Relativistic Kinematics

6.1 TIME DILATION, LENGTH CONTRACTION AND SIMULTANEITY

In the next section we shall find the new equations which will replace the Galilean transformation equations (5.1) and (5.2), but before that let us derive perhaps the two most remarkable results in Einstein's theory: the fact that time passes at different rates in different inertial frames and that it doesn't make sense to speak of the length of a metre rule without also stating the frame in which it is at rest.
Historically people have regarded distance and time as fundamental units. For example, as defined by a standard length of material and an accurate periodic device. Speed is then a derived quantity determined by the ratio of distance travelled and time taken. Nowadays, the scientific community has stopped thinking of the metre as fundamental. Instead the metre is defined to be the distance travelled in a vacuum by light in a time of exactly $1 / 2,9979,2458$ seconds. This might look like a rather arbitrary definition but that particular sequence of numbers in the denominator means that the metre so defined corresponds to the length of the old standard metre, which was a metal bar kept locked in a vault in Paris. The advantage of defining the metre in terms of the speed of light and the unit of time means that we no longer have to worry about the fact that the metal bar is forever changing as it expands and contracts. By defining the metre this way we have chosen a value for the speed of light in a vacuum, i.e. $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$. There is nothing particularly special about using the speed of light here, strictly speaking one could define the metre to be the distance travelled by an average snail in 15 minutes. Then the snail speed would be fundamental. However, given the variability in snail speeds, this would not consitute a very reliable measure. Light speed is much more preferable and it has the particular advantage that it is the only speed which everyone agrees upon (by Einstein's 2nd postulate); all other speeds require the specification of an associated frame of reference.

[^0]Although this definition of distance suits most people, definition for physicists who work with particles travelling close tre light speed. A_{s} a result, the metre is sometimes the distance travelled by light in 1 second. In that 1 unit of distance is eq icsicists prefer, $c=1$.

Dion and the Doppler Effect
6.1.1 Time Dilation and the Doppler Effect

Conversely, one could define time by specifying a speed and a distance For example, we could make a clock by bouncing light between two mirrors spaced by a known distance, as illustrated in Figure 6.1 . We can think of one 'tick' of this clock as corresponding to the interval between any two events between the two mirrors and back. The number of 'ticks' of the light-clock which then be determined by the two events. Of course there is nothing special abou have elapsed between the twe could define time by bouncing a ball between light here, for example we could define time by bouncing a ball between two walls.

Figure 6.1 A light-clock viewed in its rest frame

This is a good place to discuss exactly how time measurements are to be made Consider an observer in some frame of reference S who is interested in making some time measurements. Since Einstein's theory is going to require that we drop the notion of absolute time, we need to be more careful than usual in specifying how the time of an event is determined. Ideally, the observer would like to have a set of identical clocks all at rest in S with one clock at each point in space. For convenience, the observer might choose that the clocks are all synchronised with each other. The time of an event is then determined by the time registered on a clock close to the event. Ideally the clock would be at the same place as the event otherwise we should worry about just how the information travels from the event to the clock. The observer can then determine the time of an event by travelling to the clock co-incident with the event and reading the time at which the event occured (we are imagining that the clock was stopped by the event and the time recorded). Clearly this is not a very practicable way of measuring the time of an event but that is not the point. We have succeeded in explaining in principle what we mean by the time of an event. Most importantly, the time of the event clearly has nothing to do with where the observer was when the event happened nor whether the observer actually saw the event with their eyes. We may have laboured this point to excess
but that is because there is room for much confusion if these ideas are not properly appreciated. Let us return to the light-clock of Figure 6.1. In its rest frame, the time it takes for light to do the roundtrip between the mirrors (one 'tick') is clearly

$$
\begin{equation*}
\Delta t_{0}=\frac{2 d}{c} \tag{6.1}
\end{equation*}
$$

Now let us imagine what happens if the clock is moving relative to the observer. To be specific let us put the clock in S^{\prime} and an observer in S where the two frames are as usual defined by Figure 5.1. If the observer was in S^{\prime} then the time for one tick of the clock would be just Δt_{0}. Our task is to determine the corresponding time when the observer is in S. According to this observer, the light follows the path shown in Figure 6.2. We call Δt the time it takes for the light to complete one roundtrip as measured in S. Accordingly the clock moves a distance $x_{2}-x_{1}=v \Delta t$ over the course of the roundtrip. Using Pythagoras' Theorem, it follows that the light travels a total distance $2\left(d^{2}+v^{2} \Delta t^{2} / 4\right)^{1 / 2}$. All of this is as it would be in Galilean relativity. Now here comes the new idea. The light is still travelling at speed c in S (in classical theory the speed would be $\left(c^{2}+v^{2}\right)^{1 / 2}$ by the simple addition of velocities). As a result, the time for the roundtrip in S satisfies

$$
\begin{equation*}
\Delta t=\frac{2}{c}\left(d^{2}+\frac{v^{2} \Delta t^{2}}{4}\right)^{1 / 2} \tag{6.2}
\end{equation*}
$$

Figure 6.2 The path taken by the light in a moving light-clock.

Squaring both sides and re-arranging allows us to solve for Δt :

$$
\begin{equation*}
\Delta t=\frac{2 d}{c} \times \frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{6.3}
\end{equation*}
$$

The time measured in S is longer than the time measured in S^{\prime} and we are forced to conclude that in Einstein's theory moving clocks run slow. This effect is also known as 'time dilation', and it is negligibly small if $v / c \ll 1$ but when $v \sim c$ the effect is dramatic.

The factor $1 / \sqrt{1-v^{2} / c^{2}}$ appears so often in Special Relativity that it is given its own symbol, i.e.

$$
\begin{equation*}
\gamma \equiv \frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{6.4}
\end{equation*}
$$

and

$$
\Delta t=\gamma \Delta t_{0}
$$

For $v / c \leq 1$ it follows that $\gamma>1$ and for $v / c>1$ the theory doesn't appa to make much sense (unless we are prepared to entertain the idea of imaginary time).

To conclude this section, let us quickly che Replacing c in Eq. (6.2) by $\left(c^{2}+v^{2}\right)^{1 / 2}$ gives

$$
\begin{equation*}
\Delta t=\frac{2}{\left(c^{2}+v^{2}\right)^{1 / 2}}\left(d^{2}+\frac{v^{2} \Delta t^{2}}{4}\right)^{1 / 2} \tag{6.6}
\end{equation*}
$$

which has the solution $\Delta t=2 d / c$ as expected.
Eq. (6.5) is quite astonishing; it really does violate our intuition that time is absolute. We emphasise that this effect has nothing to do with the fact that we have considered light bouncing between two mirrors. We used light because in allows us to make use of Einstein's 2nd postulate. If we had used a bouncing hall then we would have become stuck when we had to figure out the speed of the hall in S because we are not entitled to assume that velocities add in the classical manner. When we have a little more knowledge and know how velocities add we will be able to return to the bouncing ball and we shall conclude that time is dilated exactly as for the light-clock. Clearly this must be the case for we are talking abou the time interval between actual events.
The fact that time is actually different from our intuitive perception of it is no problem for physics, no matter how odd it may seem to us. There is a lesson to te camt here. Namely, we should not expect our intuition based upon everday expe fiences to necessarily hold true in unfamiliar circumstances. In relativity theory, the unfamiliar circumstance is when objects are travelling close to the speed of light. The kesson also applies when tackling quantum theory. In this case common sense breaks down when we explore systems on very small length scales.
Example 6.1.1 Muons are elementary particles rather like electrons but 207 times hearier. Unlike electrons, muons ane unstable and they decay to an electron and a pair of neurrimos with a characteristic lifetrime. For a muon at rest, this lifectime is $2.2 \mu s$
Muons are created when cosnvic rays impact upon the Earth's atmosphere at an alrimute of 20 km and are observed to reach the Earth's surface travelling at close to the speed of light. (a) Use classical theory to estimate how far a npical mwom weuld travel before it decays (assume the muon is mavelling at the speed of light). (b) Now use time dilation to explain why the muons are able to travel the full 20 km withour deanying.

Solution 6.1.1 (a) Muons travelling at speed c will (on averuse) 119 on classical thinking, a distance $c \Delta t_{0}$ before decaying where $\Delta t_{0}=22$, according the mumbers in gives a distance of just 660 m . $\quad 0.2 \mu$. Punting
(b) Ler 's rest frame its lifetime is a mere $\Delta t_{0}=2.2 \mu \mathrm{r}$ bu towands the Eanh in the mulviserver on Earth this lifetime is dilated to $\Delta t=\gamma \Delta r$ from the point of vien of an it is therefore possible that the muon could tranel the If γ is sufficiently lange it's surface. We can determine how large u must be using 20 km and reach the Earth's smface. We can doermine must be using

$$
\begin{equation*}
\gamma \Delta t_{0}>\frac{20 \mathrm{~km}}{\mathrm{u}} . \tag{6.7}
\end{equation*}
$$

Since $\gamma=\left(1-u^{2} / c^{2}\right)^{-1 / 2}$ we can solve this equation for $u=0.999 c$. Today, the liffrime of the muon hasellent agreement with the prediction of time dilstion ond it is found to a in excellent agremen. wime prediction of time dition

Before leaving our discussion of time dilation we pause to consider the situation illustrated in Figure 6.3. Figure 6.3(a) shows our two frames S and 5 moving elative to each other as shown. Time dilation says that, according to an observer at rest in S, clocks in S run slow, i.e. that $\Delta t=\gamma \Delta r^{\prime}$. This really does mean that all clocks run slow and so according to S an obsener in S would age more slowly. Now consider Figure 6.3 (b). It represents exactly the same situation as Figure 6.3 (a) since one can either think of S moving relative to S or vice vera.
 and so from their perspective an observer at rest in S would age more slowly At first glance these two conclusions seem to contradict each other but they do not since the observers are measuring intervals of time between different puirs of events: the observer in S is using clocks at rest in S whereas the observer in

Figure 63 Two observers each conclude that the other is ageing mare slowly then them dver. This is not a contradiction.

Figure 6.4 A light source of frequency f^{\prime} at rest in S^{\prime}.
a frequency $f=1 / \Delta t$. The two frequencies are related using Eq. (6.8):

$$
\begin{equation*}
f=f^{\prime}\left(\frac{1-v / c}{1+v / c}\right)^{1 / 2} \tag{6.9}
\end{equation*}
$$

This is the result in the case that the light source is moving away from the observer, in which case Eq. (6.9) tells us that $f<f^{\prime}$ and so the light appears shifted to shorter frequencies, i.e. it is 'red-shifted'. If the source is moving towards the observer we should reverse the sign of v in Eq. (6.9) and therefore conclude at $f>f^{\prime}$, i.e. the light is now 'blue-shifted'.
Example 6.1.2 How fast must the driver of a car be travelling towards a red traffic light $(\lambda=675 \mathrm{~nm})$ in order for the light to appear amber $(\lambda=575 \mathrm{~nm})$?
Solution 6.1.2 In the rest frame of the car, the traffic light is moving towards them at a speed u. Our task is to determine u given the change in wavelength. We can convert wavelengths to frequencies using $c=f \lambda$ and then use Eq. (6.9) to solve for u. Because the source is moving towards the car we should use Eq. (6.9) with $v=-u$ and so

$$
\begin{aligned}
\frac{c}{575 \times 10^{-9} m} & =\frac{c}{675 \times 10^{-9} m}\left(\frac{1+u / c}{1-u / c}\right)^{1 / 2} \\
\Rightarrow\left(\frac{675}{575}\right)^{2} & =\frac{1+\beta}{1-\beta}
\end{aligned}
$$

The solution to which is $\beta=u / c=0.159$. It is often sensible to express speeds in terms of the ratio u / c, although in this case expressing the result as a speed of just over $13 \mathrm{~km} / \mathrm{s}$ makes it clear that this effect is never going to impress a court of law.

6.1.2 Length contraction

We now shift our attention to the measurement of distances in different inertial frames and to the phenomenon known as length contraction. Light bouncing between mirrors can also be used to determine distances by accurately measuring the time it takes for light to travel between the mirrors. Let us imagine a ruler of length L_{0} when measured in its rest frame. Now we ask what is the length L of the ruler when it is moving? Figure 6.5 shows a ruler moving with a speed v relative to

Figure 6.5 Measuring the length of a moving ruler.
S. To measure the length of the ruler we shall mount a light-clock of equal len next to it, as shown. The light-clock moves with the ruler. The light starts oun firgh one end of the ruler and reflects from a mirror located at the opposite end or or the ruler. Our strategy will be to detern result. As a result of time dilation, the roind ins and equate this to the time in S is related to the roundtrip time in the rest frame of the ruler Δt_{0} by $\begin{aligned} & \text { trip }\end{aligned}$

$$
\Delta t=\gamma \Delta t_{0}=\gamma \frac{2 L_{0}}{c}
$$

We shall now endeavour to determine this time interval by considering the joume of the light from the viewpoint of S. According to an observer in S, the total tine is

$$
\Delta t=\Delta t_{\text {out }}+\Delta t_{\text {in }}
$$

where $\Delta t_{\text {out }}$ is the time taken for the light to travel on its outward journey, i.e. from A to B , and $\Delta t_{\text {in }}$ is the time taken on the return journey. The figure shows explicitly the two positions of the ruler when the light starts its journey (dashed line) and when the light reaches the opposite end of the ruler (solid line). In order not to clutter the picture we have not shown the third position of the ruler, i.e. when the light finally returns back to its starting point. Since Einstein's 2nd postulate tells us the speed of light according to S, we can write

$$
\begin{align*}
c \Delta t_{\mathrm{out}} & =L+v \Delta t_{\mathrm{out}} \\
\Rightarrow \Delta t_{\mathrm{out}} & =\frac{L}{c-v} \tag{6.12}
\end{align*}
$$

Each side of the first of these equations is equal to the total distance travelled by the light on its outward journey (according to S) and it takes into account the fact that the light has to travel a little further than the length of the ruler L as a result
distance than L, i.e.

$$
\begin{align*}
c \Delta t_{\mathrm{in}} & =L-v \Delta t_{\mathrm{in}} \\
\Rightarrow \Delta t_{\mathrm{in}} & =\frac{L}{c+v} \tag{6.13}
\end{align*}
$$

Adding together Eqs. (6.12) and (6.13) and equating the result to Eq. (6,10) give an equation relating L and L_{0}, i.e

$$
\begin{equation*}
\frac{L}{c+v}+\frac{L}{c-v}=\gamma \frac{2 L_{0}}{c} \tag{6.14}
\end{equation*}
$$

Solving for L gives

$$
\begin{equation*}
L=\frac{L_{0}}{\gamma} \tag{6.15}
\end{equation*}
$$

Again a remarkable result; for the length of the ruler is smaller when it is in motion than when it is at rest.
We could have anticipated the length contraction result knowing only the time dilation result. The argument goes as follows. Let us consider again the muons reated in the upper atmosphere which we discussed in Example 6.1.1. From the viewpoint of a muon, it still lives for $2.2 \mu \mathrm{~s}$ yet has travelled all the way to the Earth's surface. However this is not such an impossible task as it would be in classical theory for the 20 km is reduced by a factor of γ. It has to be exactly the same factor of γ as before because we know that muons created at an altitude of 20 km on average just reach the Earth before decaying and from the viewpoint of such a muon the Earth moves towards it at that speed.
Example 6.1.3 A spaceship flies past the Earth at a speed of 0.990 c. A crew member on the ship measures
Solution 6.1.3 This is a straightfonvard application of the length contraction result expressed in Eq. (6.15) with $L_{0}=400 \mathrm{~m}$. Hence

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-0.990^{2}}}=7.09 \tag{6.16}
\end{equation*}
$$

and so $L=400 / 7.09=56.4 \mathrm{~m}$. Perhaps the most common misuse of the length contraction formula is to confuse L and L_{0}.

6.1.3 Simultaneity

Classical physics, with its absolute time, has an unambiguous notion of what it means to say two events are simultaneous. However, since time is more subjective in Special Relativity, having meaning only within the context of a specified inertial frame, it may not be suprising to hear that simultaneous in another inertial frame. one inertial frame will not in general be sing may precede event B but according to Moreover, according ther B might occur first. This last statement sounds particularly dangerous for it suggests problems with causality. Surely everyone must a person must be born before they die? And indeed they must. It is a regree th feature of Special Relativity that although the time ordering of is a remarkable matter for debate this is only the case for causally disconnected events can be which cannot influence each other. We shall return to this interesents, i.e ere IV. Find ourselves with the theresting discussion art IV. For now we conient ourselves with a thought experiment which illustoun he breakdown of simultaneity.
Consider a train travelling along at a speed u relative to the platform is standing in the middle of the train. Suppose that a flashlight is attached observer end of the train and that the flashlights flash on for a brief instant. If thed to each receives the light from each flashlight at the same time then she the obser that the flashes occurred simultaneously, for the light from each flan conclude travel the same distance (half the length of the train) at the samshight had consid same N_{0} er acond observer standing on the platform watching proceedings. They must observe that our first observer does indeed receive the light from either of the train at a particular instant in time. However, from their viewpoint the end from the front of the train has less distance to travel than the light from the train since the observer on the train is moving towards the point of emission the front of the train and away from the point of emission at the rear of the train None of what has been said so far is controversial; it holds in classical theory to Here comes the difference. As a result of the 2 nd postulate, the observer on the platform still sees each pulse of light travel at the same speed c. Now since both pulses arrive at the centre of the train at the same time, and the pulse from the front had less distance to travel, it follows that it must have been emitted later than the light from the rear of the train. Classical physics avoids this conclusion because although the light from the front has less distance to travel it is travelling more lowly (its speed is $c-u$) than the light from the rear (its speed is $c+u$) and the reduction in speed compensates the reduction in distance. You might like to check hat this compensation is exact and that both observers agree that the pulses were emitted at the same time according to classical physics.

6.2 LORENTZ TRANSFORMATIONS

In Section 5.1 we derived the Galilean transformation equations which relate the co-ordinates of an event in one inertial frame to the co-ordinates in a second inertial frame. For their derivation we relied upon the idea of absolute time and, therefore seek new equations equations are the so-called Lorentz transformations.
To derive the Lorentz transformations we shall follow the methods of Section 5.1 We shall define our two inertial frames S and S^{\prime} exactly as before, and as illustrated in Figure 5.1, i.e. S^{\prime} is moving along the positive x axis at a speed v relative to S Since the motion is parallel to the x and \boldsymbol{x}^{\prime} axes it follows that

$$
\begin{align*}
& y^{\prime}=y \tag{6.17}\\
& z^{\prime}=z \tag{6.25b}
\end{align*}
$$

Re. Recall that we want to express the co-ordinates in S^{\prime} in terms of those ${ }_{3}$, before. Recall that we in S. Again in order for the 1st postulate to remain valid the transforma-

$$
\begin{align*}
x^{\prime} & =a x+b t \tag{6.19a}\\
t^{\prime} & =d x+e t . \tag{6.19b}
\end{align*}
$$

we have not assumed that there exists a unique time variable, i.e. we $\mathrm{Notic}^{i c e}$ that $\neq t$. Our goal is to solve for the coefficients a, b, d and e. As with the allow for of the Galilean transforms we require that the origin O^{\prime} (i.e. the point derivation $\left.x^{\prime}=0\right)(6.19 a)$ yields
into $^{(6)}-b / a=v$.
ye require that the origin O move along the line $x^{\prime}=-v t^{\prime}$. From Similarly we the point $x=0$ satisfies $x^{\prime}=b t$ and $t^{\prime}=e t$ such that $x^{\prime}=-v t^{\prime}$ implies EqS.
that

$$
\begin{equation*}
-b / e=v \tag{6.21}
\end{equation*}
$$

s. (6.20) and (6.21) imply that $e=a$ and $b=-a v$. Substituting these into Eqs. (6.19) gives

$$
\begin{aligned}
x^{\prime} & =a x-a v t \\
t^{\prime} & =d x+a t
\end{aligned}
$$

We have two unknowns, a and d, remaining and have two postulates to implement Let us first implement the 2nd postulate. We shall do this by considering a pulse of light emitted at the origins pulse must travel outwards along the x and x^{\prime}, $t=t^{\prime}=0$. We know that this and $x^{\prime}=c t^{\prime}$, i.e. it travels out at the same x^{\prime} axes such that it satisfies $x=c t$ and $x=c{ }^{\prime}$, be simultaneous solutions speed c in both frames. These two equations must be simultaneous solutions to Eqs. (6.22) and so we require that

$$
\begin{align*}
c t^{\prime} & =a c t-a v t, \\
t^{\prime} & =d c t+a t . \tag{6.23}
\end{align*}
$$

From which it follows directly that

$$
\begin{equation*}
d=-\frac{a v}{c^{2}} \tag{6.24}
\end{equation*}
$$

It only remains to determine the value of a. Let us summarise progress so far. We have reduced Eqs. (6.19a) and (6.19b) to

$$
\begin{align*}
x^{\prime} & =a(x-v t) \tag{6.25a}\\
t^{\prime} & =a\left(t-\frac{v x}{c^{2}}\right)
\end{align*}
$$

[^0]: Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith © 2009 John Wiley \& Sons, Ltd

