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Relativistic Kinematics

61 TIME DILATION, LENGTH CONTRACTION AND SIMULTANEITY

In the next section we shall find the new equations which will replace the Galilean
transformation equations (5.1? and (5.2), but before that let us derive perhaps the
two most remarkable results in Einstein’s theory: the fact that time passes at dif-
ferent rates in different inertial frames and that it doesn’t make sense to speak of
the length of a metre rule without also stating the frame in which it is at rest.

Historically people have regarded distance and time as fundamental units. For

example, as defined by a standard length of material and an accurate periodic
device. Speed is then a derived quantity determined by the ratio of distance travelled
and time taken. Nowadays, the scientific community has stopped thinking of the
metre as fundamental. Instead the metre is defined to be the distance travelled in
a vacuum by light in a time of exactly 1/2,9979,2458 seconds. This might look
like a rather arbitrary definition but that particular sequence of numbers in the
denominator means that the metre so defined corresponds to the length of the
old standard metre, which was a metal bar kept locked in a vault in Paris. The
advantage of defining the metre in terms of the speed of light and the unit of time
means that we no longer have to worry about the fact that the metal bar is forever
changing as it expands and contracts. By defining the metre this way we have
chosen a value for the speed of light in a vacuum, i.e. ¢ = 2.99792458 x 108 m/s.
There is nothing particularly special about using the speed of light here, strictly
speaking one could define the metre to be the distance travelled by an average snail
in 15 minutes. Then the snail speed would be fundamental. However, given the
variability in snail speeds, this would not consitute a very reliable measure. Light
speed is much more preferable and it has the particular advantage that it is the only
speed which everyone agrees upon (by Einstein’s 2nd postulate); all other speeds
require the specification of an associated frame of reference.
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Figure 6.1 A light-clock viewed in its rest frame.

This is a good place to discuss exactly how time measurements are to be made,
Consider an observer in some frame of reference S who is interested in making
some time measurements. Since Einstein’s theory is going to require that we drop
the notion of absolute time, we need to be more careful than usual in specifying
how the time of an event is determined. Ideally, the observer would like to have
a set of identical clocks all at rest in S with one clock at each point in space. For
convenience, the observer might choose that the clocks are all synchronised with
each other. The time of an event is then determined by the time registered on a
clock close to the event. Ideally the clock would be at the same place as the event
otherwise we should worry about just how the information travels from the event to
the clock. The observer can then determine the time of an event by travelling to the
clock co-incident with the event and reading the time at which the event occured
(we are imagining that the clock was stopped by the event and the time recorded).
Qea:ly this is not a very practicable way of measuring the time of an event but that
is not the point. We have succeeded in explaining in principle what we mean by
the time of an event. Most importantly, the time of the event clearly has nothing to
do with where the observer was when the event happened nor whether the observer
actually saw the event with their eyes. We may have laboured this point to excess
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follo Jote One roundtrip as measured in S. Accordingly the clock moves a distance
comp: _ vAt over the course of the _roundtrip. Using Pythagoras’ Theorem, it
2l s that the light travels a.t(?tal distance 2(d? + v2As2 JHV2. AL of this‘ %
fou.o‘::,oul d be in Galilean re]aflvny, I\.Iow here comes the new idea. The light is
s it velling at speed c in S (in classical theory the speed would be ( +v3)l2
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Figure 6.2 The path taken by the light in a moving light-clock.

Squaring both sides and re-arranging allows us to solve for Af:

2d 1 ©3)
e

measured in §’ and we are forced

cks run slow. This effect is also
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The time measured in S is longer than the time
to conclude that in Einstein’s theory moving clo & ke
known as ‘time dilation’, and it is negligibly small if v/c <K 1 but Wi
the effect is dramatic.
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M\Euh .':‘\th‘ ’:;?::sm ng: it really does violate our intuition that tim ;
ahn:};xl(c.“\\',}“‘w ise that this effect has nulh.ing 0 d.o with the fact thay ‘I:
have considered light bouncing between two mirrors. We used light becauge N
allows us to make use of Einstein’s 2nd postulate. 1t \\F had used a t““m\‘ing %
then we would have become stuck when we had to hgu.r? out the speed of the
hall in § because we are not entitled to assume that velocities add in the classica)
manner. When we have a little more knowledge and know how velocities add =
will be able to return to the bouncing ball and we shall conclude that time is dilaieg
exactly as for the lightclock. Clearly this must be the case for we are talking aboy
the time interval between actual events.

The fact that time is actually different from our intuitive perception of it is ng
problem for physics, no ‘matter how odd it may seem to us. There is a lesson to be
leamnt here. Namely, we should not expect our intuition based upon everday expe.
riences to nevessarily hold true in unfamiliar circumstances. In relativity theory,
the unfamiliar circumstance is when objects are travelling close to the speed of
light. The kesson also applies when tackling quantum theory. In this case common
s;mt breaks down when we explore systems on very small length scales.

Example 6.1.1 Muons are elementary particles rather like electrons bur 207 times
heavier. Unlite electrons, muons are unstable and they decay to an electron and a
pair of neurrinos with a characteristic lifetime. For a muon at rest, this lifetime is
22
22us

Muons are created when cosmic rays impact upon the Earth’s atmosphere at an
alrinade of 20km and are observed to reach the Earth’s surface travelling at close
to the speed of light. (a) Use classicul theory to estimate how far a rypical muon
would travel before it decays (assume the muon is travelling at the speed of lightl
(b) Now use rime dilation to explain why the muons are able to travel the full 20km
withour decaying.
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clock takes a m_;:Thc key word here is ‘sec’. Observations of events ag y,
the observer 13. c-u ssing them have referred explicitly to a process which o,
hitherto been m‘: S actually watching the event nor on where the obs
fiCPc“d :p Onhen the event takes place. In contrast, the act of seeing does ¢
is 1oc:}“e_ :Vlike how far the observer is away from the things they are wyygy;,
:Egnmelzi-a liy of the eyesight .Of the person doing th'e seeing. That distance i
important when watching a moving clock bccm:es ﬂPP‘“cl"tl,oncc ONe apprecigte
that the clock is becoming ever‘furlh.er'nwa‘y and as a result light lakes.longer and
longer to reach the observer. With I:hIS in mind, we can tackle the question ip hand
and attempt to work out the time interval Atiee perceived by our observer g
origin 0. According to all observers in S 1{1cludmg uur'obseljverl standing a1 e
origin, the time of one tick of the clock is given by lhf’. un]e dilation formula, j ¢,
At = yAr'. However this is not what we want. Thg time interval A, is longer
than Af by an amount equal to the time it takes for light to travel the extra distance
the clock has moved over the course of the tick, i.. light from the end of the
clock's tick has to travel further before it reaches the observer by an amount equal
to vAt. Therefore the perceived time interval between the start and the end of the
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It is very important to be clear that this extra slowing down of the clock
is an ‘optical illusion’, in contrast to the time dilation effect which is a real
. slowing down of time. To emphasise this point, if light travels at a finite speed
then moving clocks will appear to run slow even in classical theory such that
Atyee = Ar'(1+ v/c).
Eq.. (6.8) leads us on nicely to the Doppler effect for light. Let us consider
situation illustrated in Figure 6.4. A light source is at rest in §' and is being
hed by someone at rest in S. The time interval At’ could just as well be the
! between the emission of successive peaks in a light wave, i.e. the frequency

wave is f’=1/Ar'. The person watching the light source will instead see

il
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Figure 6.4 A light source of frequency f' at rest in§

= 1/t The to frequencies are relted using Eq, (6.
(1 =vje\'*
=1
1+vjc) °
s is the result in the case that the light source is moving away from the observer

I which case Ba. (69) tells us hat < ' and so the lght appears hifed toshorer
‘frcq“ﬂ‘d"s‘ i.e. it is ‘red-shifted". If the source is moving towards the abserver we

hould reverse the sign of‘v in Eq. (6.9) and therefore conclude at £ > fliie he
iighl is now *blue-shifted’. sl

ple 6.1.2 How fast must the dn:vey of a car be travelling towards a red traffic
5 nm) in order for the light to appear amber (). = 575 nm)?

A frequency i

(69)

Exam|
light (2 = L1
Solution 6.1.2 In the refl frame of I"le car, the traffic light is moving towards them
o speed . Our task is to deler‘mme u given the change in wavelength. We can
ert wavelengths to frequencies using ¢ = fX and then use Eq. (6.9) to solve
source is moving towards the car we should use Eq. (6.9) with

conv
for u. Because the

v = —u and 50
c - G 14u/c\'?
575 x 10-°m ~ 615 x 10°°m \1 —u/c) '

615\* 1+p
\=)=—-
575 1-8
The solution to which is B = ufc = 0.159. It is often sensible to express speeds in

terms of the ratio u/c, although in this case expressing the result as a speed of just
over 13 km/s makes it clear that this effect is never going to impress a court of law.

6.1.2 Length contraction .

We now shift our to the of di in different iner-
tial frames and to the phenomenon known as length contraction. Light bouncing
between mirrors can also be used to determine distances by accurately measuring
the time it takes for light to travel between the mirrors. Let us imagine a ruler of
length Lo when measured in its rest frame. Now we ask what is the length L of the
ruler when it is moving? Figure 6.5 shows a ruler moving with a speed v relative to
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Figure 6.5 Measuring the len
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. To measure the length of the ruler we shall mount a |j
next to it, as shown. The light-clock moves with the ru? ight-clock of ¢
one end of the ruler and reflects from a mirror locateder‘ The light s(mzual lengy
ruler. Our strategy will be to determine the time taken fo;:; b OPposite ¢, Ouy fop,
a'nd equate this to the time dilation result. As a result of ti e Toundtripy dir:C Oy
time in S is related to the roundtrip time in the rest fram?zrd::]ﬂlion, the "’:‘I:dm
e ruler 4y, tp
Y
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We shall now endeavour to determine this time i
! : L me interval b; ideri
of the light from the viewpoint of §. According to an obseryvecx? |nns l;‘jelr:,ng the l'oumty
» the tota] i, .
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At = Atoy + Atip,
(6.11)
where Afgy is the time taken for the i

‘ ght to travel on its o i
frorrf A to B, and Ar,,! is the time taken on the return joume;h':-?,m Joumey, i
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x kable result; for the
Agan ¥ rai?j:hen it is at rest. length of the ruler is smaller when it is in
could have anticipated the length contracti :
dil:‘.,ieo,, result. The argument goes as follows. L:l ;ZS:ZnIs‘:‘do:l:g only the time
= ated in the upper at}-nosphelre which we discussed in Example ?;nl gemiong
vicWPOi"' of a muon, it sllll'h\_'es for 2.2 ps yet has travelled all 1h . From the
. surface- However lhIS. is not such an impossible task as i e way to d?c
al theory for the 20km is reduced by a factor of y. It ha:s it would be in
actor of ¥ 35 before because we know that muons -ma(edlolbe exactly the
just reach the Earth before decaying if they have a"isp:dagf"(‘)";;::

average)
the viewpoint of such a muon the Earth moves towards it at that speed
peed.
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; speed 0f 0.990c. A
casures its length to be 400m. How long is the shi; a:cr;i'::’::gib;;
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xample 6.1

n the ship m

Zn observer on Earth?

1.3 Thisisa straightforward application of the length 4
it

Eq. (6.15) with Lo = 400m. Hence gih contraction festld

1
y=
V1 -0.990*
7.09 = 56.4m. Perhaps the most common misuse of the length
la is to confuse L and Ly.
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6.1.3 Simultaneity
th its absolute time, has an unambiguous notion of what it
nts are simultaneous. However, since time is more subjective
meaning only within the context of a specified inertial
that two events that are simultaneous in
ltaneous in another inertial frame.
ede event B but according to

t sounds particularly

Classical physics: wi

means t0 say two eve
in Special Relativity, having
frame, it may not be suprising 10 hear
one inertial frame will not in general be simu
Moreover, according to one observer event A may prec
a second observer event B might occur first. This last statemen
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dangerous for it suggests problems with causality. Sure] Veryone N
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a person must be born l{ertorc they die? And indgcd they must. g ,’:‘fl:g'w thy
feature of Special Relativity that although the umg ordering of events Ta’k“hle
matter for debate this is only the case for causally dxscc_nn.cc(ed eventg. ‘ean §
which cannot influence each other. We s!TaH return to this Interesting dm.\.;\,‘,“!
Part IV. For now we content ourselves with a thought experimen which lllu::m in
the breakdown of simultaneity. % Stratyy

Consider a train travelling along z_it a speed u relative to 'h_c pla.[fm-m_ o

is standing in the middle of the train. Suppose that a ﬂa:‘hh_ghl IS altacheq |, :‘n
end of the train and that the ﬁashhghts flash on for a _bncf Instant, If pe oh‘c:h
receives the light from each flashlight at the same time then she v °°"cluz
that the flashes occurred simultaneously, for the hgh} from each flashligh, ha
travel the same distance (half the length of the train) at ‘l.he same speeq Now
consider a second observer standing on the platform Watching proceedings .
must observe that our first observer does indeed receive the _hgh_l from cithe,
of the train at a particular instant in time. However, from lhcl_r Viewpoint the lighy
from the front of the train has less distance to travel than the hghlt from the reyy of
the train since the observer on the train is moving towards the point of €Mission 5
the front of the train and away from the point of emission at the rear Of the trayp,
None of what has been said so far is controversial; it holds in classical theory (o,
Here comes the difference. As a result of the 2nd postulate, the observer on the
platform still sees each pulse of light travel at the same speed c. Now since boty
pulses arrive at the centre of the train at the same time, and the pylsc from the fron
had less distance to travel, it follows that it must have been emitted later than the
light from the rear of the train. Classical physics avoids this_ cf)nclusioy! because
although the light from the front has less distance to travel it is travelling more
slowly (its speed is ¢ — u) than the light from the rear (its speed is ¢ + u) and the

duction in speed the reduction in distance. You might like to check
that this compensation is exact and that both observers agree that the pulses were
emitted at the same time according to classical physics.

T end

6.2 LORENTZ TRANSFORMATIONS

In Section 5.1 we derived the Galilean transformation equations which relate
e co-ordinates of an event in one inertial frame to the co-ordinates in a second

€quations are the so-called Lorentz

To derive the Lorentz transformations we shall follow the methods of Section 5.1.
We shall define our two inertial frames S and §’ exactly as before, and as illustrated
in Figure 5.1, i.e. §" is moving along the positive x axis at a speed v relative to .
Since the motion is parallel to the x and x” axes it follows that

Y=y

=

(6.17)
(6.18)
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otz Tral want 1O €Xpress the co-ordinates in § ip terms of those
10re call that we rder for the 1st postulate to remain val
e in in ©

e t id the transforma-
e ain
S s A
me st b€ X' =ax +bt, (6.192)
=
e (6.19)

¢ assumed that there exists a unique time vanable, i.e. we
Swe “‘;n‘ is to solve for the coefficients a, b_.d_ and e. As with the
1 ha’ v oml%ean transforms we require that the origin o'
alloW :orn of mf Sga :hc x-axis according to x = vr. Substituting thj
iva e alon
=0 ) yields vy 620
jnto B N s

have

(i.e. the point
is information

: the origin O move along the line x’' = —vt'. From
ly W€ feCl_“"e Ta(l’ satisfies x’ = bt and t' = et such that x’ = —vt’ implies
imila o he point ¥ =
S 619 —bje="v. ©21)
t
= 6.21) imply that e =a and b = —av. Substituting these into
d (6.
620) 27
£gs- ¢ ives
Eas- (619 & X' =ax —avt,

t' =dx +at.

and d, remaining and have two postulates to implement
WBs 2 2nd : stulate. We shall do this by considering a pulse’
s "lnspz) and O' when they are coincident, ie. when
h;af[)l':f‘;s pulse must travel outwards along the x and x' axes
7 — 0. We know — ct and x’ = ct’, i.e. it travels out at the same speed c in
! tha it satisfies :w; :qualions must be simultancous solutions to Eqs. (6.22)
e

two unkn®
impleme!
emitted at t

ct' = act —avt,

h ; 4 (623)
From which it follows directly that
70!

Sebaus (624)

i so far. We
ins to determine the value of a. Let us summarise progress far. We
mains to

‘l:(\”::l::e:!euced Egs. (6.192) and (6.19b) to
v
gl (6250)
4 = (6.25b)
t'=a (, = cz) !
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