
Relativistic Kinematics 

6.1 TIME DILATION, LENGTH CONTRACTION AND SIMULTANEITY 

In the next section we shall find the new equations which will replace the Galilean 
transformation equations (5.1~ an~ (5 .~); but before that Jet us derive perhaps the 
two most remarkable re~ults_ m Emstem s theory: the fact that time passes at dif-
ferent rates in different mert_ial frames and_ that it doesn't make sense to speak of 
the length of a metre rule without also statmg the frame in which it is at rest. 

Historically people have regarded distance and time as fundamental units. For 
example, as defined by a standard length of material and an accurate periodic 
device. Speed is then a derived quantity determined by the ratio of distance travelled 
and time taken. Nowadays, the scientific community has stopped thinking of the 
metre as fundamental. Instead the metre is defined to be the distance travelled in 
a vacuum by light in a time of exactly 1/2,9979,2458 seconds. This might look 
like a rather arbitrary definition but that particular sequence of numbers in the 
denominator means that the metre so defined corresponds to the length of the 
old standard metre, which was a metal bar kept locked in a vault in Paris. The 
advantage of defining the metre in terms of the speed of light and the unit of time 
means that we no longer have to worry about the fact that the metal bar is forever 
changing as it expands and contracts. By defining the metre this way we have 
chosen a value for the speed of light in a vacuum, i.e. c = 2.99792458 x 108 mis. 
There is nothing particularly special about using the speed of light here, strictly 
speaking one could define the metre to be the distance travelled by an average snail 
in 15 minutes. Then the snail speed would be fundamental. However, given the 
variability in snail speeds, this would not consitute a very reliable measure. Light 
speed is much more preferable and it has the particular advantage that it is the only 
speed which everyone agrees upon (by Einstein's 2nd postulate); all other speeds 
require the specification of an associated frame of reference. 
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Figure 6.1 A light-clock viewed in its rest frame. 

This is a good place to discuss exactly how time measurements are to be made. 
Consider an observer in some frame of reference S who is interested in making 
some time measurements. Since Einstein's theory is going to require that we drop 
the notion of absolute time, we need to be more careful than usual in specifying 
how the time of an event is determined. Ideally, the observer would like to have 
a set of identical clocks all at rest in S with one clock at each point in space. For 
convenience, the observer might choose that the clocks are all synchronised with 
each other. The time of an event is then determined by the time registered on a 
clock close to the event. Ideally the clock would be at the same place as the event 
otherwise we should worry about just how the information travels from the event to 
the clock. The observer can then determine the time of an event by travelling to the 
clock co-incident with the event and reading the time at which the event occured 
(we are imagining that the clock was stopped by the event and the time recorded). 
Clearly this is not a very practicable way of measuring the time of an event but that 
is not the point. We have succeeded in explaining in principle what we mean by 
the time of an event. Most importantly, the time of the event clearly has nothing to 
do with where the observer was when the event happened nor whether the observer 
actually saw the event with their eyes. We may have laboured this point to excess 
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Figure 6.2 The path taken by the tight in a moving light-clock. 

Squaring both sides and re-arranging allows us to solve for M : 

2d I 
~t=- X . 

C j J- v2/c1 
(6.3) 

The time measured in S is longer than the time measured in S' and we are _forced 
to conclude that in Einstein's theory moving clocks run slow. This effect is also 
known as 'time dilation', and it is negligibly small if v/c « I but when v ~ c 
the effect is dramatic. 
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v ' ( " ) ' (l +v/c)' ' ' llt==yllt' +yllt'~ = yllt l +~ =flt l -v/c (6.8) 

It is very important to be clear that this extra slowing down of the dock 
is an 'optical illusion' , in contrast to the time dilation effect which is a real 
slowing down of time. To emphasise this point, if light travels at a finite speed 
then moving clocks will appear to run slow even in classical theory such that 
llr,,. = llt'(I + v/c). 

Eq. (6.8) leads us on nicely to lhe Doppler effect for light Le1 us consider 
., situation illustrated in Figure 6.4. A light source is at rest in S' and is being 
lched by someone al resl in S. The lime inlerval t>t' could just as well be Jhe 
IC between lhe emission of successive peaks in a light wave, i.e. the frequency 
the wave is f' = l/ !11 '. The person watching the light source will instead see 
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Figure 6.4 A light source of frequency f' at re~i in S'. 

a frequency f === \ / 6.t . The two frequencies are related using Eq. (6.'&): 

- ' (' - u/c\112 
f - f \ + v/e } . 

m 

\6.9) 

is is the result in the case that the light ~ource is mo:ing away from the observer, 
which case Eq. <?·9_) tells ~s th~t f < f and s~ the hght apl)Cars shifted to shoner 

1n uencies, i.e. it ts red-shi'.ted . 1f the source ts moving towards the observer we 
fre~ld reverse the sign of, v m Eq. (6.9) and therefore conc\ude at f > f', i.e. the 
sh0 

. now 'blue-shifted . 
light IS 

ample 6.1.2 How fast must rhe dr~ver of a car be travelling towards a red lraffic 
E• (' _ 675 nm) in order fo r lhe light lo appear amber()..= 515 nm)' ~-- ' 

Solution 6.1.2 In the re~tframe oft~ie car, ~he traffic lighl is moving towards them 

01 
a speed u. Our task 1s to dete~me . u given rhe change in wavelength. We can 

convert wavelengths to fre~uenc1~s using c = /A and rhen use Eq. (6.9) to solve 
for u. Because the source 1s moving towards the car we should use Eq. (6.9) with 
u::: - u and so 

c e (\ + u/c\ 112 

575 x \0-9m = 675 X J0- 9m 1- u/e } 

(
675)' =~-

=} 575 1-

The solution ro which is = i, /c = 0.\59. It is often sensible to express speeds in 
tenns of the ratio u /c, although in this case expressing rhe resuh as a speed of just 
over J 3 lunls makes it clear that rhis effect is never going to impress a court of law. 

6.1.2 Length contraction 

We now shift our attention to the measurement of distances in different iner-
tial frames and to the phenomenon known as length contraction. Light bouncing 
between mirrors can also be used to determine distances by accurately measuring 
the time it takes for light to travel between the mirrors. Le\ us imagine a ruler o! 
length Lo when measured in its rest frame. Now we ask what is the length Lo! the 
ruler when it is moving? Figure 6.S shows a ruler moving with a speed u relatwe to 
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Figure 6.5 Measuring the length of 3 moving ruler. 

s. To measure Lhe length of the ruler we shall mount a light. 1 
next to it, as shown. The light-clock moves with the ruler. Th c ,~k of equal) 
one end of the ruler and reflects from a mirror located at the ighi s_1arts ou1il1li . d . . e opposlf r0rri 
ruler. Our str~tegy w11l.be to_ el_enmne the time taken for the roundtri e_end of !he 
and equate this to the time dilauo~ re~ult. ~s a result of time dilatio//irccuy i" s 
time in S is related to the roundtnp time m the rest frame of the j he roulldlrj 

ruer t:i,oby p 

t,.t = yfito = y2Lo _ 
C (6.101 

We shall now endeavour to determine this time interval by considerin h . 
of the light from the viewpoint of S. According to an observer in s ,h/, t e J?u~ ' Ofa/tJl7lcij 

6t=Alour+6tin, 16.((j 

where Lltou1 is the time taken for the light lo travel on its outward joum . 
from A to B, and lHm is the time taken on the return journey. The figure e;h 

1
~· 

e_xplicitly the two po~itions of 1he ruler whe~ the light starts its journey (d.1.1: 
lme) and when the hgh~ reaches the oppos11e end of the ruler (solid line). 1 
order not to clutter the picture we have not shown the third position of the rul n 
i.e. when the light finally returns back lo its starting point. Since Einstein's 2: 
postulate tells us 1he speed of light according lo S, we can write 

c6tou1 = L + v6tout 
l 

=>61001=~-. c-u (6.12) 

:ch_ side o~ the first of_these equations_ is equal to the total distance travelled by 
e hght ~n its outward Journey (according to S) and it takes into account the fact 

that the hght has to travel a little further than the length of the ruler L as a result 
of lh t" n1Jpr'1: mntinn ~;ma~rlu l"-- •1.- ---·- ,__ •'-- ,:_L. ,_ __ •- •-- - -- 1 _ -1.----
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=> 6tm = _!:__ 
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123 

(6.13) 

. together Eqs. (6.12) an~ (6.13) and equating the result lo 
A,dJ1ng . relating Land Lo, 1.e. Eq. (6.10) gives 

quauon 
an e l l 2L 

~+M =Y~. 
. for L gives 

s01v1ng 
l=~ 

y " 

(6.14) 

(6.15) 

. remarkable result; for the length of the ruler is smaller wh . . . 
,4ga!;n a than when i i i.s _at rest . en rt is m 
moll e could have anticipated the length contractmn result knowing only the time 
. ~on result. The argument goes fo llo~s- Let us consider again ihe muons 

J1Ja ed in the upper at~os~he~e which we discussed in Example 6.1.1. From the 
c~at int of a muon. 11 still . h~es for 2.2 µs y_et has travelled all the way to lhe 
v1eW~ surface. However this 1s not such an impossible task as it would be in 

al theory for the 20km is reduced by a factor of y. It has to be exactly the 
classic tor of y as before because we know that muons created at an altitude of 
sarne r;~ average just_ reach the Earth before decaying if they have a speed of 0.999c 
20 kJT1 the viewpoint of such a muon 1he Eruth moves towards it at that speed 
and from . 

1 6,J.3 A spaceship/fies past the Earth ata speed of0.990c. A crew member 
£%arnP: . measures its length to be 400m. How long is the ship as measured by 
onJJies uP Enh ' 
n observer on a . 

a . n 6.J.3 This is a straightfonvard application of the length contraction result 
Solu110 d . £q (6.15) wirh Lo= 400m. Hence 
expresse m . I 

y = -0.9902 =7
-
09 (6.16) 

d 
50 

L = 400/ 7.09 = 56.4m. Perhaps the most common misuse of the length 
::ntraction Jom1ula is to confuse l and Lo. 

6.t.J Simultaneity _ _ _ 
. al h sics, with its absolute time, has an un~mb1g~ous_ notion of '_Yha~ it 

ClasSIC P :
0 

events are simulianeous. However, smce ome 1s mor~ sub!ecu_ve 
means t_o say t . . having meaning only within the context of a specified mert,_al 
in spec~al Relat1v1ty, su rising to hear that two events that are s~u]~eous m 
fram~- it . may not ~JI :01 in general be simultaneous in another mert1al f~me. 
one merttal fram~ b rver event A may precede event 8 but accordmg to 
Moreover. according to one ~ghse first This last statement sounds particularly 
a second observer event B m1 t occur . 

I 
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dangerous for it suggests problems with causality. Surely 
a person must be born ~~ore they die? And ind~cd they 
fea1ure of Special Re latJVJIY that although the time 
mauer for debate this is only the case for causall 
which cannot influence each other. We shall relum 10 
Part JV. For now we content ourselves with a thought experiment 
the breakdown of simullaneity. 

Consider a train travelling along at a speed" relative to the platfonn. A 
is standing in the middle of the tr~i n. Suppose that a tl~hlight is attach;do~"'er 
end of the train and that the tlash!Jghls flash on fo r a bnef instant. If th Ca,;\ 
receives the light from each fl ashlight at the same time then she Wille 0bscl";cy 

that the fl ashes occurred simullaneously, fo r the light from each fla\hlig~~<:llldc 
travel the same distance (half th_e length of the train) at ~ e same spe~. to 
consider a second observer slandmg on ~ e platform .watching proceedings. ih~ 
must observe that our first observer docs mdeed receive the light from either Y 
of the train at a particular instant in time. However, from their viewpoint the tld 
from the front of the train has less distance lo travel than the light from the rear'Olt 
the train since the observer on the train is moving towards the poin1 of emission of 
the from of the train and away from the point of em ission at the rear of the trai at 
None of what has been said so far is controversial; ii holds in classical theory,~ : 
Here comes the difference. As a result of lhe 2nd postulate. the observer on lhc 
platform still secs each pulse of light travel at the same speed c. Now since both 
pulses arrive al !he centre of the train a t the same time, and the pulse from the front 
had less distance to travel, it fo llows that it must have been emitted later than 1hr: 
light from the rear of the train. Classical physics avoids thi s conclusion because 
although the light from the front has less distance to travel it is travelling more 
slowly (its speed is c - 11) than the light from the rear (its speed is c + 11) and the 
reduction in speed compensates the reduction in distance, You might like to check 
that this compensation is exact and that both observers agree that the pulses were 
emined at the same time according to classical phys ics. 

6.2 LORENTZ TRANSFORMATIONS 

ln Secti~n 5. 1 we derived the Galilean transformation equations which relate 
the co-ordinates of an event in one inertial frame to the co-ordinates in a second 
inertial frame. For their derivation we relied upon the idea of absolute time and 
as the lase section showe~, this is a Hawed concept in Special Relati vity. We mus~ 
there~ore seek new equauons to replace the Galilean transformations. These new 
equations are the so-called Lorentz transfonnations . 

To derive the Lorentz _tran~formations we shall follow the methods of Section 5. 1. 
"!"e ~hall defin~ our ,t":"o mei:ual frames Sand S' exactly as before, and as illustrated 
•~ Figure 5. l, _,.e. _s 1s movmg along the positive x ax.is al a speed u relative 

10 
s 

Smee the molion 1s parallel to the x and x' axes it follows that · 

y'=y 

z'=z 
(6.17) 

(6. 18) 

1..,ote p.ecail th~l ~e o;der for the l st postulate to remain valid the lransfor:: 

,s t,ef~ in 5- :~:tr~~tn 
~oe;tp1ost bC o x ' = ax+ bt , (6.19a) 
" t ' = d x + et. (6.19b) 

not assumed that there exists unique time variable, i.e. we 
tha.t we haver goal is to solve for the c~ffic1ents a , b: ~ and e. As with the 

r,1oliC\or 1, -,/:- t . Ou alitean transfonns :"e require that the o_n gi_n O' (i.e. the point 
;1J\~:a.tion of the x -axis according to x = vt . Subslltutmg this information 

O) 7i.~~a) yields 
j t1tO Eq. - b / a = v . (6.20) 

·re that the origin O move 
1
along the line x' = -vi' . From 

1 we reQ~
1 

_ 0 satisfies x' = bt and I = er such that x' = -vi' implies 
5irnil~ r 9) the paint x -
1:4s. ( · - b/e = v. (6.21) 

''"' 
2 1) imply that e = a and b = - av. Substiruting these into 

6 20) and (6. 
EQS· ~ -19) gives 
EqS- ( . x ' =ax- a vt . 

t' = dx+ at. (6.22) 

owns. a and d . remaining and have two_ posrulates to implement 
have twO unkn the 2nd postulate. We shall do this by considering a pulse 

Wet us first ~mple:e~~e o rigins O and 0 ' when they are coincident, i.e. 
1

when i; light emitted that this pulse must travel outwards along the x and x axes 
; == t' == O. We . kn;; x = ct and x' = c1' . i.e . it travels out at the same speed c in 
such that it sa~:se two equatio ns must be simultaneous solutions to Eqs. (6.22) 

t,oth rn::e~quire that 
and so 

c1' = act - av,. 

t ' =dcr + at. (6.23) 

from which it follows direc tly that 
a v 

d = - cl . (6.24) 

ains to dete nnine the value of a. Let us summarise progress so far. We 
~a::1~:u:ed Eqs. (6 . 19a) and (6 . 19b) to 

x ' = a(x - 1.t f ). (6.25a) 

(6.25b) 
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