. Introduction

Recent progress in mode-locked dye lasers led to the
development of stable sources generating a continuous
train of pulses of <100-fsec duration.1- 4 Since elec-
tronic detection techniques are still limited at around
1 psec for the fastest streak cameras, there is a need for
methods to resolve the phase and amplitude modulation
of the ultrashort pulses. In principle, successive optical
correlations of increasing order (2,3 ... n) would provide
the answer. One chooses generally to remain at order
2 with second harmonic detection, mainly because the
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low energy/pulse (in the case of unamplified pulse trains
from the laser) makes it impractical to use higher-order
processes. This problem is compounded by the band-
width requirement (the bandwidth of the nonlinear
process has to exceed that of the short pulse) which
prevents the use of resonantly enhanced nonlinearities.
Unfortunately second-order autocorrelations, being
symmetrical functions, cannot provide unequivocal
information on the pulse shape and in particular its
asymmetry. Moreover, the intensity autocorrelations
that are generally used are very insensitive to the par-
ticular pulse shape.

When performed with interferometric accuracy,
second-order autocorrelations provide a much more
contrasted pattern 5: the envelope of the constructive
interferences has a peak-to-background ratio of 8 to 1
(against 3 to 1 for conventional intensity autocorrela-
tions). Because the intensity of the second harmonic
sum field is measured, the fourth power of the electric
field amplitude is involved. The interferometric au-
tocorrelations are therefore very sensitive to the exact
pulse shape. Unlike intensity autocorrelations where
all phase information is averaged out, various types of
chirp produce distinctive patterns in the interferometric
autocorrelations. A simultaneous measurement of the
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spectrum, second-order intensity autocorrelation, and
second-order interferometric autocorrelation6 provides
enough information to determine the pulse shape in
amplitude and phase. We have demonstrated this
method on a femtosecond laser with controllable chirp
and frequency, described in Sec. II. The standard in-
tensity autocorrelation measurement and its limitations
are discussed in Sec. III. The general properties of the
interferometric autocorrelations are reviewed in Sec.
IV. Different classes of pulse have typical shapes for
the upper and lower envelopes of the interferometric
autocorrelation. A particularly simple and important
case is that of linearly chirped Gaussian pulses, which
is treated analytically in Sec. V. Quick identification
of Gaussian, sech, and simple asymmetric shapes is also
possible through identification of the measurements
with corresponding analytical expressions given in Sec.
VI. A more tedious trial and error numerical approach
is required with pulses of arbitrary shape and modula-
tion, as illustrated for real pulses with and without
phase modulation, generated by the laser (Sec. VII).
Pulse broadening and phase modulation through dis-
persion in glass offers a simple check to the diagnostic
method (Sec. VIII). Downchirped pulses are com-
pressed through propagation in glass. The compressed
pulse can be used as a probe to verify-by cross corre-
lation-the shape of the downchirped pulse (Sec. IX).
Since, as noted previously, all these techniques use
second harmonic detection, it is important to verify that
no spectral filtering occurs through the nonlinear pro-
cess (Sec. X).

II. Laser Source

Several techniques are presently available to generate
trains of pulses of a duration of <100 fsec. The output
of synchronously pumped dye lasers can be phase
modulated in single-mode fibers and thereafter com-
pressed in a dispersive delay line.7 These pulse dura-
tions can also be obtained directly from passively
mode-locked ring lasers.14 The two counterpropa-
gating pulses meeting in the saturable absorber result
in an enhanced saturation (compared with the satura-
tion by a single pulse as in the linear laser cavity).
Theoretical studies have shown that the shortest
achievable pulse duration in these lasers is related to the
absorber jet thickness. Indeed, for pulses longer than
the jet thickness, a larger compression factor/pass is
predicted for the colliding pulses, compared to the single
traveling pulse situation. 8 9 However, for pulses shorter
than the jet thickness, the population grating induced
by the colliding pulses results in a mutual coupling of
the front of each pulse into the tail of the other, coun-
teracting the pulse compression mechanism.10 The
saturation of the dye diethyloxadicarbocyanine iodide
(DODCI) is rather complex, because of the simulta-
neous presence of ground state DODCI, with peak ex-
tinction coefficient at 590 nm, and its optical isomer, for
which the absorption peaks at 615 nm, near the center
of the laser tunability range. We estimate -10% of an
optical isomer to be contributing to the saturable ab-
sorption, which implies a combination of a resonant and

a nonresonant contribution. The off-resonant satu-
ration causes self-phase modulation of the pulses. The
single-pass downchirp induced by off-resonance inter-
actions with the absorber has been calculated to be
Aw/T _ /(2r 2) for T = 50-fsec pulses.1"1 2 In most ring
cavities, such a downchirp can be compensated by the
dispersion of one of the mirror coatings used near a
transmission edge13 (since these are the only losses de-
fining the wavelength of operation in these lasers).
Most of the measurements described in this paper were
performed with the laser cavity sketched in Fig. 1.
Thanks to the use of a standard tuning prism, broad-
band coatings (as opposed to edge reflectors or nar-
rowband mirrors) can be used near the center of their
reflection band for all cavity mirrors. There are now
four elements contributing to phase modulation and
dispersion in the cavity: the absorber jet, the glass
dispersion, mirror coating dispersion, and cavity dis-
persion. The amount of intracavity glass can be ad-
justed to compensate for (negative) dispersion and
self-phase modulation. The very strong dependence
of intracavity compensating glass on the intensity in the
absorber (as modified by moving the jet out of focus)
clearly demonstrates that self-phase modulation is the
dominant downchirping mechanism. Calcula-
tions"",12"14 indicate that the downchirp is equivalent
in magnitude to the upchirp produced by a glass path
of 2 mm of quartz. The dispersion of the broadband
coatings has been calculated'2l 3" 5 to be equivalent to
only 0.15 mm of quartz at most. These calculations
were confirmed experimentally by measuring the
change in quartz thickness required for intracavity chirp
compensation for nearly identical mirrors differing only
in their center wavelength. The fourth dispersive ef-
fect-cavity dispersion-was pointed out recently by
Gordon and Fork.16 Because of the cavity geometry,
one expects a nonzero d 2L/dX 2, where L is the cavity
perimeter. Because it is intrinsic to the whole cavity,
this effect is difficult to measure independently from
self-phase modulation in the absorber jet. Measure-
ments of the dependence of chirp compensation on the
position of the absorber jet12"17 indicate that this effect

lM6
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Fig. 1. Sketch of the laser cavity. Mirrors of 5-cm radius of curva-
ture were used around the amplifier dye jet (MO, M1, and M2), and
3-cm curvature around the saturable absorber jet (M3 and M4). The
mirror M5 has a radius of curvature of 1 m. Transmission factors
ranging from 2% to 10% were used for the output coupler M6. To
adjust the amount of intracavity glass, the prism P is mounted on a
translation stage oriented along the bisector of the angle made by the

beams leaving the prism.
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EVOLUTION OF THE AUTOCORRELATION
WITH INCREASING INTRACAVITY GLASS
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Fig. 2. Successive intensity autocorrelations taken
amounts of intracavity glass.

IABL E(t) =

SECOND HARMONIC f I E 'I d t

Fig. 3. Sketch of a second-order autocorrelation
Optical delay lines are used to split the original lase
quence of two pulses of relative phase and delay 
harmonic of that pulse sequence, generated in a KD]
tected through the color filers F (to eliminate the ft

diation) by the photomultiplier tube PI

is smaller than self-phase modulation.
The cavity sketched in Fig. 1 is parti

suited to demonstrating the series of diag
sented below, because the pulse duratior
modulation can be continually adjusted an
the accurate pulse-to-pulse reproducibili
onstrated by the pulse dispersion-pulse (
measurements of Sec. VIII and the cross co
Secs. IX and X).

The curvature of the focusing mirrors at 
(DODCI and DQOCI) is 3 cm, against 5
mirrors at the gain jet. The requiremer
chromaticity imposes an uneven (minii
number of focal spots in this cavity (to ei
verted image of the prism after each round t
direction, the effect of the angular dispe
prism is reduced by the small distance betw
jet and the prism. In the other direction,
spectral components are recollimated in t]
a 1-m curvature mirror (M3). The prisr
minimum deviation angle and mounted on E

stage to vary the amount of intracavity g]

perturbing the alignment. The effect of adjusting the
thickness of intracavity glass is illustrated by the suc-
cession of intensity autocorrelations displayed in Fig.
2. The pulse duration is seen to decrease to a minimum
with increasing intracavity glass. Further increase of
intracavity glass beyond the optimum value generally
leads to a breakup of the intensity autocorrelation [(d)
in Fig. 2] indicating satellite pulses and unstable oper-
ation. In some instances it has been possible to observe
well-defined mode-locked pulses of increasing duration
(with increasing glass thickness beyond the optimum
value). The disadvantage of this cavity is the com-
plexity of alignment due to the large number of optical
elements. We believe that future application will in-
volve a linear structure terminated by an antiresonant
ring.13"18 This laser combines the advantages of the
linear laser (ease of alignment, all the power in one
output beam, adjustable cavity length) with some of
those of the ring laser (colliding pulse mode locking).

for increasing
Ill. Characterization of Pulses by Intensity
Autocorrelations

The basic elements of a second-order autocorrelation
setup are sketched in Fig. 3. The pulse train is split into
two beams which are recombined after having passed

_) =D. through a fixed and adjustable optical delay. The av-
VFJ erage power of the second harmonic of the recombined

beam (generated in a KDP crystal) is recorded as a
function of the variable delay. The function that is
recorded is proportional to S I (Et)2 12 dt, where Et =
E(t) + E(t - r) is the electrical field of the light en-
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Ic1 = 1 + 2{I(t)I(t - )dt/SI 2dtJ, (1)

where I is the intensity of the light pulse. The function
Ic1 has a peak-to-background ratio of 3 to 1. In some
experimental arrangements, only the function

Ic = X I(t)I(t - r)dt/S I2 dt (2)

is measured. 2 2 I is called the background-free auto-
correlation. The function I (or Icl) does not carry any
phase information and therefore cannot be used to
distinguish coherent from incoherent pulses. Yet the
use of the expression "coherent spike", associated with
the intensity autocorrelation, has sometimes created
some confusion by making it appear as if a pulse free of
coherent spike (in its autocorrelation) is a coherent
pulse. We summarize therefore some of the properties
and information contained in the intensity autocorre-
lation to clarify the distinction with the interferometric
autocorrelation.

Any random noise on top of a cw signal will be iden-
tifiable in the function Ic by a small bump riding on an
infinite background. The width of the bump is a
measure of the temporal width of the fluctuations, and
the contrast ratio (peak-to-background ratio of Ic) is a
measure of the modulation depth. A 100% modulation
depth results in a peak-to-background ratio of 2 to 1 for
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Ic.19

Any signal of a finite duration results in a function Ic
of finite width. If that signal has some fine structure
(amplified modulation, noise) a narrow spike will appear
in the middle of the correlation function. This is the
coherence spike, typical of a signal consisting of a burst
of noise.19 ,2 3

An autocorrelation free of coherence spike is a nec-
essary condition for a coherent pulse. However, it is not
a sufficient condition. A white light incoherent pulse
(free of amplitude modulation) will have an autocor-
relation Ic without coherence spike. That is also the
case of a pulse with random or well-defined phase
modulation.

IV. Characterization of Pulses by Interferometric
Autocorrelations

If the measurement sketched in Fig. 3 is performed
with interferometric accuracy, the second harmonic
recording is proportional to the development of

It = f1t6(t) exp i (wt + 0)
+ 6(t - T) exp i[w(t- T) + (t - r)-}212dt. (3)

At zero delay the signal, being a coherent superposition
of the field 6 from each arm, is

It(O) = 24 X 64 (t)dt. (4)

At the next delay increment of one-half light period, the
two fields add with opposite phase resulting in a near-
zero signal (Fig. 4). The envelope of the constructive
and destructive interferences will merge into the in-
tensity autocorrelation for delays exceeding the pulse
coherence time. Since it involves the fourth power of
the fields combining in phase, the upper envelope will
be more sensitive to the pulse shape than the intensity
autocorrelation. The interferometric autocorrelation
can provide very useful information about pulse chirp,
because various types of chirps have characteristic
signatures. Let us consider the interferometric auto-
correlation of a pulse that has been chirped by self-

16Jf(t)dt Il J(t).t(t r)14 dt

2ft (t)dt

phase modulation (for example, by propagation through
a Kerrlike nonlinearity). Because of the frequency
sweep that is largest in the center of the pulse, there will
be a narrowing of the upper and lower envelopes.
However, since the pulse tail and pulse front remain
coherent with each other, the interferences in the wings
of the interferometric autocorrelation will extend to
delays as large as those for an unchirped pulse of the
same duration. In the case of self-phase modulation,
the narrowing of the upper and lower envelopes is a
much more sensitive indication of phase modulation
than the spectral broadening. Indeed, in the case of a
Gaussian pulse with self-phase modulation (a I), a
chirp that reduces the interferometric autocorrelation
width to 2/3 of its value (for unchirped pulses) broadens
the spectrum by only 10%.

Another typical phase modulation is that caused by
a linear chirp. The case of linearly chirped Gaussian
pulses is discussed in the next section.

V. Linearly Chirped Gaussian Pulses

Let us consider the case of Gaussian shaped pulses
with linear chirp:

E(t) = exp {- ()( 1 + iA)

The interferometric autocorrelation is given by

It = 1 + 2 exp(-r 2 ) + 4 exp L ) cos COSWT

+ exp[-(1 + A2 )T2] cos2w -

(5)

(6)

The upper and lower envelopes can be found by re-
placing w-r by 7r or 27r in Eq. (6). For A IZP 0, the first
derivative (with respect to r) of the equation for the
lower envelope has a zero for finite T = -r corresponding
to a maximum of the lower envelope. This maximum
has been calculated for various values of A and reported
in Fig. 5. The maxima of the lower envelope of the in-
terferometric autocorrelation recedes toward zero delay
along a curve close to the intensity autocorrelation as
the chirp parameter A is increased. In the case of a
large phase modulation (A >> 1), the pulse front and
pulse tail are no longer coherent with each other and can
no longer interfere. Therefore, the envelopes of the
interferometric autocorrelation merge with the intensity
autocorrelation for r > TC,.

A linear chirp can be induced on Gaussian pulses by
propagation through dispersive media. Identification
of a measured autocorrelation with Fig. 5 can be used
to measure the chirp parameter A (from the height of
the lower envelope maxima) as well as the pulse dura-
tion (position of the maximum). (An example of
measurement of a linearly chirped pulse through its
interferometric autocorrelation is presented in Sec.
VIII.) The position of the maximum of the lower en-
velope thus provides a convenient measure of the co-
herence time of the pulses discussed in this section. It
should be noted that this definition applies only to
linearly chirped pulses, since not all chirps give rise to
a lower envelope with maxima at finite delays. Mea-

1 May 1985 / Vol. 24, No. 9 / APPLIED OPTICS 1273

0 ri
Fig. 4. Interferometric autocorrelation.



5i

4

0
t=

0.
aE3

0
!5
CZ
ED2

.3

CZ

a

Elt=et 2
= -At 2

2
DELAY

Fig. 5. Locus of the maxima of the lower envelope of the interfero-
metric autocorrelations of linearly chirped Gaussian pulses as a
function of chirp parameter A. The locus of the corresponding value
of the upper envelope is also plotted. The locus of the lower envelope
is only slightly below (of the upper envelope slightly above) the in-
tensity autocorrelation (dashed line). The loci are graduated in values
of chirp parameter A. The particular interferometric autocorrelation

corresponding to A = 2 is also shown.

I-
5,

z
I-C.

a-
Fo

DEPENDENCE OF THE SPECTRUM ON THE
INTRACAVITY PATHLENGTH I Fused Silica 

Glass
Pathlength

2.5

~~~ 3 . I~ ~~.

WAVELENGTH (nm]

Fig. 6. Pulse spectra taken for increasing amounts of intracavity
glass.

Table I. Diagnostic Functions Corresponding to Various Pulse Shapes
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surement of an interferometric autocorrelation with an
envelope matching that of Eq. (6) does not unambigu-
ously indicate a linearly chirped Gaussian pulse. The
measurements are always an average over a large
number of pulses. The effect of a statistical distribu-
tion of pulse durations on the intensity autocorrelation
has been considered by Van Stryland.24 In the latter
paper, it was shown that the intensity autocorrelation
for a series of Gaussian pulses statistically distributed
in pulse width has exponential wings. Such a shape
could also be interpreted as the intensity autocorrela-
tion of identical single-sided exponential pulses. In-
tensity autocorrelations with exponential wings are
quite often observed with synchronously pumped lasers.
A recent theory by Catherall and New25 indicates that
indeed one expects a jitter in pulse duration for this type
of laser. A similar type of ambiguity exists for the phase
function. The interferometric autocorrelations for a
train of unchirped Gaussian pulses, with a frequency
distribution F(Aco) around a central frequency co [ =
CwO + Aw], is

It = {1 + 2 exp(-r)
2) + 4 exp(-3/4T

2 ) coscoT

+ exp(-T 2 ) cos2coflF(Aco). (7)

In the small chirp limit (cosAr2/2 _ 1), Eq. (7) is iden-
tical to the expression of Eq. (6) for

F(Aco) = A/ expt A2 ) (8)

A train of Gaussian pulses with a Gaussian distribution
of frequencies has thus the same interferometric auto-
correlation as a linearly chirped Gaussian pulse. Sev-
eral other types of measurement have to be done to
ensure that the laser output consists of a train of iden-
tical pulses. In the case of the laser used in this work,
the pulse-to-pulse reproducibility in shape and fre-
quency has been verified by the following criteria:

(a) no fluctuation in pulse energy as measured in real
time by a fast photodiode nor in the energy of the second
harmonic;

(b) the spectrum of the second harmonic corresponds
to the square of that of the fundamental (Sec. X);

(c) overall agreement of the fitting of linear (spec-
trum) and nonlinear (correlation) measurements; and

(d) the pulse compression and broadening observed
by propagation through glass is consistent with the chirp
(and shape) determination through the method detailed
in Sec. VIII.

VI. Analytical Autocorrelation Functions for Selected
Pulse Shapes

The process of pulse shape identification is greatly
simplified if a set of typical test functions is available.
We have found analytical solutions for the measure-
ments associated with the most common pulse shape
functions encountered. For the sake of completeness,
we have included the linear autocorrelation gl(ir) de-
fined as

g 1(r)= IE(t) + E(t - T)I2 dt/2 I E(t)I2 dt. (9)

Since the Fourier transform of the first-order autocor-

relation g1 (T) is equal to I(w) + I(-c) [where I(w) is the
pulse spectral intensity], it does not contain more in-
formation than the spectrum. The normalized sec-
ond-order interferometric autocorrelation g2(r) is de-
fined by

g2(T)= J E(t) + E(t - )12 12dt/2 f 1E2 (t) I 2dt. (10)

The fringe averaged portion of g 2 (T) is the intensity
autocorrelation G2(r):

G2 (T) = jE 2
(t)E

2
(t )Idt/ J 1E2(t)12dt. (11)

The spectral intensity I(w), the first-order [g1(Tf], and
second-order [g2(O)] autocorrelations are listed in Table
I for various pulse shapes. The FWHM of the corre-
sponding functions is indicated. For Gaussian pulses
the integrations can be performed simply by the method
of completing squares. For pulse shapes of the form
e(t) = 1/[exp[t/(1 + A)] exp[-t/(1 - A)]J, the integrals
involved in the development of the second-order auto-
correlation can be obtained by the method of partial
fractions. For the more general case 6(t) = 1/lexp(rt
+ exp(-rt)}, where r is any real number, the integrals
are obtained by contour integration. The contour is the
same as that used to calculate the Fourier transform of
a sech shaped envelope.26 The autocorrelations of the
functions listed in Table I can also be calculated for
linearly chirped pulses. However, the expressions be-
come too complex to be useful in view of the availability
of a more practical numerical alternative discussed in
Sec. VII.

Vll. Determination of the Shapes-in Amplitude and
Phase-of the Pulses Produced by the Laser

The pulse shape-in amplitude and phase-is de-
termined from simultaneous fitting of the intensity,
interferometric autocorrelations, and spectrum. The
case of arbitrary shape and/or nonlinear chirp cannot
be handled by the analytical expressions given in the
previous section. Instead, we developed a computer
program to generate the spectrum and correlations for
an arbitrary input pulse. It should be noted that, for
strongly phase modulated pulses, the interferometric
autocorrelation is also chirped. Therefore, each point
of the upper or lower envelope has to be calculated by
seeking the maximum (or minimum) of each individual
fringe. The pulse is Fourier transformed to calculate
the effect of dispersion through the excess glass (of one
arm of the interferometer), thereafter transformed back
into the time domain to calculate the (interferometric
and intensity) cross correlation with the original pulse.
The use of the intensity autocorrelation alone as pro-
posed by Anderson and Eng27 does not remove two
major uncertainties. Because the second-order auto-
correlations are symmetric (except for the eventual ef-
fect of pulse dispersion in the beam splitter of the au-
tocorrelator) the same autocorrelation function can
represent a symmetrical or an asymmetrical pulse. The
ambiguity is replaced by an assumption of minimum
phase in Ref. 27, which cannot be verified indepen-
dently for the pulses produced by the laser. The second
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Fig. 7. Three successive spectra and corresponding interferometric autocorrelations taken for successive increments of intracavity glass
(indicated in the figure).

unknown is the phase of the pulse electric field, on
which no information is contained in the intensity au-
tocorrelation.

The evolution of pulse spectra with an increasing
amount of intracavity glass is illustrated in Fig. 6. The
spectrum is asymmetric, with a sharp edge on the
long-wavelength side, for less glass than optimum in the
cavity. As the fused silica prism is translated to in-
crease the amount of intracavity glass, the spectrum
becomes symmetric as the pulse duration passes
through a minimum. For an overcompensated cavity
(more glass than optimum), the spectrum has reversed
symmetry: the sharp edge is on the short-wavelength
side. The amount of intracavity glass has to be adjusted
quite accurately in order to reach perfect chirp com-
pensation (minimum pulse duration and symmetric
spectrum). The pulse spectrum is seen to reverse
symmetry between 2.8 and 2.95 mm of glass in Fig. 6.

A similar evolution of interferometric autocorrela-
tions is shown next to that of pulse spectra for three
different glass thicknesses in Fig. 7. For a cavity un-

dercompensated by 2.5 mm (glass thickness 3.9 mm),
the interferometric autocorrelation has a shape typical
of nonlinear chirp. The interference region extends in
the wings, because the pulse front and tail are not fre-
quency modulated, and are thus coherent with each
other. The maximum chirp occurring near the center
of the pulse narrows the central portion of the auto-
correlation. As optimal compensation is approached
(middle and lower parts of Fig. 7), the spectrum be-
comes symmetric, and the interferometric autocorre-
lation takes the characteristics shape (sharp transition
from the interference region to the uniform background
at 1/8 peak height) of an unchirped pulse.

The phase modulation is primarily induced by off-
resonance saturation in DODCI. Moving the absorber
dye jet out of the focal spot results in a strong decrease
in glass thickness required for optimum chirp com-
pensation.12'17 The magnitude and sign of the non-
linear chirp agrees with the recent theoretical calcula-
tions of Rudolph and Wilhelmi.11 In addition to the
nonlinear chirp induced by self-phase modulation, the
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cavity length dispersion effect (resulting from a nonzero
d 2P/d X 2 where P is the cavity perimeter) calculated by
Gordon and Fork16 adds a linear contribution to the
downchirp. The strong dependence of optimum glass
thickness on the intensity in the absorber1217 indicates
that self-phase modulation is dominant but does not
provide a way to quantitatively isolate one effect from
the other.

One might wonder how a nonlinear chirp can be
compensated through linear dispersion of glass in this
laser. The theories of Diels et al. ,14,17 Dietel et al. ,28

and Rudolph and Wilhelmil predict an unchirp of the
leading edge of the pulse. The unchirped part of the
pulse will be broadened by passage through the glass.
Since this broadened weaker signal is ahead of the pulse,
it will be attenuated in the absorber and eventually
vanish. As the compensation increases, the upchirped
parts of the pulse subside in the cavity, and only the
downchirped part remains. At optimum chirp com-
pensation, the cycling of the pulses through the cavity
can be described as a solution propagating in an infinite
medium with a distributed gain-loss function equiva-
lent to one cycle through the cavity.14"17 28

At optimum chirp compensation, the symmetric
spectrum and the autocorrelations can easily be fit with
an unmodulated pulse of shape

1~~~~~~~(2
exp(t/TF) + exp(-t/rR)

with rF/TR _ 0.7/1.3. The preferred mode of operation
however is with a slightly undercompensated downchirp
for which the nonlinearity of the phase modulation is
still negligible and the laser stability is optimal. The
corresponding interferometric autocorrelation is dis-
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z

z
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played in Fig. 8. The slight departure of the 8/1 ratio
results from a small imbalance of the losses in the two
arms of the autocorrelator-an effect that has been
corrected for in the fitting summarized by the sequence
of Fig. 9. The experimental data [intensity autocor-
relation, Fig. 9(a); spectrum, Fig. 9(b); and envelopes
of the interferometric autocorrelations, Fig. 9(c)] are
reported as crosses in Fig. 9, while the solid lines are the
calculated functions for the trial pulse shape:

6(t) = exp[-0.15i(t/T)2 ]/Iexp[-t/0.75r] + exp[t/1.25r]. (13)

In Eq. (13), r = 44 fsec and the pulse duration (FWHM
of the intensity) is 76 fsec (=1.72r). The accuracy of
the fitting of first-order (spectrum) as well as second-
order (autocorrelations) measurements is an indication
that there are no pulse-to-pulse fluctuations. A more
rigorous demonstration that pulse averaging effects are
negligible in this laser is contained in a comparison of
the spectrum of the pulse train with that of the second
harmonic given in Sec. X.

It should be noted that this slightly downchirped
pulse represents a best mode of operation of the laser
for the following reasons. A slight downchirp is desir-
able in order to compensate pulse broadening through
dispersion that is inevitable in the optical components
(windows, mirrors). The small downchirp near opti-
mum chirp compensation can be assimilated to a linear
phase modulation. With slightly more (of the order of
tens of microns) intracavity glass, shorter pulses can be
generated but at the expense of a decrease in stability.

la) INTENSITY AUTOCORRELATION

?i

E

Is

e 1 _

e .75r+ 81.25r

FWHM: 76fs =1.72ri

-1.0 0.0 1.0
DELAY FWIH I

hbj SPECTRUM

-200 0 200
DELAY(fs]

Fig. 8. Recording of an interferometric autocorrelation (used in the
pulse shape fitting of Fig. 9).
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FREQUENCY OETUNING (FWHMI DELAY FWHNI 3/11

Fig. 9. Example of pulse shape determination through fitting of the
intensity autocorrelation (a), the pulse spectrum (b), and the inter-
ferometric autocorrelation (c). The crosses are the experimental data
points. The solid lines are the corresponding functions calculated

for the trial test function indicated in the figure.
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The low frequency noise increases and the mode-locked
operation becomes more sensitive to the alignment and
position of jet. Therefore, in experiments requiring a
high temporal resolution2 9 a higher accuracy and higher
signal-to-noise can often be obtained using slightly
downchirped pulses, 20-50% longer than the minimum
pulse duration obtainable from the laser. A precise
pulse shape determination as illustrated in Fig. 9 en-
sures a better temporal resolution than would be ob-
tained with shorter, less stable pulses.

Vil. Pulse Compression and Broadening in Glass

The propagation of initially bandwidth-limited pulses
(i.e., without phase modulation) through normally
dispersive media (for example, glass) is a classical
problem of propagation that can be solved analytically
for pulses with a Gaussian temporal profile within the
approximation of negligible pulse distortion. After
propagation through a thickness L of glass, an initially
unchirped pulse E = El exp - (t/r1 )2 becomes E = E2
exp - (t/r 2 )2 [1 + iA] with a broadening given by30

T2 = T1 N/fk,, (14)

and a linear chirp parameter

A = ko. (15)

The parameter ko characterizing the pulse distortion
is the second derivative of the phase change (by trans-
mission) with respect to the frequency normalized to the
inverse pulse width:

ko = 2 d 2
o 2 d 2k

ho d(l)2 T2 dw2 '(16)

where

d2k 2 dn w d2n
dW2 c do, c d 2

In Eq. (16), c is the speed of light in vacuum, L the
thickness, and n the index of refraction of glass.

We have performed measurements of broadening in
two types of glass: SF5 and BK7. For these two types
of glass, a cubic fit of the published data on the index
of refractions around 625 nm gives

nSFs = 1.6691 + 0.1792 X 10-3 AW
+ 0.3743 X 10-6 AW2 + 0.38 X 10-8 AW3,

and

k(Aw) = 0.9735 X 10-2 AW2 + 0.5124 X 10-4 AW3. (18)

nBK7 = 1.5153 + 0.7326 X 10-4 AW
+ 0.8772 X 10-7 AW

2
+ 0.16 X 10-8 AW

T
3,

and

k(Aw) = 0.3323 X 10-2 AW2 + 0.1907 X 10-4 AW3. (19)

In Eq. (18) and (19), Aw is the frequency measured from
the central pulse frequency (Au = - co, where co, =
2-r/c/Xo where o = 625 nm) in units of 10-13 sec',
while the correction to the wave vector k (Aw) (of order
larger than 1 in Awo) is in mm- 1 .

Since the results are qualitatively identical for both
types of glass, we will discuss here only the more dis-
persive results obtained with SF5 glass. For a 90-fsec
pulse propagating through 100 mm of SF5 glass, the
linear chirp parameter [from Eqs. (19) and (17)] is ho =
4.8, and the broadening factor N/(i Vk7Y = 5. Thus we
expect from the Gaussian theory that the 90-fsec pulse
broadens to 450 fsec, while the intensity autocorrelation
of the transmitted pulse indicates a broadening to only
350 fsec (assuming Gaussian pulse shape). A quick
estimate for the chirp can be extracted from the ex-
perimental interferometric autocorrelation with the
help of Fig. 5. We find a value of the chirp parameter
of 6.3 against 4.8 for the value deduced from the linear
dispersion theory. All these discrepancies are another
indication that the pulse shape is too far from a
Gaussian for the classical broadening by dispersion
formula (16) to apply. A numerical analysis based on
the experimentally determined pulse shape gives a
consistent picture, as shown below.

The best fit of the autocorrelation and spectra for the
initial pulse is for the pulse

E(t = exp[-iA(t/r) 2

exp[t/r(l + a)] + exp[-t/T(l - a)]
(20)

with r = 120 fsec, an asymmetry characterized by a =
0.75, and a chirp parameter of A = 0.25. The intensity
autocorrelation of this pulse has a FWHM of 130 fsec.
The FWHM of the pulse itself is 87 fsec. We calculated
the transmitted pulse through a thickness d of glass by
computing the Fourier transform of the pulse (20),
multiplying it by the phase factor exp[-ik(Awo)d]. The
FWHM of the transmitted pulse is 390 fsec. The
FWHM of the intensity autocorrelation of the trans-
mitted pulse is 570 fsec, indicating a broadening by a
factor of 4.38. This is in excellent agreement with the
measured broadening of a factor 4.3 ± 0.2.

A comparison of the calculated (solid line) vs mea-
sured interferometric autocorrelation of the transmitted
pulse is shown in Fig. 10. There is no adjustable pa-
rameter in the computation leading to the solid line,
since the input pulse shape [Eq. (20)], chirp, and dura-
tion were derived directly from the (input) data for the
laser pulses. While the input pulse had a slight down-

5s0 -100 0 100 50W

DEUY Ifls

Fig. 10. Interferometric autocorrelation of a pulse that propagated
through 10 cm of SF5 glass. The solid line is a calculated autocor-
relation using published data on SF5 to calculate the distortion of the
initial pulse shape. The latter (detailed in the text) was determined

by simultaneous fitting of the autocorrelations and spectrum.
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chirp, the transmitted pulse has an upchirp of 57 X 1024

sec 2. It is interesting to compare this value of the
chirp with the estimate obtained from Fig. 5. The
phase modulation corresponding to a linear chirp of 57
X 1024 sec-2 is A(t/rg) 2 , with A = 6 and T g = 460 fsec is
the l/e HW of the Gaussian pulse with the same
FWHM as the transmitted pulse (390 fsec). Reporting
the ratio of the maximum of the lower envelope to the
peak of the autocorrelation of Fig. 10, in Fig. 5 we find
a chirp coefficient of A = 6.3. We thus conclude that,
even though Fig. 5 was calculated for a Gaussian shape,
the ordinate of the maximum of the lower envelope of
the interferometric autocorrelation provides a quick and
accurate measure of the linear chirp of a pulse (even an
asymmetric one).

As noted previously, the effect of normal dispersion
of optical components on femtosecond pulses can be
partly compensated by using downchirped pulses. The
laser is operated with less intracavity glass, to produce
longer downchirped pulses, which are then compressed
extracavity by propagation through glass. However,
since linear propagation through transparent media
does not modify the pulse spectrum, the latter process
is much less efficient than intracavity compression.
Indeed, even in the case of a linearly downchirped
asymmetric pulse, the spectrum is asymmetric and
cannot represent the Fourier transform of a real func-
tion. The extracavity pulse compression will be even
less effective for strongly undercompensated cavities,
which produce pulses with a nonlinear chirp. The ef-
fectiveness of extracavity pulse compression compared
to intracavity chirp compensation is illustrated in Fig.
11. The pulse duration is plotted as a function of ex-
tracavity glass (BK7) thickness. In the top figure, the
laser is undercompensated by 1 mm of intracavity
glass-in this case the intracavity prism was made of
fused silica. A longer pulse duration is measured after
compression through 100 mm of BK7 glass than the
minimum duration obtained with the exactly compen-
sated cavity (3.2-mm intracavity glass). The lower
portion of the figure uses a more strongly chirped pulse,
generated with the laser undercompensated by 2.2 mm
of fused silica (the laser cavity alignment was slightly
modified to have a larger self-phase modulation re-
quiring 9 mm of intracavity fused silica for optimum
compensation). The difference between minimum
pulse durations obtained by extracavity vs intracavity
compression is 2.5 times larger than in the previous
case.

IX. Direct Measurement of the Shape of
Downchirped Pulses

Downchirped pulses can be compressed (by as much
as a factor of 2 in the case of the lower portion of Fig. 11)
by simply propagating them through a block of glass.
This offers a possibility to observe directly their shape
by inserting the appropriate thickness of glass in one
arm of the autocorrelator, as sketched in Fig. 12. After
passage through glass, the downchirped pulse is com-
pressed. As one leg of the interferometer is translated,
the second harmonic signal is proportional to the cross

INTRACAVITY: 2.2mm Fused Silica
200 -

z

100

INTRACAVITY OPTIMUM: 3.2mm Fused Silica

0 100 200

GLASS OUTSIDE THE CAVITY mm BK7i

.Rr^l - 11Rm IFlse ili-kI

200
0

I
I

N 100
INTRACAVITY .OPTIMUM: 9mm Fused Silica)

0
0 100 200 300 400

GLASS OUTSIDE THE CAVITY mm BK7)

Fig. 11. Extracavity chirp compensation. The laser is undercom-
pensated by 1 mm (above) or 2.2 mm (below) of fused silica. The
pulse duration is measured after transmission through various

thicknesses of BK7 glass.

.N.

F- J GLASS

DOWNCHIRPED

PULSE - ' / t
t

KOP

Fig. 12. Sketch of the cross correlator for downchirped pulses. A
block of glass (5 cm of BK7) is inserted in one arm of the interfer-
ometer. As the delay in that arm is varied, the cross correlation of
the original pulse with the pulse compressed through the glass will

be measured.

correlation of the compressed pulse with the original
one.

For the measurement reported in Fig. 12, a block of
5-cm BK7 glass was inserted in one arm of the inter-
ferometer. The successive autocorrelations of Fig. 12
show, from top to bottom, the downchirped pulse from
the laser, the pulse after propagation through 10 cm of
BK7 glass, and the result of the cross correlation with
5-cm BK7 inserted in one arm of the interferometer.
The interferometric autocorrelation of the laser pulse
(top of the figure) is typical of a nonlinear phase mod-
ulation.
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THE LASER
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Fig. 13. Above: intensity and interferometric autocorrelations of the laser pulse. These measurements, together with the pulse spectrum,
were used to determine the pulse shape and chirp. The dashed line is the result of the fitting procedure for the pulse electric field envelope
indicated in the text. Middle: intensity and interferometric autocorrelations of the pulse after propagation through 10 cm of BK7 glass.
The dashed lines are obtained by calculating successively the propagation and autocorrelations of the laser pulse determined from the previous
fitting. Below: intensity and interferometric correlations after insertion of 5-cm BK7 glass in one arm of the interferometer of Fig. 12. The

dashed lines are calculated correlations using the laser pulse shape determination of the upper figure.

There is no straightforward method to determine the
shape and phase modulation of a pulse with a nonlinear
chirp as produced by the laser with little or no chirp
compensation. The fitting procedure outlined in Sec.
VII can still be applied. The theory of the passively
mode-locked dye laser11 "7 facilitates the fitting proce-
dure by providing a reasonable starting point for the
first iteration. Indeed, it has been shown11 "17 that the
frequency modulation induced by transmission through
the saturable absorber has a similar temporal depen-
dence as the pulse intensity and reaches its peak value
one pulse width (FWHM of the intensity) ahead of the
peak of the pulse. A linear chirp is added to the non-
linear one to account for the dispersion of the various
(linear) intracavity components. We find a best fit for
the following pulse shape:

exp[io(t)]

with
= ) exp[-t/r(l -a] + exp[t/T(1 + a)]

0 = 2BdtIT + A(t/l-) 2.
Jexp(-tR) + exp(tF)

(21)

(22)

The rise and fall of the frequency modulation are
characterized by

tR = 2(t -t)h-(1 -a), tF = 2(t -0)/(1 + a).
The values of the various parameters (obtained by fit-
ting successively the pulse spectrum, intensity, and
interferometric autocorrelation) are

pulse asymmetry: a = 0.55
nonlinear chirp; B = 2.3
linear chirp: A = -0.2
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offset of the frequency tc/r = 1.
modulation:

pulse duration: r = 88 fsec, which
results in a
pulse duration

(FWHM of the intensity) of 135 fsec.
The intensity and interferometric autocorrelations

calculated for this pulse shape are indicated by the
dotted line (top of Fig. 13). The data are represented
by the solid lines. As in the previous section, we cal-
culate the transmission through 10 cm of BK7 by Fou-
rier transforming the pulse complex envelope and
multiplying it by the appropriate phase factor before
retransforming it back into the time domain. Next, the
transmitted pulse is correlated with itself (middle of Fig.
13) and with the initial pulse (bottom of Fig. 13). The
dotted lines show the calculated functions, while the
solid lines show the experimental data. Only the data
of the upper figure were used to determine the pulse
shape. The calculated curves for the middle and lower
part of the figure were obtained without the use of any
adjustable parameter. Comparison between the the-
oretical and experimental cross correlation could be
used to improve the pulse shape fit. Because of the
initial downchirp, the pulse transmitted through the
glass is 1.8 times shorter than the initial one. Hence,
the cross correlations exhibit the asymmetry in shape
and chirp of the laser pulse (and provide independent
confirmation that indeed it is the rise time that is
shorter than the fall time). Because of the nonlinear
frequency modulation of the laser pulse, the pulse
transmitted through glass has an interesting shape, with
a relatively slow rise (1/e of max rise time = 120 fsec)
and a steep decay (1/e of max fall time = 82 fsec).

X. Bandwidth of the Second Harmonic

Two fundamental field (centered around the laser
frequency ) envelopes El and E2 combine in the non-
linear crystal to generate the second harmonic:

E2.= (w)E1E2. (23)

The conversion efficiency 7(U) will, in general, be dif-
ferent for various frequency components of the pulse
for which the phase of the fundamental and second
harmonic are not matched over the entire crystal length.
Fourier transforming (23) yields

E 2 .(r) = dt f dt'-(t')E1(t' - t)E2 (t - r)dt. (24)

The expression (24) is equal to the correlation of the
fields E1 and E2 only if the conversion efficiency is
constant over the frequency range covered by E(U)
[ij(c) = wo]. If the phase matching is not uniform over
the bandwidth of interest, the measured correlation
functions will be broadened. It is therefore important
to use a short conversion length to ensure that the phase
of the second harmonic field follows that of the funda-
mental for the whole pulse spectrum. This can be done
either by using short nonlinear crystals or tight focusing.
We have used either 0.3-mm thickness KDP crystals
(focusing with a 22-mm focal distance lens) or crystals

of 2-mm thickness (focusing with a microscope objective
with a magnificantion factor of 8X).

We have verified that the second harmonic generating
crystal provides uniform conversion over a sufficient
bandwidth by comparing the spectra of the second
harmonic and of the fundamental. The square root of
the second harmonic intensity plotted (dotted line) as
a function of fundamental wavelength is seen to match
accurately the pulse spectrum (Fig. 14). Such a com-
parison serves many purposes:

(a) to verify that the harmonic conversion does not
act as a narrowband filter;

(b) to verify that pulse-to-pulse fluctuations in the
train are negligible; and

(c) to verify that background radiation between
pulses is negligible (indeed, since the duty cycle of the
pulses is typically of 10-5, continuous radiation of 1/105
of the laser peak power will affect significantly the linear
spectrum, while being a negligible contribution to the
nonlinear spectrum.

Xl. Conclusions

We have demonstrated a source capable of generating
femtosecond pulses of controllable shape and chirp as
well as accurate diagnostic methods to measure these
parameters. Analytical expressions are derived to
provide a quick identification of various typical pulse
shapes through their interferometric and intensity au-
tocorrelations as well as their spectrum. The latter
functions are calculated numerically from trial functions
for the fitting of more complex pulse shapes and chirp.
The accuracy of the determination of the pulse ampli-
tude and phase is demonstrated by the consistency of
various measurements and calculations of pulse
broadening and compression through glass.

615 610
WAVELENGTH nm)

Fig. 14. Comparison of the pulse spectrum with that of the second
harmonic.
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The laser emission is shown to consist of a train of
identical pulses of asymmetric shape with a steep rise
and slower decay. The frequency modulation can be
adjusted from being strongly nonlinear to a small linear
downchirp and even zero modulation. A wide variety
of pulse shapes can be created through a combination
of chirp control and propagation through glass. It is,
for example, possible to reverse the asymmetry of the
source pulse (i.e., to transform it into a pulse of slow rise
and steep decay).

This work was supported by the National Science
Foundation under grant ECS-8406985.
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