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Chapter 1

Fundamentals

1.1 Characteristics of femtosecond light pulses

Femtosecond light pulses are electromagnetic wave packets and as such are
fully described by the time and space dependent electric field. In the frame of
a semiclassical treatment the propagation of such fields and the interaction
with matter are governed by Maxwell’s equations with the material response
given by a macroscopic polarization. In this first chapter we will summarize
the essential notations and definitions used throughout the book. The pulse
is characterized by measurable quantities which can be directly related to the
electric field. A complex representation of the field amplitude is particularly
convenient in dealing with propagation problems of electromagnetic pulses.
The next section expands on the choice of field representation.

1.1.1 Complex representation of the electric field

Let us consider first the temporal dependence of the electric field neglecting
its spatial and polarization dependence, i.e., E(x, y, z, t) = E(t). A complete
description can be given either in the time or the frequency domain. Even
though the measured quantities are real, it is generally more convenient to
use complex representation. For this reason, starting with the real E(t),
one defines the complex spectrum of the field strength Ẽ(Ω), through the
complex Fourier transform (F):

Ẽ(Ω) = F {E(t)} =

∫ ∞

−∞
E(t)e−iΩtdt = |Ẽ(Ω)|eiΦ(Ω) (1.1)

In the definition (1.1), |Ẽ(Ω)| denotes the spectral amplitude and Φ(Ω) is
the spectral phase. Here and in what follows, complex quantities related to
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4 CHAPTER 1. FUNDAMENTALS

the field are typically written with a tilde.
Since E(t) is a real function, Ẽ(Ω) = Ẽ∗(−Ω) holds. Given Ẽ(Ω), the

time dependent electric field is obtained through the inverse Fourier trans-
form (F−1):

E(t) = F−1
{
Ẽ(Ω)

}
=

1

2π

∫ ∞

−∞
Ẽ(Ω)eiΩtdΩ (1.2)

The physical meaning of this Fourier transform is that a pulse can be created
by adding a number of waves of different frequency. Figure 1.1 sketches an
ultrashort pulse created by adding continuous waves (cw). The waves are
shown to be in phase at the time t = 0, and add constructively at that
point, while destructive interference defines the temporal extension of the
pulse. A single isolated pulse in time domain is constructed if the frequency
difference between two successive waves is infinitesimal. In the example
shown in Fig. 1.1, the frequencies are chosen to be spaced at equal frequency
interval ∆ω, which implies that the same destructive interference takes place
at equal time intervals 2π/∆ω. In this picture, the frequency spectrum is
composed of a finite number of δ−functions, to which correspond an infinite
number of pulses in the time domain.

Figure 1.1: Representation of a pulse as a series of cosine waves equally spaced
in frequency.

For practical reasons it may not be convenient to use functions which are
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non-zero for negative frequencies, as needed in the evaluation of Eq. (1.2).
Frequently a complex representation of the electric field, also in the time
domain, is desired. Both aspects can be satisfied by introducing a complex
electric field as

Ẽ+(t) =
1

2π

∫ ∞

0
Ẽ(Ω)eiΩtdΩ (1.3)

and a corresponding spectral field strength that contains only positive fre-
quencies:

Ẽ+(Ω) = |Ẽ(Ω)|eiΦ(Ω) =

{
Ẽ(Ω) for Ω ≥ 0
0 for Ω < 0

(1.4)

Ẽ+(t) and Ẽ+(Ω) are related to each other through the complex Fourier
transform defined in Eq. (1.1) and Eq. (1.2), i.e.

Ẽ+(t) =
1

2π

∫ ∞

−∞
Ẽ+(Ω)eiΩtdΩ (1.5)

and

Ẽ+(Ω) =

∫ ∞

−∞
Ẽ+(t)e−iΩtdt. (1.6)

The real physical electric field E(t) and its complex Fourier transform can
be expressed in terms of the quantities derived in Eq. (1.5) and Eq. (1.6)
and the corresponding quantities Ẽ−(t), Ẽ−(Ω) for the negative frequencies.
These quantities relate to the real electric field:

E(t) = Ẽ+(t) + Ẽ−(t) (1.7)

and its complex Fourier transform:

Ẽ(Ω) = Ẽ+(Ω) + Ẽ−(Ω) (1.8)

It can be shown that Ẽ+(t) can also be calculated through analytic contin-
uation of E(t)

Ẽ+(t) = E(t) + iE′(t) (1.9)

where E′(t) and E(t) are Hilbert transforms of each other. In this sense
Ẽ+(t) can be considered as the complex analytical correspondent of the real
function E(t). The complex electric field Ẽ+(t) is usually represented by a
product of an amplitude function and a phase term:

Ẽ+(t) =
1

2
E(t)eiΓ(t) (1.10)
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bcdy1[h!]

Figure 1.2: Electric field of two extremely short pulses, E(t) =
exp[−2 ln 2(t/τp)

2] cos(ωℓt + φ0) with φ0 = 0 (solid line) and φ0 = π/2 (dashed
line). Both pulses have the same envelope (dotted line). The full width of half
maximum of the intensity envelope, τp, was chosen as τp = π/ωℓ.

In most practical cases of interest here the spectral amplitude will be cen-
tered around a mean frequency ωℓ and will have appreciable values only in
a frequency interval ∆ω small compared to ωℓ. In the time domain this sug-
gests the convenience of introducing a carrier frequency ωℓ and of writing
Ẽ+(t) as:

Ẽ+(t) =
1

2
E(t)eiφeeiφ(t)eiωℓt =

1

2
Ẽ(t)eiωℓt (1.11)

where φ(t) is the time dependent phase, Ẽ(t) is called the complex field
envelope and E(t) the real field envelope, respectively. The constant phase
term eiφe is most often of no relevance, and can be neglected. There are
however particular circumstances pertaining to very short pulses where the
outcome of the pulse interaction with matter depends on φe, often referred
to as “carrier to envelope phase” (CEP). The measurement and control of
φ0 can therefore be quite important. Figure 1.2 shows the electric field of
two pulses with identical E(t) but different CEP φe = 0 (left) and φe = π/2
(right). It is obvious that the difference can be important in the case of
highly nonlinear processes, such as for instance a seven’s harmonic genera-
tion creating a field proportional to the seventh power of the original field
(dotted green lines).

The electric field can formally be represented in a form similar to Eq. (1.11),
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as illustrated by Fig. 1.2, but the mathematical entity does not always corre-
spond to a physically possible propagating ultrashort pulses. Since the laser
pulse represents a propagating electromagnetic wave packet the dc compo-
nent of its spectrum vanishes. Hence the time integral over the electric field
is zero.∫ ∞

−∞
E(t)dt =

∫ ∞

−∞
E(t)e−i(Ω=0)tdt = F {E(t)}Ω=0 = 0. (1.12)

This not the case of the pulse with null CEP (φe = 0) and even less for
its seventh harmonic. The convenience of representing pulse envelopes by
a Gaussian or Lorentzian or secant hyperbolic envelope fails to be physical
for few cycle pulses. This is illustrated in Fig. 1.3. The Fourier transform
of a pulse with real electric field E(t) cos(ωℓt) can be constructed by shifting
by ± the carrier frequency the Fourier transform of the envelope. Since the
spectrum of a Gaussian has an infinite extension, the two shifted spectra will
overlap at zero frequency, a non physical situation. A pulse of a few optical
cycles does exist, but its representation should start with a real spectrum
that has no component near zero frequency. We will discuss the carrier to

Figure 1.3: A typical pulse representation by, for instance, a Gaussian envelope
at a carrier frequency ωℓ. The Fourier transform is constructed by shifting the
Fourier transform of the envelope by ±ωℓ, resulting in un-physical components at
and near zero frequency.

envelope phase in more detail in Chapters ?? and ??.
While the description of the field given by Eqs. (1.9) through (1.11)

is quite general, the usefulness of the concept of an envelope and carrier
frequency as defined in Eq. (1.11) is limited to the cases where the bandwidth
is only a small fraction of the carrier frequency:

∆ω

ωℓ
≪ 1 (1.13)
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For inequality (1.13) to be satisfied, the temporal variation of E(t) and φ(t)
within an optical cycle T = 2π/ωℓ (T ≈ 2 fs for visible radiation) has to be
small. The corresponding requirement for the complex envelope Ẽ(t) is∣∣∣∣ ddt Ẽ(t)

∣∣∣∣≪ ωℓ

∣∣∣Ẽ(t)∣∣∣ (1.14)

Keeping in mind that today the shortest light pulses contain only a few
optical cycles, one has to carefully check whether a slowly varying envelope
and phase can describe the pulse behavior satisfactorily. If they do, the
theoretical description of pulse propagation and interaction with matter can
be greatly simplified by applying the slowly varying envelope approximation
(SVEA), as will be evident later in this chapter.

Given the spectral description of a signal, Ẽ+(Ω), the complex envelope
Ẽ(t) is simply the inverse transform of the translated spectral field:

Ẽ(t) = E(t)eiφ(t) = 1

2π

∫ ∞

−∞
2Ẽ+(Ω + ωℓ)e

iΩtdΩ; (1.15)

where the modulus E(t) in Eq. (1.15) represents the real envelope. The
optimum “translation” in the spectral domain ωℓ is the one that gives the
envelope Ẽ(t) with the least amount of modulation. Spectral translation of
Fourier transforms is a standard technique to reconstruct the envelope of
interference patterns, and is used in Chapter ?? on diagnostic techniques.
The Fourier transform of the complex envelope Ẽ(t) is the spectral envelope
function:

Ẽ(Ω) =
∫ ∞

−∞
Ẽ(t)e−iΩtdt = 2

∫ ∞

−∞
Ẽ+(t)e−i(Ω+ωℓ)tdt. (1.16)

The choice of ωℓ is such that the spectral amplitude Ẽ(Ω) is centered about
the origin Ω = 0.

Let us now discuss more carefully the physical meaning of the phase
function φ(t). The choice of carrier frequency in Eq. (1.11) should be such
as to minimize the variation of phase φ(t). The first derivative of the phase
factor Γ(t) in Eq. (1.10) establishes a time dependent carrier frequency (in-
stantaneous frequency):

ω(t) = ωℓ +
d

dt
φ(t). (1.17)

While Eq. (1.17) can be seen as a straightforward definition of an instanta-
neous frequency based on the temporal variation of the phase factor Γ(t),
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Figure 1.4: (a) Electric field, (b) time dependent carrier frequency, (c) spectral
amplitude and (d) spectral phase of a linearly upchirped pulse.
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we will see in Section 1.1.4 that it can be rigourously derived from the
Wigner distribution. For dφ/dt = b = const., a non-zero value of b just
means a correction of the carrier frequency which is now ω′

ℓ = ωℓ + b. For
dφ/dt = f(t), the carrier frequency varies with time and the corresponding
pulse is said to be frequency modulated or chirped. For d2φ/dt2 < (>)0, the
carrier frequency decreases (increases) along the pulse, which then is called
down(up)chirped.

From Eq.(1.10) it is obvious that the decomposition of Γ(t) into ω and
φ(t) is not unique. The most useful decomposition is one that ensures the
smallest dφ/dt during the intense portion of the pulse. A common practice
is to identify ωℓ with the carrier frequency at the pulse peak. A better
definition — which is consistent in the time and frequency domains — is to
use the intensity weighted average frequency:

⟨ω⟩ =
∫∞
−∞ |Ẽ(t)|2ω(t)dt∫∞

−∞ |Ẽ(t)|2dt
=

∫∞
−∞ |Ẽ+(Ω)|2ΩdΩ∫∞
−∞ |Ẽ+(Ω)|2dΩ

(1.18)

The various notations are illustrated in Fig. 1.4 where a linearly up-
chirped pulse is taken as an example. The temporal dependence of the real
electric field is sketched in the top part of Fig 1.4. A complex representa-
tion in the time domain is illustrated with the amplitude and instantaneous
frequency of the field. The positive and negative frequency components of
the Fourier transform are shown in amplitude and phase in the bottom part
of the figure.

1.1.2 Power, energy, and related quantities

Let us imagine the practical situation in which the pulse propagates as a
beam with cross section A, and with E(t) as the relevant component of the
electric field. The (instantaneous) pulse power (in Watt) in a dispersionless
material of refractive index n can be derived from the Poynting theorem of
electrodynamics [1] and is given by

P(t) = ϵ0cn

∫
A
dS

1

T

∫ t+T/2

t−T/2
E2(t′)dt′ (1.19)

where c is the velocity of light in vacuum, ϵ0 is the dielectric permittivity and∫
A dS stands for integration over the beam cross section. The power can be
measured by a detector (photodiode, photomultiplier etc.) which integrates
over the beam cross section. The temporal response of this device must
be short as compared to the speed of variations of the field envelope to be
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measured. The temporal averaging is performed over one optical period
T = 2π/ωℓ. Note that the instantaneous power as introduced in Eq. (1.19)
is then just a convenient theoretical quantity. In a practical measurement T
has to be replaced by the actual response time τR of the detector. Therefore,
even with the fastest detectors available today (τR ≈ 10−13−10−12s), details
of the envelope of fs light pulses can not be resolved directly.

A temporal integration of the power yields the energy W (in Joules):

W =

∫ ∞

−∞
P(t′)dt′ (1.20)

where the upper and lower integration limits essentially mean “before” and
“after” the pulse under investigation.

The corresponding quantity per unit area is the intensity (W/cm2):

I(t) = ϵ0cn
1

T

∫ t+T/2

t−T/2
E2(t′)dt′

=
1

2
ϵ0cnE2(t) = 2ϵ0cnẼ

+(t)Ẽ−(t) =
1

2
ϵ0cnẼ(t)Ẽ∗(t) (1.21)

and the energy density per unit area (J/cm2):

W =

∫ ∞

−∞
I(t′)dt′ (1.22)

Sometimes it is convenient to use quantities which are related to photon
numbers, such as the photon flux F (photons/s) or the photon flux density
F (photons/s/cm2):

F(t) =
P(t)

h̄ωℓ
and F (t) =

I(t)

h̄ωℓ
(1.23)

where h̄ωℓ is the energy of one photon at the carrier frequency.
The spectral properties of the light are typically obtained by measuring

the intensity of the field, without any time resolution, at the output of a
spectrometer. The quantity, called spectral intensity, that is measured is:

S(Ω) =| η(Ω)Ẽ+(Ω) |2 (1.24)

where η is a scaling factor which accounts for losses, geometrical influences,
and the finite resolution of the spectrometer. Assuming an ideal spectrom-
eter, |η|2 can be determined from the requirement of energy conservation:

|η|2
∫ ∞

−∞
| Ẽ+(Ω) |2 dΩ = 2ϵ0cn

∫ ∞

−∞
Ẽ+(t)Ẽ−(t)dt (1.25)
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Figure 1.5: Temporal pulse profiles and the corresponding spectra (normalized).

———— Gaussian pulse E(t) ∝ exp[−1.385(t/τp)
2]

– – – – – – – sech - pulse E(t) ∝ sech[1.763(t/τp)]

· · · · · · · · · Lorentzian pulse E(t) ∝ [1 + 1.656(t/τp)
2]−1

———- asymm. sech pulse E(t) ∝ [exp(t/τp) + exp(−3t/τp)]
−1

and Parseval’s theorem [2]:∫ ∞

−∞
|Ẽ+(t)|2dt = 1

2π

∫ ∞

0
| Ẽ+(Ω) |2 dΩ (1.26)

from which follows |η|2 = ϵ0cn/π. The complete expression for the spectral
intensity [from Eq. (1.24)] is thus:

S(Ω) =
ϵ0cn

4π

∣∣∣Ẽ(Ω− ωℓ)
∣∣∣2 . (1.27)

Figure 1.5 gives examples of typical pulse shapes and the corresponding
spectra.

The complex quantity Ẽ+ will be used most often throughout the book
to describe the electric field. Therefore, to simplify notations, we will omit
the superscript “+”whenever this will not cause confusion.

1.1.3 Pulse duration and spectral width

Unless specified otherwise, we define the pulse duration τp as the full width
at half maximum (FWHM) of the intensity profile, |Ẽ(t)|2, and the spectral
width ∆ωp as the FWHM of the spectral intensity |Ẽ(Ω)|2. Making that
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statement is an obvious admission that other definitions exist. Precisely be-
cause of the difficulty of asserting the exact pulse shape, standard waveforms
have been selected. The most commonly cited are the Gaussian, for which
the temporal dependence of the field is:

Ẽ(t) = Ẽ0 exp{−(t/τG)
2} (1.28)

and the secant hyperbolic:

Ẽ(t) = Ẽ0sech(t/τs). (1.29)

The parameters τG = τp/
√
2 ln 2 and τs = τp/1.76 are generally more conve-

nient to use in theoretical calculations involving pulses with these assumed
shapes than the FWHM of the intensity, τp.

Since the temporal and spectral characteristics of the field are related
to each other through Fourier transforms, the bandwidth ∆ωp and pulse
duration τp cannot vary independently of each other. There is a minimum
duration-bandwidth product:

∆ωp τp = 2π∆νpτp ≥ 2πcB. (1.30)

cB is a numerical constant on the order of 1, depending on the actual pulse
shape. Some examples are shown in Table 1.1. The equality holds for
pulses without frequency modulation (unchirped) which are called “band-
width limited” or “Fourier limited”. Such pulses exhibit the shortest possi-
ble duration at a given spectral width and pulse shape. We refer the reader
to Section 1.1.4, for a more general discussion of the uncertainty relation
between pulse and spectral width based on mean-square deviations.

The shorter the pulse duration, the more difficult it becomes to assert
its detailed characteristics. In the femtosecond domain, even the simple
concept of pulse duration seems to fade away in a cloud of mushrooming
definitions. Part of the problem is that it is difficult to determine the exact
pulse shape. For single pulses, the typical representative function that is
readily accessible to the experimentalist is the intensity autocorrelation:

Aint(τ) =

∫ ∞

−∞
I(t)I(t− τ)dt (1.31)

The Fourier transform of the correlation (1.31) is the real function:

Aint(Ω) = Ĩ(Ω)Ĩ∗(Ω) (1.32)

where the notation Ĩ(Ω) is the Fourier transform of the function I(t), which
should not be confused with the spectral intensity S(Ω). The fact that
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Shape Intensity τp Spectral ∆ωp cB ⟨τp⟩⟨∆Ωp⟩
profile I(t) FWHM profile S(Ω) FWHM MSQ

Gauss e−2(t/τG)2 1.177τG e−
(ΩτG)2

2 2.355/τG 0.441 0.5

sech sech2(t/τs) 1.763τs sech2 πΩτs
2 1.122/τs 0.315 0.525

Lorentz [1 + (t/τL)
2]−2 1.287τL e−2|Ω|τL 0.693/τL 0.142 0.7

asym.
[
et/τa + e−3t/τa

]−2
1.043τa sechπΩτa

2 1.677/τa 0.278
sech
square 1 for |t/τr| ≤ 1 τr sinc2(Ωτr) 2.78/τr 0.443 3.27

, 0 elsewhere

Table 1.1: Examples of standard pulse profiles. The spectral values given are
for unmodulated pulses. Note that the Gaussian is the shape with the minimum
product of mean square deviation (MSQ) of the intensity and spectral intensity.

the autocorrelation function Aint(τ) is symmetric, hence its Fourier trans-
form is real [2], implies that little information about the pulse shape can be
extracted from such a measurement. Furthermore, the intensity autocorre-
lation (1.31) contains no information about the pulse phase or coherence.
This point is discussed in detail in Chapter ??.

Gaussian pulses

Having introduced essential pulse characteristics, it seems convenient to dis-
cuss an example to which we can refer to in later chapters. We choose
a Gaussian pulse with linear chirp. This choice is one of analytical conve-
nience: the Gaussian shape is not the most commonly encountered temporal
shape. The electric field is given by

Ẽ(t) = E0e−(1+ia)(t/τG)2 (1.33)

with the pulse duration

τp =
√
2 ln 2 τG. (1.34)

Note that with the definition (1.33) the chirp parameter a is positive for a
downchirp (dφ/dt = −2at/τ2G). The Fourier transform of (1.33) yields

Ẽ(Ω) = E0
√
πτG

4
√
1 + a2

exp

{
iΦ− Ω2τG

2

4(1 + a2)

}
(1.35)
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with the spectral phase given by:

ϕ(Ω) = −1

2
arctan(a) +

aτG
2

4(1 + a2)
Ω2 (1.36)

It can be seen from Eq. (1.35) that the spectral intensity is the Gaussian:

S(ωℓ +Ω) =
|η|2πE2

0 τ
2
G√

1 + a2
exp

{
− Ω2τG

2

2(1 + a2)

}
(1.37)

with a FWHM given by:

∆ωp = 2π∆νp =
1

τG

√
8 ln 2(1 + a2) (1.38)

For the pulse duration-bandwidth product we find

∆νpτp =
2 ln 2

π

√
1 + a2 (1.39)

Obviously, the occurrence of chirp (a ̸= 0) results in additional spectral com-
ponents which enlarge the spectral width and lead to a duration bandwidth
product exceeding the Fourier limit (2 ln 2/π ≈ 0.44) by a factor

√
1 + a2,

consistent with Eq. (1.30). We also want to point out that the spectral
phase given by Eq. (1.36) changes quadratically with frequency if the input
pulse is linearly chirped. While this is exactly true for Gaussian pulses as
can be seen from Eq. (1.36), it holds approximately for other pulse shapes.
In the next section, we will develop a concept that allows one to discuss the
pulse duration-bandwidth product from a more general point of view and
independent of the actual pulse and spectral profile.

1.1.4 Wigner distribution, second order moments, uncer-
tainty relations

Wigner distribution

The Fourier transform as defined in Section 1.1.1 is a widely used tool in
beam and pulse propagation. In beam propagation, it leads directly to the
far field pattern of a propagating beam (Fraunhofer approximation) of ar-
bitrary transverse profile. Similarly, the Fourier transform leads directly
to the pulse temporal profile, following propagation through a dispersive
medium, as we will see at the end of this chapter. The Fourier transform
gives a weighted average of the spectral components contained in a signal.
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Unfortunately, the exact spatial or temporal location of these spectral com-
ponents is hidden in the phase of the spectral field. There has been there-
fore a need for new two-dimensional representation of the waves in either
the plane of space–wave vector, or time–angular frequency. Such a function
was introduced by Wigner [3] and applied to quantum mechanics. The same
distribution was applied to the area of signal processing by Ville [4]. Prop-
erties and applications of the Wigner distribution in Quantum Mechanics
and Optics are reviewed in two recent books by Schleich [5] and Cohen [6].
A clear analysis of the close relationship between Quantum Mechanics and
Optics can be found in ref. [7]. The Wigner distribution of a function Ẽ(t)
is defined by1:

WE(t,Ω) =

∫ ∞

−∞
Ẽ

(
t+

s

2

)
Ẽ∗
(
t− s

2

)
e−iΩsds

=
1

2π

∫ ∞

−∞
Ẽ

(
Ω+

s

2

)
Ẽ∗
(
Ω− s

2

)
eitsds (1.40)

One can see that the definition is a local representation of the spectrum of
the signal, since: ∫ ∞

−∞
WE(t,Ω)dt =

∣∣∣Ẽ(Ω)
∣∣∣2 (1.41)

and ∫ ∞

−∞
WE(t,Ω)dΩ = 2π

∣∣∣Ẽ(t)
∣∣∣2 (1.42)

The subscript E refers to the use of the instantaneous complex electric field
Ẽ in the definition of the Wigner function, rather than the electric field
envelope Ẽ = E exp[iωℓt + iφ(t)] defined at the beginning of this chapter.
There is a simple relation between the Wigner distribution WE of the in-
stantaneous field Ẽ, and the Wigner distribution WE of the real envelope
amplitude E :

WE(t,Ω) =

∫ ∞

−∞
E
(
t+

s

2

)
ei[ωℓ(t+s/2)+φ(t+s/2)]

× E∗
(
t− s

2

)
e−i[ωℓ(t−s/2)+φ(t−s/2)]e−iΩsds

=

∫ ∞

−∞
E
(
t+

s

2

)
E∗
(
t− s

2

)
e−i[Ω−(ωℓ+φ̇(t))]sds

= WE{t, [Ω− (ωℓ + φ̇)]}. (1.43)

1t and Ω are conjugated variables as in Fourier transforms. The same definitions can
be made in the space–wavevector domain, where the variables are then x and k.
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We will drop the subscript “E” and “E” for the Wigner function when the
distinction is not essential.

The intensity and spectral intensities are directly proportional to fre-
quency and time integrations of the Wigner function. In accordance with
Eqs. (1.21) and Eq. (1.27):

1

2
√
µ0/ϵ

∫ ∞

−∞
WE(t,Ω)dΩ = I(t) (1.44)

1

2
√
µ0/ϵ

∫ ∞

−∞
WE(t,Ω)dt = S(Ω). (1.45)

Figure 1.6 shows the Wigner distribution of an unchirped Gaussian pulse
((a), left) versus a Gaussian pulse with a quadratic chirp ((b), right). The
introduction of a quadratic phase modulation leads to a tilt (rotation) and
flattening of the distribution. This distortion of the Wigner function results
directly from the relation (1.43) applied to a Gaussian pulse. We have de-
fined in Eq. (1.33) the phase of the linearly chirped pulse as φ(t) = −at2/τ2G.
If Wunchirp is the Wigner distribution of the unchirped pulse, the linear chirp
transforms that function into:

Wchirp = Wunchirp(t,Ω− 2at

τ2G
), (1.46)

hence the tilt observed in Fig. 1.6. Mathematical tools have been devel-
oped to produce a pure rotation of the phase space (t, Ω). We refer the
interested reader to the literature for details on the Wigner distribution and
in particular on the fractional Fourier transform [8, 9]. It has been shown
that such a rotation describes the propagation of a pulse through a medium
with a quadratic dispersion (index of refraction being a quadratic function
of frequency) [10].

Moments of the electric field

It is mainly history and convenience that led to the adoption of the FWHM
of the pulse intensity as the quantity representative of the pulse duration.
Sometimes pulse duration and spectral width defined by the FWHM values
are not suitable measures. This is, for instance, the case in pulses with
substructure or broad wings causing a considerable part of the energy to lie
outside the range given by the FWHM. In these cases it may be preferable
to use averaged values derived from the appropriate second–order moments.
It appears in fact, as will be shown in examples of propagation, that the
second moment of the field distribution is a better choice.
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Figure 1.6: Wigner distribution for a Gaussian pulse. Left (a), the phase function
φ(t) = φ0 is a constant. On the right (b), Wigner distribution for a linearly chirped
pulse, i.e. with a quadratic phase modulation φ(t) = αt2. The elliptical curves are
lines of equal intensity. The intensity is graded from 0 (black) to the peak (white).

For the sake of generality, let us designate by f(x) the field as a function
of the variable x (which can be the transverse coordinate, transverse wave
vector, time or frequency). The moment of order n for the quantity x with
respect to intensity is defined as:

⟨xn⟩ =
∫∞
−∞ xn|f(x)|2dx∫∞
−∞ |f(x)|2dx

(1.47)

The first order moment, ⟨x⟩, is the “center of mass” of the intensity distri-
bution, and is most often chosen as reference, in such a way as to have a
zero value. For example, the center of the transverse distribution will be on
axis, x = 0, or a Gaussian temporal intensity distribution E0 exp[−(t/τG)

2]
will be centered at t = 0. A good criterium for the width of a distribution
is the mean square deviation (MSQ):

⟨∆x⟩ =
√
⟨x2⟩ − ⟨x⟩2. (1.48)

The explicit expressions in the time and frequency domains are:

⟨τp⟩ = ⟨∆t⟩ =
[
1

W

∫ ∞

−∞
t2I(t)dt− 1

W 2

(∫ ∞

−∞
tI(t)dt

)2
] 1

2

(1.49)
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⟨∆ωp⟩ = ⟨∆Ω⟩ =
[
1

W

∫ ∞

−∞
Ω2S(Ω)dΩ− 1

W 2

(∫ ∞

−∞
ΩS(Ω)dΩ

)2
] 1

2

(1.50)

where S(Ω) is the spectral intensity defined in Eq. (1.24). Whenever appro-
priate we will assume that the first-order moments are zero, which yields
⟨∆x⟩ =

√
⟨x2⟩.

The second moments can also be defined using the Wigner distribution
[Eq. (1.40)]:

⟨t2⟩ =

∫ ∫∞
−∞ t2WE(t,Ω)dtdΩ∫ ∫∞
−∞WE(t,Ω)dtdΩ

=

∫∞
−∞ t2|Ẽ(t)|2dt∫∞
−∞ |Ẽ(t)|2dt

(1.51)

⟨Ω2⟩ =

∫ ∫∞
−∞Ω2WE(t,Ω)dtdΩ∫ ∫∞
−∞WE(t,Ω)dtdΩ

=

∫∞
−∞Ω2|Ẽ(Ω)|2dΩ∫∞
−∞ |Ẽ(Ω)|2dΩ

(1.52)

While the above equations do not bring anything new, the Wigner distribu-
tion lets us define another quantity, which describes the coupling between
conjugated variables:

⟨t,Ω⟩ =
∫ ∫∞

−∞(t− ⟨t⟩)(Ω− ⟨Ω⟩)WE(t,Ω)dtdΩ∫ ∫∞
−∞WE(t,Ω)dtdΩ

. (1.53)

A non-zero ⟨t,Ω⟩ implies that the center of mass of the spectral intensity
evolves with time, as in Fig. 1.6. One can thus define an instantaneous
frequency:

ω(t) =

∫∞
−∞ΩWE(t,Ω)dΩ∫∞
−∞WE(t,Ω)dΩ

. (1.54)

By substituting the definition of theWigner distribution Eq. (1.40) in Eq. (1.54),
it is possible to demonstrate rigourously the relation (1.17). Indeed, substi-
tuting the definition (1.43) in Eq. (1.54) leads to:

ω(t) =

∫∞
−∞ΩWE [t,Ω− (ωℓ + φ̇)]dΩ∫∞

−∞WE(t,Ω)dΩ

=

∫∞
−∞[Ω′ + ωℓ + φ̇(t)]WE [t,Ω

′]dΩ′∫∞
−∞WE(t,Ω)dΩ

= ωℓ + φ̇(t), (1.55)

where we used the fact that
∫
Ω′WE(t,Ω

′)dΩ′ = 0.
There is a well known uncertainty principle between the second moment

of conjugated variables. If k is the Fourier-conjugated variable of x, it is
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shown in Appendix ?? that:

⟨x2⟩⟨k2⟩ = M4

4
≥ 1

4
, (1.56)

where we have defined a shape factor “M2”, which has been extensively
used to describe the departure of beam profile from the “ideal Gaussian”
[11]. This relation can be applied to time and frequency:

⟨t2⟩⟨Ω2⟩ = M4

4
≥ 1

4
. (1.57)

Equality only holds for a Gaussian pulse (beam) shape free of any phase
modulation, which implies that the Wigner distribution for a Gaussian shape
occupies the smallest area in the time/frequency plane. It is also important
to note that the uncertainty relations (1.56) and (1.57) only hold for the
pulse widths defined as the mean square deviation. For a Gaussian pulses
defined by its electric field E(t) = E0 exp[−(t/τG)

2]:

⟨t2⟩ =
τ2G
4

⟨Ω2⟩ =
1

τ2G
. (1.58)

The product of the two numbers is indeed 1/4, the minimum of the inequal-
ity (1.57). while for the products of the full width at half maximum (FWHM)
of the intensity and spectral intensity cB = τp∆νp = 0.441. In fact, the pulse
duration-bandwidth product is not minimum for a Gaussian pulse, as illus-
trated in Table 1.1, which gives the value of cB for various pulse shapes
without phase modulation. It remains that, for a given pulse shape, cB is
the smallest for pulses without frequency modulation (unchirped) which are
called “bandwidth limited” or “Fourier limited”. Such pulses exhibit the
shortest possible duration at a given spectral width and pulse shape.

If there is a frequency variation across a pulse, its spectrum will con-
tain additional spectral components. Consequently, the modulated pulse
possesses a spectral width which is larger than the Fourier limit given by
column five in Table 1.1.

Chirped pulses

A quadratic phase modulation plays an essential role in light propagation,
be it in time or space. Since a spherical wavefront can be approximated
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by a quadratic phase (φ(x) ∝ x2, where x is the transverse dimension)
near any propagation axis of interest, imparting a quadratic spatial phase
modulation will lead to focusing or de-focusing of a beam. The analogue is
true in time: imparting a quadratic phase modulation (φ(t) ∝ t2) will lead
to pulse compression or broadening after propagation through a dispersive
medium. These problems relating to pulse propagation will be discussed in
several sections and chapters of this book. In this section we attempt to
clarify quantitatively the relation between a quadratic chirp in the temporal
or frequency space, and the corresponding broadening of the spectrum or
pulse duration, respectively. The results are interchangeable from frequency
to temporal space.

Let us first assume that a laser pulse, initially unchirped, propagates
through a dispersive material that leaves the pulse spectrum, |Ẽ(Ω)|2, un-
changed but produces a quadratic phase modulation in the frequency do-
main. The pulse spectrum is centered at the average frequency ⟨Ω⟩ = ωℓ.
The average frequency does not change, hence the first nonzero term in the
Taylor expansion of ϕ(Ω) is

ϕ(Ω) =
1

2

d2ϕ

dΩ2

∣∣∣∣∣
0

⟨Ω2⟩, (1.59)

where ϕ(Ω) determines the phase factor of Ẽ(Ω):

Ẽ(Ω) = E(Ω)eiϕ(Ω). (1.60)

The first and second order moments are, according to the definitions (1.47):

⟨t⟩ =
∫∞
−∞ tẼ(t)Ẽ(t)∗dt∫∞

−∞ |Ẽ(t)|2dt
=

∫∞
−∞

dẼ(Ω)
dΩ Ẽ∗(Ω)dΩ∫∞

−∞ |Ẽ(Ω)|2dΩ
=

⟨
dϕ

dΩ

⟩
(1.61)

and

⟨t2⟩ =

∫∞
−∞ tẼ(t)tẼ(t)∗dt∫∞

−∞ |Ẽ(t)|2dt
=

∫∞
−∞

∣∣∣dẼ(Ω)
dΩ

∣∣∣2 dΩ∫∞
−∞ |Ẽ(t)|2dt

=

∫∞
−∞

[
dE(Ω)
dΩ

]2
dΩ∫∞

−∞ |Ẽ(Ω)|2dΩ
+

⟨(
dϕ

dΩ

)2
⟩
. (1.62)

It is left to a problem at the end of this chapter to derive these results. Since
the initial pulse was unchirped and its spectral amplitude is not affected by
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propagation through the transparent medium, the first term in Eq. (1.62)
represents the initial second order moment ⟨t2⟩0. Substituting the expression
for the quadratic phase Eq. (1.59) into Eq. (1.47) for the first order moment,
we find from Eq. (1.62):

⟨t2⟩ = ⟨t2⟩0 +
[
d2ϕ

dΩ2

∣∣∣∣∣
0

]2
⟨Ω2⟩. (1.63)

The frequency chirp introduces a temporal broadening (of the second or-
der moment) directly proportional to the square of the chirp coefficient,[
d2ϕ
dΩ2

∣∣∣
0

]2
.

Likewise we can analyze the situation where a temporal phase modula-

tion φ(t) = dφ
dt

∣∣∣
0
t2 is impressed upon the pulse while the pulse envelope,

|Ẽ(t)|2, remains unchanged. This temporal frequency modulation or chirp,
characterized by the second derivative in the middle (center of mass) of the
pulse, leads to a spectral broadening given by:

⟨Ω2⟩ = ⟨Ω2⟩0 +
[
d2φ

dt2

∣∣∣∣∣
0

]2
⟨t2⟩ (1.64)

where ⟨Ω2⟩0 refers to the spectrum of the input pulse and ⟨t2⟩ is the (con-
stant) second-order moment of time.

Equations (1.63) and (1.64) demonstrate the advantage of using the mean
square deviation to define the pulse duration and bandwidth, since it shows
a simple relation between the broadening in the time or spectral domain,
due to a chirp in the spectral or time domain, respectively independent of
the pulse and spectral shape. For the two different situations described by
Eqs. (1.63) and (1.64), we can apply the uncertainty relation, Eq. (??),

⟨t2⟩⟨Ω2⟩ = M4

4
κc ≥

1

4
. (1.65)

We have introduced a factor of chirp κc, equal to

κc = 1 +
M4

4⟨t2⟩20

[
d2ϕ

dΩ2

∣∣∣∣∣
0

]2
(1.66)

in case of a frequency chirp and constant spectrum, or

κc = 1 +
M4

4⟨Ω2⟩20

[
d2φ

dt2

∣∣∣∣∣
0

]2
(1.67)
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in case of a temporal chirp and constant pulse envelope.
In summary, using themean square deviation to define the pulse duration

and bandwidth:

• the duration—bandwidth product
√
⟨t2⟩⟨Ω2⟩ is minimum (0.5) for a

Gaussian pulse shape, without phase modulation.

• For any pulse shape, one can define a shape factor M2 equal to the
minimum duration—bandwidth product for that particular shape.

• Any quadratic phase modulation — or linear chirp — whether in fre-
quency or time, increases the bandwidth duration product by a chirp
factor κc. The latter increases proportionally to the second derivative
of the phase modulation, whether in time or in frequency.

1.2 Pulse propagation

So far we have considered only temporal and spectral characteristics of light
pulses. In this subsection we shall be interested in the propagation of such
pulses through matter. This is the situation one always encounters when
working with electromagnetic wave packets (at least until somebody suc-
ceeds in building a suitable trap). The electric field, now considered in
its temporal and spatial dependence, is again a suitable quantity for the
description of the propagating wave packet. In view of the optical materi-
als that will be investigated, we can neglect external charges and currents
and confine ourselves to nonmagnetic permeabilities and uniform media. A
wave equation can be derived for the electric field vector E from Maxwell
equations (see for instance Ref. [12]) which in Cartesian coordinates reads(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

)
E(x, y, z, t) = µ0

∂2

∂t2
P(x, y, z, t) , (1.68)

where µ0 is the magnetic permeability of free space. The source term of
Eq. (1.68) contains the polarization P and describes the influence of the
medium on the field as well as the response of the medium. Usually the
polarization is decomposed into two parts:

P = PL +PNL. (1.69)

The decomposition of Eq. (1.69) is intended to distinguish a polarization
that varies linearly (PL) from one that varies nonlinearly (PNL) with the
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field. Historically, PL represents the medium response in the frame of “ordi-
nary” optics, e.g., classical optics [13], and is responsible for effects such as
diffraction, dispersion, refraction, linear losses and linear gain. Frequently,
these processes can be attributed to the action of a host material which
in turn may contain sources of a nonlinear polarization PNL. The latter
is responsible for nonlinear optics [14, 15, 16] which includes, for instance,
saturable absorption and gain, harmonic generation and Raman processes.

As will be seen in Chapters ?? and ??, both PL and in particular PNL

are often related to the electric field by complicated differential equations.
One reason is that no physical phenomenon can be truly instantaneous.
In this chapter we will omit PNL. Depending on the actual problem under
consideration, PNL will have to be specified and added to the wave equation
as a source term.

1.2.1 The reduced wave equation

Equation (1.68) is of rather complicated structure and in general can solely
be solved by numerical methods. However, by means of suitable approxima-
tions and simplifications, one can derive a “reduced wave equation” which
will enable us to deal with many practical pulse propagation problems in a
rather simple way. We assume the electric field to be linearly polarized and
propagating in the z-direction as a plane wave, i.e., the field is uniform in
the transverse x, y direction. The wave equation has now been simplified to:(

∂2

∂z2
− 1

c2
∂2

∂t2

)
E(z, t) = µ0

∂2

∂t2
PL(z, t) (1.70)

As known from classical electrodynamics [12] the linear polarization of a
medium is related to the field through the dielectric susceptibility χ. In the
frequency domain we have

P̃L(Ω, z) = ϵ0 χ(Ω)Ẽ(Ω, z) (1.71)

which is equivalent to a convolution integral in the time domain

PL(t, z) = ϵ0

∫ t

−∞
dt′ χ(t′)E(z, t− t′). (1.72)

Here ϵ0 is the permittivity of free space. The finite upper integration limit,
t, expresses the fact that the response of the medium must be causal. For a
nondispersive medium (which implies an “infinite bandwidth” for the suscep-
tibility, χ(Ω) =const.) the medium response is instantaneous, i.e., memory
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free. In general, χ(t) describes a finite response time of the medium which,
in the frequency domain, means nonzero dispersion. This simple fact has
important implications for the propagation of short pulses and time vary-
ing radiation in general. We will refer to this point several times in later
chapters — in particular when dealing with coherent interaction.

The Fourier transform of (1.70) together with (1.71) yields

[
∂2

∂z2
+Ω2ϵ(Ω)µ0

]
Ẽ(z,Ω) = 0 (1.73)

where we have introduced the dielectric constant

ϵ(Ω) = [1 + χ(Ω)]ϵ0. (1.74)

For now we will assume a real susceptibility and dielectric constant. Later we
will discuss effects associated with complex quantities. The general solution
of (1.73) for the propagation in the +z direction is

Ẽ(Ω, z) = Ẽ(Ω, 0)e−ik(Ω)z, (1.75)

where the propagation constant k(Ω) is determined by the dispersion relation
of linear optics

k2(Ω) = Ω2ϵ(Ω)µ0 =
Ω2

c2
n2(Ω), (1.76)

and n(Ω) is the refractive index of the material. For further consideration
we expand k(Ω) about the carrier frequency ωℓ

k(Ω) = k(ωℓ) + δk, (1.77)

where

δk =
dk

dΩ

∣∣∣∣
ωℓ

(Ω− ωℓ) +
1

2

d2k

dΩ2

∣∣∣∣∣
ωℓ

(Ω− ωℓ)
2 + . . . (1.78)

and write Eq. (1.75) as

Ẽ(Ω, z) = Ẽ(Ω, 0)e−ikℓze−i δk z, (1.79)

where k2ℓ = ω2
ℓ ϵ(ωℓ)µ0 = ω2

ℓn
2(ωℓ)/c

2. In most practical cases of interest,
the Fourier amplitude will be centered around a mean wave vector kℓ, and
will have appreciable values only in an interval ∆k small compared to kℓ. In
analogy to the introduction of an envelope function slowly varying in time,
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after the separation of a rapidly oscillating term, cf. Eqs. (1.11)– (1.14), we
can define now an amplitude which is slowly varying in the spatial coordinate

Ẽ(Ω, z) = Ẽ(Ω + ωℓ, 0)e
−i δk z. (1.80)

Again, for this concept to be useful we must require that∣∣∣∣ ddz Ẽ(Ω, z)
∣∣∣∣≪ kℓ

∣∣∣Ẽ(Ω, z)∣∣∣ (1.81)

which implies a sufficiently small wave number spectrum∣∣∣∣∆k

kℓ

∣∣∣∣≪ 1. (1.82)

In other words, the pulse envelope must not change significantly while trav-
elling through a distance comparable with the wavelength λℓ = 2π/ωℓ.
Fourier transforming of Eq. (1.79)) into the time domain gives

Ẽ(t, z) =
1

2

{
1

π

∫ ∞

−∞
dΩ Ẽ(Ω, 0)e−i δk zei(Ω−ωℓ)t

}
ei(ωℓt−kℓz) (1.83)

which can be written as

Ẽ(t, z) =
1

2
Ẽ(t, z)ei(ωℓt−kℓz) (1.84)

where Ẽ(t, z) is now the envelope varying slowly in space and time, defined
by the term in the curled brackets in Eq. (1.83).

Further simplification of the wave equation requires a corresponding
equation for Ẽ utilizing the envelope properties. Only a few terms in the
expansion of k(Ω) and ϵ(Ω), respectively, will be considered. To this effect
we expand ϵ(Ω) as series around ωℓ, leading to the following form for the
linear polarization (1.71)

P̃L(Ω, z) =

(
ϵ(ωℓ)− ϵ0 +

∞∑
n=1

1

n!

dnϵ

dΩn

∣∣∣∣
ωℓ

(Ω− ωℓ)
n

)
Ẽ(Ω, z). (1.85)

In terms of the pulse envelope, the above expression corresponds in the time
domain to

P̃L(t, z) =
1

2

{
[ϵ(ωℓ)− ϵ0]Ẽ(t, z)

+
∞∑
n=1

(−i)n
ϵ(n)(ωℓ)

n!

∂n

∂tn
Ẽ(t, z)

}
ei(ωℓt−kℓz), (1.86)
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where ϵ(n)(ωℓ) =
∂n

∂Ωn ϵ
∣∣∣
ωℓ

. The term in the curled brackets defines the slowly

varying envelope of the polarization, P̃L. The next step is to replace the
electric field and the polarization in the wave equation (1.70) by Eq. (1.83)
and Eq. (1.86), respectively. We transfer thereafter to a coordinate system

(η, ξ) moving with the group velocity vg =

(
dk
dΩ

∣∣∣
ωℓ

)−1

, which is the standard

transformation to a “retarded” frame of reference:

ξ = z η = t− z

vg
(1.87)

and
∂

∂z
=

∂

∂ξ
− 1

vg

∂

∂η
;

∂

∂t
=

∂

∂η
. (1.88)

A straightforward calculation leads to the final result:

∂

∂ξ
Ẽ − i

2
k′′ℓ

∂2

∂η2
Ẽ +D = − i

2kℓ

∂

∂ξ

(
∂

∂ξ
− 2

vg

∂

∂η

)
Ẽ (1.89)

The quantity

D = − iµ0

2kℓ

∞∑
n=3

(−i)n

n!

[
ω2
ℓ ϵ

(n)(ωℓ)− 2nωℓϵ
(n−1)(ωℓ)

+ n(n− 1)ϵ(n−2)(ωℓ)
] ∂n

∂ηn
Ẽ (1.90)

contains dispersion terms of higher order, and has been derived by taking
directly the second order derivative of the polarization defined by the prod-
uct of envelope and fast oscillating terms in Eq. (1.86). The indices of the
three resulting terms have been re-defined to factor out a single derivative
of order (n) of the field envelope. The second derivative of k:

k′′ℓ =
∂2k

∂Ω2

∣∣∣∣∣
ωℓ

= − 1

v2g

dvg
dΩ

∣∣∣∣∣
ωℓ

=
1

2kℓ

[
2

v2g
− 2µ0ϵ(ωℓ)− 4ωℓµ0ϵ

(1)(ωℓ)− ω2
ℓµ0ϵ

(2)(ωℓ)

]
(1.91)

is the group velocity dispersion (GVD) parameter. It should be mentioned
that the GVD is usually defined as the derivative of vg with respect to λ,
dvg/dλ, related to k′′ through

dvg
dλ

=
Ω2v2g
2πc

d2k

dΩ2
. (1.92)
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So far we have not made any approximations and the structure of Eq. (1.89)
is still rather complex. However, we can exploit at this point the envelope
properties (1.14) and (1.81), which, in this particular situation, imply:∣∣∣∣∣ 1kℓ

(
∂

∂ξ
− 2

vg

∂

∂η

)
Ẽ
∣∣∣∣∣ =

∣∣∣∣∣ 1kℓ
(

∂

∂z
− 1

vg

∂

∂t

)
Ẽ
∣∣∣∣∣≪ ∣∣∣Ẽ∣∣∣ (1.93)

The right–hand side of (1.89) can thus be neglected if the prerequisites for
introducing pulse envelopes are fulfilled. This procedure is called slowly
varying envelope approximation (SVEA) and reduces the wave equation to
first–order derivatives with respect to the spatial coordinate.

If the propagation of very short pulses is computed over long distances,
the cumulative error introduced by neglecting the right hand side of Eq. (1.89)
may be significant. In those cases, a direct numerical treatment of the second
order wave equation is required.

Further simplifications are possible for a very broad class of problems of
practical interest, where the dielectric constant changes slowly over frequen-
cies within the pulse spectrum. In those cases, terms with n ≥ 3 can be
omitted too (D = 0), leading to a greatly simplified reduced wave equation:

∂

∂ξ
Ẽ(η, ξ)− i

2
k′′ℓ

∂2

∂η2
Ẽ(η, ξ) = 0 (1.94)

which describes the evolution of the complex pulse envelope as it propa-
gates through a loss-free medium with GVD. The reader will recognize the
structure of the one–dimensional Schrödinger equation.

1.2.2 Retarded frame of reference

In the case of zero GVD [k′′ℓ = 0 in Eq. (1.94)], the pulse envelope does not
change at all in the system of local coordinates (η, ξ). This illustrates the
usefulness of introducing a coordinate system moving at the group velocity.
In the laboratory frame, the pulse travels at the group velocity without any
distortion.

In dealing with short pulses as well as in dealing with white light (see
Chapter ??) the appropriate “retarded frame of reference” is moving at the
group rather than at the wave (phase) velocity. Indeed, while a monochro-
matic wave of frequency Ω travels at the phase velocity vp(Ω) = c/n(Ω), it
is the superposition of many such waves with differing phase velocities that
leads to a wave packet (pulse) propagating with the group velocity. The
importance of the frame of reference moving at the group velocity is such
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that, in the following chapters, the notation z and t will be substituted for
ξ and η, unless the laboratory frame is explicitly specified.

Some propagation problems — such as the propagation of coupled waves
in nonlinear crystals discussed in Chapter ?? — are more appropriately
treated in the frequency domain. As a simple exercise, let us derive the
group velocity directly from the solution of the wave equation in the form
of Eq. (1.79)

Ẽ(Ω, z) = Ẽ(Ω, 0)e−ikℓze−i δk z. (1.95)

The Fourier transform amplitude amplitude E(Ω, 0) represented on the top
left of Fig. 1.7 is not changed by propagation. On the top right, the time
domain representation of the pulse, or the inverse transform of E(Ω, 0), is
centered at t = 0 (solid line). We assume that the expansion of the wave

Figure 1.7: The Fourier transform amplitude (E(Ω, 0) is sketched in the upper
left, and the corresponding field in the time domain on the upper right (solid line).
The lower part of the figure displays the field amplitudes, E(Ω) on the left, centered
at the origin of the frequency scale, and the corresponding inverse Fourier transform
E(t). Propagation in the frequency domain is obtained by multiplying the field at
z = 0 by the phase factor exp(−iτdΩ), where τd = z/vg is the group delay. In
the time domain, this corresponds to delaying the pulse by an amount τd (right).
The delayed fields |E(z, t)| and E(z, t) are shown in dotted lines on the right of the
figure.
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vector k(Ω), Eq. (1.77), can be terminated after the linear term, that is

δk =
dk

dΩ

∣∣∣∣
ωℓ

(Ω− ωℓ) (1.96)

The inverse Fourier-transform of Eq. (1.95) now yields

Ẽ(t, z) = e−ikℓz
∫ ∞

−∞
Ẽ(Ω, 0) exp

[
−i

dk

dΩ

∣∣∣∣
ωℓ

(Ω− ωℓ)z

]
eiΩtdΩ (1.97)

= ei(ωℓt−kℓz)
∫ ∞

−∞
Ẽ(Ω′ + ωℓ, 0) exp

[
i

(
t− dk

dΩ

∣∣∣∣
ωℓ

z

)
Ω′
]
dΩ′

where we substituted Ω = Ω′+ωℓ to obtain the last equation. This equation
is just the inverse Fourier-transform of the field spectrum shifted to the
origin (i.e., the spectrum of the envelope Ẽ(Ω), represented on the lower

left of Fig. 1.7) with the Fourier variable ”time” now given by t − dk
dΩ

∣∣∣
ωℓ

z.

Carrying out the transform yields

Ẽ(t, z) =
1

2
Ẽ(t, z)ei(ωℓt−kℓz) =

1

2
Ẽ
(
t− dk

dΩ

∣∣∣∣
ωℓ

z, 0

)
ei(ωℓt−kℓz). (1.98)

We have thus the important result that, in the time domain, the light pulse

has been delayed by an amount (τd = dk
dΩ

∣∣∣
ωℓ

z) proportional to distance.

Within the approximation that the wave vector is a linear function of fre-
quency, the pulse is seen to propagate without distortion with a constant
group velocity vg given by either of the three expressions:

1

vg
=

dk

dΩ

∣∣∣∣
ωℓ

(1.99)

1

vg
=

n0

c
+

ωℓ

c

dn

dΩ

∣∣∣∣
ωℓ

(1.100)

1

vg
=

n0

c
− λ

c

dn

dλ

∣∣∣∣
λ
. (1.101)

The first term in Eqs. (1.100) and (1.101) represent the phase delay per unit
length, while the second term in these equations is the change in carrier to
envelope phase per unit length. We note that the dispersion of the wave
vector (dk/dΩ) or of the index of refraction (dn/dλ) is responsible for a
difference between the phase velocity vp = c/n0 and the group velocity vg.
In a frame of reference moving at the velocity vg, Ẽ(z, t) remains identically
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unchanged. Pulse distortions thus only result from high order (higher than
1) terms in the Taylor series expansion of k(Ω). For this reason, most pulse
propagation problems are treated in a retarded frame of reference, moving
at the velocity vg.

Forward/Backward propagating waves

We consider an ultrashort pulse plane wave propagating through a dielectric
medium. Before the arrival of the pulse, there are no induced dipoles, and
for the index of refraction we assume that of a vacuum (n = 1). As the
dipoles are driven into motion by the first few cycles of the pulse, the index
of refraction changes to the value n of the dielectric. One consequence of
this causal phenomenon is the “precursor” predicted by Sommerfeld and
Brillouin, see for example [12]. One might wonder if the discontinuity in
index created by a short and intense pulse should not lead to a reflection for
a portion of the pulse? This is an important question regarding the validity
of the first order approximation to Maxwell’s propagation equations. If, at
t = 0, a short wave packet is launched in the +z direction in a homogeneous
medium, is it legitimate to assume that there will be no pulse generated in
the opposite direction?

The answer that we give in this section is that, in the framework of
Maxwell’s second order equation and a linear polarization, there is no such
“induced reflection”. This property extends even to the nonlinear polariza-
tion created by the interaction of the light with a two-level system.

If we include the non-resonant part of the linear polarization in the index
of refraction n (imaginary part of n), the remainder polarization P includ-
ing all nonlinear and resonant interaction effects, adding a phenomenological
scattering term σ leads to the following form of the second order wave equa-
tion: (

∂2

∂z2
Ẽ − n2

c2
∂2

∂t2

)
Ẽ = µ0

∂2

∂t2
P̃ +

nσ

c

∂

∂t
Ẽ (1.102)

The polarization appearing in the right hand side can be instantaneous,
or be the solution of a differential equation as in the case of most interactions
with resonant atomic or molecular systems. Resonant light-matter interac-
tions will be studied in detail in Chapters ?? and ??. The wave equation
Eq. (1.102) can be written as a product of a forward and backward propa-
gating operator. Instead of the variables t and z, it is more convenient to use
the retarded time variable corresponding to the two possible wave velocities
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±c/n:

s = t− n

c
z

r = t+
n

c
z. (1.103)

In the new variables, Maxwell’s equation (1.102) becomes:

∂2

∂s∂r
Ẽ =

c2

n2

{
µ0

4

(
∂

∂s
+

∂

∂r

)2

P̃ +
nσ

c

(
∂

∂s
+

∂

∂r

)}
Ẽ. (1.104)

We seek a solution in the form of a forward and a backward propagating
field of amplitude ẼF and ẼB:

Ẽ =
1

2
ẼF eiωℓs +

1

2
ẼBeiωℓr. (1.105)

Substitution into Maxwell’s Eq. (1.102):

eiωℓs

[
2iωℓ

∂

∂r
+

∂2

∂s∂r
+

cσ

2n

(
∂

∂s
+

∂

∂r
+ 2iωℓ

)]
1

2
ẼF

+ eiωℓr

[
2iωℓ

∂

∂s
+

∂2

∂s∂r
+

cσ

2n

(
∂

∂s
+

∂

∂r
+ 2iωℓ

)]
1

2
ẼB

= −µ0c
2

4n2

(
∂

∂s
+

∂

∂r

)2

P̃ ,

(1.106)

which we re-write in an abbreviated way using the differential operators L
and M for the forward and backward propagating waves, respectively:

LẼF eiωℓs +MẼBeiωℓr = −µ0c
2

4n2

(
∂

∂s
+

∂

∂r

)2

P̃ . (1.107)

In the case of a linear medium, the forward and backward wave travel inde-
pendently. If, as initial condition, we choose ẼB = 0 along the line r+ s = 0
(t = 0), there will be no back scattered wave. If the polarization is written
as a slowly varying amplitude:

P̃ =
1

2
P̃F e

iωℓs +
1

2
P̃Be

iωℓr, (1.108)

the equations for the forward and backward propagating wave also separate
if P̃F is only a function of ẼF , and P̃B only a function of ẼB. This is because a
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source term for P̃B can only be formed by a “grating” term, which involves
a product of ẼB ẼF . It applies to a polarization created by near resonant
interaction with a two-level system, using the semi-classical approximation,
as will be considered in Chapters ?? and ??. The separation between forward
and backward travelling waves has been demonstrated by Eilbeck [17, 18]
outside of the slowly-varying approximation. Within the slowly varying
approximation, we generally write that the second derivative with respect to
time of the polarization as −ω2

ℓ P̃, and therefore, the forward and backward
propagating waves are still uncoupled, even when P̃ = P̃(ẼF , ẼB), provided
there is only a forward propagating beam as initial condition.

1.2.3 Dispersion

For nonzero GVD (k′′ℓ ̸= 0) the propagation problem (1.94) can be solved
either directly in the time or in the frequency domain. In the first case, the
solution is given by a Poisson-integral [19] which here reads

Ẽ(t, z) = 1√
2πik′′ℓ z

∫ t

−∞
Ẽ(t′, z = 0) exp

(
i
(t− t′)2

2k′′ℓ z

)
dt′ (1.109)

As we will see in subsequent chapters, it is generally more convenient to treat
linear pulse propagation through transparent linear media in the frequency
domain, since only the phase factor of the envelope Ẽ(Ω) is affected by
propagation.

It follows directly from the solution of Maxwell’s equations in the fre-
quency domain [for instance Eqs. (1.75) and (1.80)] that the spectral enve-
lope after propagation through a thickness z of a linear transparent material
is given by:

Ẽ(Ω, z) = Ẽ(Ω, 0) exp
(
− i

2
k′′ℓΩ

2z − i

3!
k′′′ℓ Ω

3z − . . .

)
. (1.110)

Thus we have for the temporal envelope

Ẽ(t, z) = F−1
{
Ẽ(Ω, 0) exp

(
− i

2
k′′ℓΩ

2z − i

3!
k′′′ℓ Ω

3z − . . .

)}
. (1.111)

If we limit the Taylor expansion of k to the GVD term k′′ℓ , we find that an
initially bandwidth-limited pulse develops a spectral phase with a quadratic
frequency dependence, resulting in chirp.

We had defined a “chirp coefficient”

κc = 1 +
M4

4⟨t2⟩20

[
dϕ

dΩ

∣∣∣∣
ωℓ

]2
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when considering in Section 1.1.4 the influence of quadratic chirp on the
uncertainty relation Eq. (1.65) based on the successive moments of the field
distribution. In the present case, we can identify the phase modulation:

dϕ

dΩ

∣∣∣∣
ωℓ

= −k′′ℓ z (1.112)

Since the spectrum (in amplitude) of the pulse | Ẽ(Ω, z) |2 remains constant
[as shown for instance in Eq. (1.110)], the spectral components responsible
for chirp must appear at the expense of the envelope shape, which has to
become broader.

At this point we want to introduce some useful relations for the charac-
terization of the dispersion. The dependence of a dispersive parameter can
be given as a function of either the frequency Ω or the vacuum wavelength λ.
The first, second and third order derivatives are related to each other by

d

dΩ
= − λ2

2πc

d

dλ
(1.113)

d2

dΩ2
=

λ2

(2πc)2

(
λ2 d2

dλ2
+ 2λ

d

dλ

)
(1.114)

d3

dΩ3
= − λ3

(2πc)3

(
λ3 d3

dλ3
+ 6λ2 d2

dλ2
+ 6λ

d

dλ

)
(1.115)

The dispersion of the material is described by either the frequency depen-
dence n(Ω) or the wavelength dependence n(λ) of the index of refraction.
The derivatives of the propagation constant used most often in pulse prop-
agation problems, expressed in terms of the index n, are:

dk

dΩ
=

n

c
+

Ω

c

dn

dΩ
=

1

c

(
n− λ

dn

dλ

)
(1.116)

d2k

dΩ2
=

2

c

dn

dΩ
+

Ω

c

d2n

dΩ2
=

(
λ

2πc

)
1

c

(
λ2d

2n

dλ2

)
(1.117)

d3k

dΩ3
=

3

c

d2n

dΩ2
+

Ω

c

d3n

dΩ3
= −

(
λ

2πc

)2 1

c

(
3λ2d

2n

dλ2
+ λ3d

3n

dλ3

)
(1.118)

The second equation, Eq. (1.117), defining the group velocity dispersion
(GVD) is the frequency derivative of 1/vg. Multiplied by the propagation
length L, it describes the frequency dependence of the group delay. It is
sometimes expressed in fs2 µm−1.
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A positive GVD corresponds to

d2k

dΩ2
> 0 (1.119)

1.2.4 Gaussian pulse propagation

For a more quantitative picture of the influence that GVD has on the pulse
propagation we consider the linearly chirped Gaussian pulse of Eq. (1.33)

Ẽ(t, z = 0) = E0e−(1+ia)(t/τG0)
2
= E0e−(t/τG0)

2
eiφ(t,z=0)

entering the sample. To find the pulse at an arbitrary position z, we multiply

the field spectrum, Eq. (1.35), with the propagator exp
(
−i12k

′′
ℓΩ

2z
)
as done

in Eq. (1.110), to obtain

Ẽ(Ω, z) = Ã0e
−xΩ2

eiyΩ
2

(1.120)

where

x =
τ2G0

4(1 + a2)
(1.121)

and

y(z) =
aτ2G0

4(1 + a2)
− k′′ℓ z

2
. (1.122)

Ã0 is a complex amplitude factor which we will not consider in what follows
and τG0 describes the pulse duration at the sample input. The time depen-
dent electric field that we obtain by Fourier transforming Eq. (1.120) can
be written as

Ẽ(t, z) = Ã1 exp

−
(
1 + i

y(z)

x

) t√
4
x [x

2 + y2(z)]

2
 . (1.123)

Obviously, this describes again a linearly chirped Gaussian pulse. For the
“pulse duration” (note τp =

√
2 ln 2 τG) and phase at position z we find

τG(z) =

√
4

x
[x2 + y2(z)] (1.124)

and

φ(t, z) = − y(z)

4[x2 + y2(z)]
t2. (1.125)
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Let us consider first an initially unchirped input pulse (a = 0). The pulse
duration and chirp parameter develop as:

τG(z) = τG0

√
1 +

(
z

Ld

)2

(1.126)

∂2

∂t2
φ(t, z) =

(
1

τ2G0

)
2z/Ld

1 + (z/Ld)2
. (1.127)

We have defined a characteristic length:

Ld =
τ2G0

2k′′ℓ
. (1.128)

For later reference let also us introduce a so-called dispersive length defined
as

LD =
τ2p0
k′′ℓ

(1.129)

where for Gaussian pulses LD ≈ 2.77Ld. Bandwidth limited Gaussian pulses
double their length after propagation of about 0.6LD. For propagation
lengths z ≫ Ld the pulse broadening of an unchirped input pulse as de-
scribed by Eq. (1.126) can be simplified to

τG(z)

τG0
≈ z

|Ld|
=

2|k′′ℓ |
τ2G0

z. (1.130)

It is interesting to compare the result of Eq. (1.126) with that of Eq. (1.63),
where we used the second moment as a measure for the pulse duration. Since
the Gaussian is the shape for minimum uncertainty [Eq. (1.57)], and since
d2ϕ/dΩ2 = −k′′z, one can derive the evolution equation for the mean square
deviation of a Gaussian pulse in a dielectric medium:

⟨t2⟩ = ⟨t2⟩0 +
d2ϕ

dΩ2

∣∣∣∣∣
0

⟨Ω2⟩0 = ⟨t2⟩ = ⟨t2⟩0 +
(k′′)2z2

⟨t2⟩0
. (1.131)

The latter equations reduces to Eq. (1.126) by substituting the relations
between mean square deviations and Gaussian widths [Eq. (1.58)]. If the
input pulse is chirped (a ̸= 0) two different behaviors can occur depending
on the relative sign of a and k′′ℓ . In the case of opposite sign, y2(z) increases
monotonously resulting in pulse broadening, cf. Eq. (1.124). If a and k′′ℓ
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have equal sign y2(z) decreases until it becomes zero after a propagation
distance

zc =
τ2G0a

2|k′′ℓ |(1 + a2)
. (1.132)

At this position the pulse reaches its shortest duration

τG(zc) = τGmin =
τG0√
1 + a2

(1.133)

and the time dependent phase according to Eq. (1.125) vanishes. From here
on the propagation behavior is that of an unchirped input pulse of duration
τGmin, that is, the pulse broadens and develops a time-dependent phase.
The larger the input chirp (|a|), the shorter the minimum pulse duration
that can be obtained [see Eq. (1.133)]. The underlying reason is that the
excess bandwidth of a chirped pulse is converted into a narrowing of the
envelope by chirp compensation, until the Fourier limit is reached. The
whole procedure including the impression of chirp on a pulse will be treated
in Chapter ?? in more detail.

There is a complete analogy between the propagation (diffraction) effects
of a spatially Gaussian beam and the temporal evolution of a Gaussian pulse
in a dispersive medium. For instance, the pulse duration and the slope of the
chirp follow the same evolution with distance as the waist and curvature of
a Gaussian beam, as detailed at the end of this chapter. A linearly chirped
Gaussian pulse in a dispersive medium is completely characterized by the
position and (minimum) duration of the unchirped pulse, just as a spatially
Gaussian beam is uniquely defined by the position and size of its waist. To
illustrate this point, let us consider a linearly chirped pulse whose “duration”
τG and chirp parameter a are known at a certain position z1. The position zc
of the minimum duration (unchirped pulse) is found again by setting y = 0
in Eq. (1.122):

zc = z1 +
τ2G
2k′′ℓ

a

1 + a2
= z1 + a

τ2Gmin

2k′′ℓ
. (1.134)

The position zc is after z1 if a and k′′ℓ have the same sign2; before z1 if they
have opposite sign. All the temporal characteristics of the pulse are most
conveniently defined in terms of the distance L = z− zc to the point of zero
chirp, and the minimum duration τGmin. This is similar to Gaussian beam
propagation where the location of the beam waist often serves as reference.

2For instance, an initially downchirped (a > 0) pulse at z = zc will be compressed in
a medium with positive dispersion (k′′ > 0).
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The chirp parameter a and the pulse “duration” τG at any point L are then
simply given by

a(L) = L/Ld (1.135)

τG(L) = τGmin

√
1 + [a(L)]2 (1.136)

where the dispersion parameter Ld = τ2Gmin/(2|k′′ℓ |). The pulse duration
bandwidth product varies with distance L as

cB(L) =
2 ln 2

π

√
1 + [a(L)]2 (1.137)

To summarize, Fig. (1.8) illustrates the behavior of a linearly chirped Gaus-
sian pulse as it propagates through a dispersive sample.

Simple physical consideration can lead directly to a crude approximation
for the maximum broadening that a bandwidth limited pulse of duration
τp and spectral width ∆ωp will experience. Each group of waves centered
around a frequency Ω travels with its own group velocity vg(Ω). The differ-
ence of group velocities over the pulse spectrum becomes then:

∆vg =

[
dvg
dΩ

]
ωℓ

∆ωp. (1.138)

Accordingly, after a travel distance L the pulse spread can be as large as

∆τp =

∣∣∣∣∣∆
(
L

vg

)∣∣∣∣∣ ≈ L

V 2
g

|∆vg| (1.139)

which, by means of Eqs. (1.91) and (1.138), yields:

∆τp = L|k′′ℓ |∆ωp. (1.140)

Approximating τp ≈ ∆ω−1
p , a characteristic length after which a pulse has

approximately doubled its duration can now be estimated as:

L′
D =

1

|k′′ℓ |∆ω2
p

. (1.141)

Measuring the length in meter and the spectral width in nm the GVD of
materials is sometimes given in fs/(m nm) which pictorially describes the
pulse broadening per unit travel distance and unit spectral width. From
Eq. (1.140) we find for the corresponding quantity

∆τp
L∆λ

= 2π
c

λ2
ℓ

|k′′ℓ |. (1.142)
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Figure 1.8: Propagation of a linearly chirped Gaussian pulse in a medium with
GVD [pulse shape (a), pulse duration for different input chirp (b)].
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For BK7 glass at 620 nm, k′′ℓ ≈ 6.52692×10−26s2/m, and the GVD as intro-
duced above is about 320 fs per nm spectral width and meter propagation
length.

1.2.5 Complex dielectric constant

In general, the dielectric constant, which was introduced in Eq. (1.73) as
a real quantity, is complex. Indeed a closer inspection of Eq. (1.72) shows
that the finite memory time of matter requires not only ϵ, χ to be frequency
dependent but also that they be complex. The real and imaginary part
of ϵ̃, χ̃ are not independent of each other but related through a Kramers–
Kronig relation. The consideration of a real ϵ(Ω) is justified as long as we
can neglect (linear) losses or gain. This is valid for transparent samples
or propagation lengths which are too short for these processes to become
essential for the pulse shaping. For completeness we will modify the reduced
wave equation (1.94) by taking into account a complex dielectric constant
ϵ̃(Ω) represented as

ϵ̃(Ω) = ϵ(Ω) + iϵi(Ω). (1.143)

Let us assume ϵ̃(Ω) to be weakly dispersive. The same procedure introduced
to derive Eq. (1.94) can be used after inserting the complex dielectric con-
stant ϵ̃ into the expression of the polarization Eq. (1.85). Now the reduced
wave equation becomes

∂

∂z
Ẽ(t, z)− i

2
k′′

∂2

∂t2
Ẽ(t, z) = κ1Ẽ(t, z)+ iκ2

∂

∂t
Ẽ(t, z)+κ3

∂2

∂t2
Ẽ(t, z) (1.144)

where

κ1 =
ωℓ

2
η0ϵi(ωℓ) (1.145)

κ2 =
1

2
η0

[
2ϵi(ωℓ) + ωℓ

d

dΩ
ϵi(Ω)

∣∣∣∣
ωℓ

]
(1.146)

κ3 =
1

4ωℓ
η0

2ϵi(ωℓ) + 4ωℓ
d

dΩ
ϵi(Ω)

∣∣∣∣
ωℓ

+ ω2
ℓ

d2

dΩ2
ϵi(Ω)

∣∣∣∣∣
ωℓ

 .(1.147)
In the above expressions, η0 =

√
µ0/ϵ0 ≈ 377 Ωms is the characteristic

impedance of vacuum. For zero–GVD, and neglecting the two last terms
in the right-hand side of Eq. (1.144), the pulse evolution with propagation
distance z is described by

∂

∂z
Ẽ(t, z)− κ1Ẽ(t, z) = 0 (1.148)
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which has the solution
Ẽ(t, z) = Ẽ(t, 0)eκ1z. (1.149)

The pulse experiences losses or gain depending on the sign of κ1 and does
not change its shape. Equation (1.149) states simply the Lambert-Beer law
of linear optics.

An interesting situation is that in which there would be neither gain nor

loss at the pulse carrier frequency, i.e., ϵi(ωℓ) = 0 and d
dΩϵi(Ω)

∣∣∣
ωℓ

̸= 0, which

could occur between an absorption and amplification line. Neglecting the
terms with the second temporal derivative of Ẽ , the propagation problem is
governed by the equation

∂

∂z
Ẽ(t, z)− iκ2

∂

∂t
Ẽ(t, z) = 0. (1.150)

The solution of this equation is simply

Ẽ(t, z) = Ẽ(t+ iκ2z, 0). (1.151)

To get an intuitive picture on what happens with the pulse according to
Eq. (1.151), let us choose an unchirped Gaussian pulse Ẽ(t, 0) [see Eq. (1.33]
for a = 0), entering the sample at z = 0. From Eq. (1.151) we find:

Ẽ(t, z) = Ẽ(t, 0) exp
[
κ22(z/τG)

2
]
exp

[
−i2κ2tz/τ

2
G

]
. (1.152)

The pulse is amplified, and simultaneously its center frequency is shifted
with propagation distance. The latter shift is due to the amplification of
one part of the pulse spectrum (the high (low) – frequency part if κ2 < (>)0)
while the other part is absorbed. The result is a continuous shift of the pulse
spectrum in the corresponding direction and a net gain while the pulse shape
is preserved.

In the beginning of this section we mentioned that there is always an
imaginary contribution of the dielectric constant leading to gain or loss.
The question arises whether a wave equation such as Eq. (1.94), where only
the real part of ϵ̃ was considered, is of any practical relevance for describing
pulse propagation through matter. The answer is yes, because in (almost)
transparent regions the pulse change due to dispersion can be much larger
than the change caused by losses. An impressive manifestation of this fact
is pulse propagation through optical fibers. High-quality fibers made from
fused silica can exhibit damping constants as low as 1 dB/km at wavelengths
near 1 µm, where the GVD term is found to be k′′ ≈ 75 ps2/km, see for
example [20]. Consequently, a 100 fs pulse launched into a 10 m fiber loses
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just about 2% of its energy while it broadens by about a factor of 150. To
illustrate the physics underlying the striking difference between the action of
damping and dispersion, let us consider a dielectric constant ϵ̃(Ω) originating
from a single absorption line.

We will use the simple model of a classical harmonic oscillator consisting
of an electron bound to a nucleus to calculate the dispersion and absorption
of that line. The equation of motion of the electron is:

d2r

dt2
+ ω2

0r +
1

Tc

dr

dt
=

e

me
E, (1.153)

where ω0 =
√
C/me (C being the “spring constant”) is the resonance fre-

quency, me the electron mass, e its charge, and 1/Tc the damping constant.
Assuming an electric field of the form E = (1/2)Ẽ0 exp(iΩt), one finds the
polarization P = N0er (N0 being the number of oscillators (dipoles) per
unit volume):

P (Ω) =
N0e

2

me

E

ω2
0 − Ω2 + iΩ/Tc

(1.154)

Using the general relation between polarization and electric field P = ϵ0χE
we obtain an expression for the complex susceptibility:

χ(Ω) =
N2

0 e
2

ϵ0me

1

ω2
0 − Ω2 + iΩ/Tc

(1.155)

The real and imaginary parts of the susceptibility χ can be calculated:

χr =
N0e

2

ϵ0me

(ω2
0 − Ω2)

(ω2
0 − Ω2)2 +Ω2/T 2

c

≈ N0e
2T2

2meϵ0ω0

∆ωT2

1 + ∆ω2T 2
2

(1.156)

χi = −N0e
2

ϵ0me

(Ω/Tc)

(ω2
0 − Ω2)2 +Ω2/T 2

c

≈ − N0e
2T2

2meϵ0ω0

1

1 + ∆ω2T 2
2

(1.157)

The second term of each equation above corresponds to the approximation of
small detuning ∆ω = ω0 −Ω ≪ ωo. 1/T2 is the linewidth of the Lorentzian
absorption line, and T2 = 2Tc will be assimilated in Chapters ?? and ??
to the phase relaxation time of the oscillators. The real and imaginary
parts of the oscillator contribution to the susceptibility are responsible for
a frequency dependence of the wave vector. One can write

k(Ω) = Ω
√
µ0ϵ0 [1 + χ(Ω)] ≈ Ω

c

[
1 +

1

2
χ(Ω)

]
(1.158)
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For frequencies Ω being sufficiently far from resonance, i.e. |(ω0 −Ω)T2)| =
|∆ωT2| ≫ 1, but with |ωℓ − Ω| ≪ ωℓ (narrow pulse spectrum), the real and
imaginary parts of the propagation constant are given by:

kr(Ω) ≃ Ω

c
+B

Ω

∆ωT2
(1.159)

ki(Ω) ≃ −B
Ω

(∆ωT2)2
, (1.160)

where B = (N0e
2T2)/(4ϵ0ω0cme). The group velocity dispersion, responsi-

ble for pulse reshaping, is:

k′′(Ω) ≃ 2BT 2
2ω0

[∆ωT2]3
. (1.161)

For small travel distances L the relative change of pulse energy can be esti-
mated from Eq. (1.75) and Eq. (1.20) to be:

∆Wrel = 1− W(L)

W(0)
≈ −2kiL. (1.162)

The relative change of pulse duration due to GVD can be evaluated from
Eq. (1.126) and we find:

∆τrel =
τG(L)

τG0
− 1 ≈ 2

(
k′′ℓL

τ2G0

)2

. (1.163)

To compare both pulse distortions we consider their ratio, using Eqs. (1.160),
(1.161), (1.162) and (1.163:

∆τrel
∆Wrel

= ∆Wrel
2

(∆ωT2)2

(
T2

τG0

)4

. (1.164)

At given material parameters and carrier frequency, shorter pulses always
lead to a dominant pulse spreading. For T2 = 10−10 s (typical value for
a single electronic resonance), and a detuning ∆ωT2 = 104, we find for
example:

∆τrel
∆Wrel

≈ ∆Wrel

(
1200 fs

τG0

)4

. (1.165)

To summarize, a resonant transition of certain spectral width 1/T2 influences
short pulse (pulse duration < 1 ps) propagation outside resonance mainly
due to dispersion. Therefore, the consideration of a transparent material
(ϵi ≈ 0) with a frequency dependent, real dielectric constant ϵ(Ω), which was
necessary to derive Eq. (1.94), is justified in many practical cases involving
ultrashort pulses.
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1.3 Interaction of light pulses with linear optical
elements

Even though this topic is treated in detail in Chapter ??, we want to dis-
cuss here some general aspects of pulse distortions induced by linear optical
elements. These elements comprise typical optical components, such as mir-
rors, prisms, and gratings, which one usually finds in all optical setups. Here
we shall restrict ourselves to the temporal and spectral changes the pulse ex-
periences and shall neglect a possible change of the beam characteristics. A
linear optical element of this type can be characterized by a complex optical
transfer function

H̃(Ω) = R(Ω)e−iΨ(Ω) (1.166)

that relates the incident field spectrum Ẽin(Ω) to the field at the sample
output Ẽ(Ω)

Ẽ(Ω) = R(Ω)e−iΨ(Ω)Ẽin(Ω). (1.167)

Here R(Ω) is the (real) amplitude response and Ψ(Ω) is the phase response.
As can be seen from Eq. (1.167), the influence of R(Ω) is that of a frequency
filter. The phase factor Ψ(Ω) can be interpreted as the phase delay which
a spectral component of frequency Ω experiences. To get an insight of how
the phase response affects the light pulse, we assume that R(Ω) does not
change over the pulse spectrum whereas Ψ(Ω) does. Thus, we obtain for the
output field from Eq. (1.167):

Ẽ(t) =
1

2π
R

∫ +∞

−∞
Ẽin(Ω)e

−iΨ(Ω)eiΩt dΩ. (1.168)

Replacing Ψ(Ω) by its Taylor expansion around the carrier frequency ωℓ of
the incident pulse

Ψ(Ω) =
∞∑
n=0

bn(Ω− ωℓ)
n (1.169)

with the expansion coefficients

bn =
1

n!

dnΨ

dΩn

∣∣∣∣
ωℓ

(1.170)

we obtain for the pulse

Ẽ(t) =
1

2
Ẽ(t)eiωℓt

=
1

2π
Re−ib0eiωℓt

∫ +∞

−∞
Ẽin(Ω)
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× exp

(
−i

∞∑
n=2

bn(Ω− ωℓ)
n

)
ei(Ω−ωℓ)(t−b1) dΩ. (1.171)

By means of Eq. (1.171) we can easily interpret the effect of the various
expansion coefficients bn. The term e−ib0 is a constant phase shift (phase
delay) having no effect on the pulse envelope. A nonvanishing b1 leads solely
to a shift of the pulse on the time axis t; the pulse would obviously keep
its position on a time scale t′ = t − b1. The term b1 determines a group
delay in a similar manner as the first–order expansion coefficient of the
propagation constant k defined a group velocity in Eq. (1.98). The higher–
order expansion coefficients produce a nonlinear behavior of the spectral
phase which changes the pulse envelope and chirp. The action of the term
with n = 2, for example, producing a quadratic spectral phase, is analogous
to that of GVD in transparent media.

If we decompose the input field spectrum into modulus and phase Ẽin(Ω) =
|Ẽin(Ω)| exp(iΦin(Ω)), we obtain from Eq. (1.167) for the spectral phase at
the output

Φ(Ω) = Φin(Ω)−
∞∑
n=0

bn(Ω− ωℓ)
n. (1.172)

It is interesting to investigate what happens if the linear optical element is
chosen to compensate for the phase of the input field. For Taylor coefficients
with n ≥ 2:

bn =
1

n!

dn

dΩn
Φin(Ω)

∣∣∣∣
ωℓ

. (1.173)

A closer inspection of Eq. (1.171) shows that when Eq. (1.173) is satisfied,
all spectral components are in phase for t− b1 = 0, leading to a pulse with
maximum peak intensity, as was discussed in previous sections. We will
come back to this important point when discussing pulse compression. We
want to point out the formal analogy between the solution of the linear
wave equation (1.75) and Eq.(1.167) for R(Ω) = 1 and Ψ(Ω) = k(Ω)z. This
analogy expresses the fact that a dispersive transmission object is just one
example of a linear element. In this case we obtain for the spectrum of the
complex envelope

Ẽ(Ω, z) = Ẽin(Ω, 0) exp
[
−i

∞∑
n=0

1

n!
k
(n)
ℓ (Ω− ωℓ)

nz

]
(1.174)

where k
(n)
ℓ = (dn/dΩn)k(Ω)|ωℓ

.
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Next let us consider a sequence of m optical elements. The result-
ing transfer function is given by the product of the individual contribu-
tions H̃j(Ω)

H̃(Ω) =
m∏
j=1

H̃j(Ω) =

 m∏
j=1

Rj(Ω)

 exp

−i
m∑
j=1

Ψj(Ω)

 (1.175)

which means an addition of the phase responses in the exponent. Subse-
quently, by a suitable choice of elements, one can reach a zero-phase re-
sponse so that the action of the device is through the amplitude response
only. In particular, the quadratic phase response of an element (e.g., dis-
persive glass path) leading to pulse broadening can be compensated with an
element having an equal phase response of opposite sign (e.g., grating pair)
which automatically would re-compress the pulse to its original duration.
Such methods are of great importance for the handling of ultrashort light
pulses. Corresponding elements will be discussed in Chapter ??.

1.4 Generation of phase modulation

At this point let us briefly discuss essential physical mechanisms to produce
a time dependent phase of the pulse, i.e., a chirped light pulse. Processes
resulting in a phase modulation can be divided into those that increase the
pulse spectral width and those that leave the spectrum unchanged. The
latter can be attributed to the action of linear optical processes. Any trans-
parent linear medium, or spectrally “flat” reflector, can change the phase of a
pulse, without affecting its spectral amplitude. The action of these elements
is most easily analyzed in the frequency domain. As we have seen in the pre-
vious section, the phase modulation results from the different phase delays
which different spectral components experience upon interaction. The result
for an initially bandwidth-limited pulse, in the time domain, is a temporally
broadened pulse with a certain frequency distribution across the envelope,
such that the spectral amplitude profile remains unchanged. For an element
to act in this manner its phase response Ψ(Ω) must have non-zero derivatives
of at least second order as explained in the previous section.

A phase modulation that leads to a spectral broadening is most easily
discussed in the time domain. Let us assume that the action of a correspond-
ing optical element on an unchirped input pulse can be formally written as:

Ẽ(t) = T (t)eiΦ(t)Ẽin(t) (1.176)
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where T and Φ define a time dependent amplitude and phase response,
respectively. For our simplified discussion here let us further assume that
T = const., leaving the pulse envelope unaffected. Since the output pulse
has an additional phase modulation Φ(t) its spectrum must have broadened
during the interaction. If the pulse under consideration is responsible for
the time dependence of Φ, then we call the process self-phase modulation.
If additional pulses cause the temporal change of the optical properties we
will refer to it as cross-phase modulation. Often, phase modulation occurs
through a temporal variation of the index of refraction n of a medium during
the passage of the pulse. For a medium of length d the corresponding phase
is:

Φ(t) = −k(t)d = −2π

λ
n(t)d. (1.177)

In later chapters we will discuss in detail several nonlinear optical interaction
schemes with short light pulses that can produce a time dependence of n.

A time dependence of n can also be achieved by applying a voltage pulse
at an electro-optic material for example. However, with the view on phase
shaping of femtosecond light pulses the requirements for the timing accuracy
of the voltage pulse make this technique difficult.

1.5 Beam propagation

1.5.1 General

So far we have considered light pulses propagating as plane waves, which al-
lowed us to describe the time varying field with only one spatial coordinate.
This simplification implies that the intensity across the beam is constant
and, moreover, that the beam diameter is infinitely large. Both features
hardly fit what we know from laser beams. Despite the fact that both fea-
tures do not match the real world, such a description has been successfully
applied for many practical applications and will be used in this book when-
ever possible. This simplified treatment is justified if the processes under
consideration either do not influence the transverse beam profile (e.g., suf-
ficiently short sample length) or allow one to discuss the change of beam
profile and pulse envelope as if they occur independently from each other.
The general case, where both dependencies mix, is often more complicated
and, frequently, requires extensive numerical treatment. Here we will dis-
cuss solely the situation where the change of such pulse characteristics as
duration, chirp, and bandwidth can be separated from the change of the
beam profile. Again we restrict ourselves to a linearly polarized field which
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now has to be considered in its complete spatial dependence. Assuming a
propagation in the z-direction, we can write the field in the form:

E = E(x, y, z, t) =
1

2
ũ(x, y, z)Ẽ(t)ei(ωt−kℓz) + c.c.. (1.178)

In the definition (1.178) the scalar ũ(x, y, z) is to describe the transverse
beam profile and Ẽ(t, z) is the slowly varying complex envelope introduced
in Eq. (1.83). Note that the rapid z-dependence of E is contained in the ex-
ponential function. Subsequently, ũ is assumed to vary slowly with z. Under
these conditions the insertion of Eq. (1.178) into the wave equation (1.68)
yields after separation of the time dependent part in paraxial approxima-
tion [11]: (

∂2

∂x2
+

∂2

∂y2
− 2ikℓ

∂

∂z

)
ũ(x, y, z) = 0, (1.179)

which is usually solved by taking the Fourier transform along the space
coordinates x and y, yielding:[

∂

∂z
− i

2kℓ

(
k2x + k2y

)]
ũ(kx, ky, z) = 0, (1.180)

where kx and ky are the Fourier variables (spatial frequencies, wave num-
bers). This equation can be integrated, to yield the integral form of Fresnel
equation:

ũ(kx, ky, z) = ũ(kx, ky, 0)e
i

2kℓ
(k2x+k2y)z. (1.181)

Paraxial approximation means that the transverse beam dimensions remain
sufficiently small compared with typical travel distances of interest. An
important particular solution of the wave equation within the paraxial ap-
proximation is the Gaussian beam (see, e.g., [11]), which can be written in
the form:

ũ(x, y, z) =
u0√

1 + z2/ρ20

e−iΘ(z)e−ikℓ(x
2+y2)/2R(z)e−(x2+y2)/w2(z). (1.182)

where

R(z) = z + ρ20/z (1.183)

w(z) = w0

√
1 + z2/ρ20 (1.184)

Θ(z) = arctan(z/ρ0) (1.185)

ρ0 =
nπw2

0

λ
. (1.186)
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Figure 1.9: Parameters of Gaussian beams

Sometimes it is convenient to write Eq. (1.182) as

ũ(x, y, z) =
u0√

1 + z2/ρ20

e−iΘ(z)e−ikℓ(x
2+y2)/2q̃(z) (1.187)

where q̃(z) is the complex beam parameter which is defined by:

1

q̃(z)
=

1

R(z)
− iλ

πw2(z)
=

1

q̃(0) + z
. (1.188)

Optical beams described by Eq. (1.182) exhibit a Gaussian intensity profile
transverse to the propagation direction with w(z) as a measure of the beam
diameter, as sketched in Fig. 1.9. The origin of the z-axis (z = 0) is chosen
to be the position of the beam waist w0 = w(z = 0). The radius of curvature
of planes of constant phase is R(z), Its value is infinity at the beam waist
(plane phase front)3 and at z = ∞. The length ρ0 is called the Rayleigh
range; 2ρ0 being the confocal parameter. For −ρ0 ≥ z ≤ ρ0, the beam size
is within the limits w0 ≤ w ≤

√
2w0. Given the amplitude u0 at a given

3The phase term Θ(z) in Eq. (1.182) takes on a constant value and need not be con-
sidered for z ≫ ρ0. A Gaussian beam at the position of its waist must not be confused
with a plane wave.
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beam waist and wavelength λ, the field at an arbitrary position (x, y, z) is
completely predictable by means of Eqs. (1.182) through (1.186).

Instead of using the differential equation (1.179), one can equivalently
describe the field propagation by an integral equation. The basic approach
is to start with Huygens’ principle, and apply the Fresnel approximation as-
suming paraxial wave propagation [11]. Assuming that the field distribution
(or beam profile) ũ(x′, y′, z′) = ũ0(x

′, y′) is known at a plane z′ = const.;
the field distribution ũ(x, y, z) at a plane z = z′ + L is given by:

ũ(x, y, z) =
ieikℓL

λL

∫ ∞

−∞

∫ ∞

−∞
ũ0(x

′, y′)e−ikℓ[(x
′−x)2+(y′−y)2]/(2L)dx′dy′.

(1.189)
Note that both ways of describing the field variation due to diffraction are
equivalent. One can easily show that the field (1.189) is a convolution of
ũ(x, y, 0) and exp[−ik(x2 + y2)/(2L)].

1.6 Analogy between pulse and beam propagation

1.6.1 Time analogy of the paraxial (Fresnel) approximation

Comparing the paraxial wave equation (1.179) and the reduced wave equa-
tion (1.94) describing pulse propagation through a GVD medium we notice
an interesting correspondence. Both equations are of similar structure. In
terms of the reduced wave equation the transverse space coordinates x, y
in Eq. (1.179) seem to play the role of the time variable. This space-time
analogy suggests the possibility of translating simply the effects related to
dispersion into beam propagation properties. For instance, we may compare
the temporal broadening of an unchirped pulse due to dispersion with the
change of beam size due to diffraction. In this sense free-space propagation
plays a similar role for the beam characteristics as a GVD medium does
for the pulse envelope. To illustrate this in more detail let us start with
Eq. (1.181), and, for simplicity, restrict ourselves to one dimension. The
field spectrum at a distance z is:

ũ(kx, z) = ũ(kx, z = 0)eik
2
xz/(2kℓ), (1.190)

which has a inverse Fourier transform the convolution product:

ũ(x, z) ∝ F−1
{
ũ0(kx)e

izk2x/(2kℓ)
}
=

∫ ∞

−∞
ũ(x0, 0)e

−i
kℓ
2z

(x−x0)2dx0 (1.191)

which is the well known Fresnel integral. Let us next recall Eq. (1.110),
approximated to second order, which states that the spectral envelope after
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propagation through a thickness z of a linear transparent material is given
by:

Ẽ(Ω, z) = Ẽ(Ω, 0)e−
i
2
k′′ℓ Ω

2z (1.192)

A comparison with Eq. (1.191) clearly shows the similarity between the
diffraction and the dispersion problem. The exponential phase factor k2xz/(2k)
which describes transverse beam diffraction in space, corresponds to the ex-
ponential phase factor −k”Ω2z/2 which describes pulse dispersion in time.
The time-fresnel integral (1.192) can also be written as a convolution in the
time domain:

Ẽ(t, z) ∝=

∫ ∞

−∞
Ẽ(t0, 0)e

−i
(t−t0)

2

2kℓ”z dt0 (1.193)

Since Eq. (1.190) corresponded to the paraxial approximation, the anal-
ogy can be carried over to successive subsets of that approximation. It will
thus apply also to Gaussian optics, and the time equivalent of the Fraunhofer
and geometric approximations, asa will be shown in subsequent sections.

1.6.2 Time analogy of the Fraunhofer approximation

The Fraunhofer approximation can be derived from the Fresnel integral by
inserting the approximation:

kℓ
2z

(x− x0)
2 ≈ −ikℓ

x

z
x0 = −ikxx0, (1.194)

in Eq. (1.191), yielding:

ũ(x, z) ∝
∫ ∞

−∞
ũ(x0, 0)e

−ikxx0dx0, (1.195)

where kx is the projection of the kℓ vector in the plane of observation of the
diffraction pattern, and takes the following forms:

• Image plane at finite distance: kx = kℓ(x/z), where x is the coordinate
in the observation plane

• Image plane at infinity: kx = kℓθx, where θx is the angle of observation

• Image plane at the focal plane of a lens: kx = kℓ(x/f) where f is the
focal distance of the lens.

Equivalently, a time Fraunhofer approximation can be derived from the
time Fresnel integral by inserting the approximation:

kℓ
2z

(t− t0)
2 ≈ −ikℓ

x

z
x0 = −ikxx0, (1.196)
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in Eq. (1.191), yielding:

Ẽ(t, z) ∝
∫ ∞

−∞
Ẽ(t0, 0)e

−i t
kℓ”z

t0dt0, (1.197)

which is the Fourier transform of the initial field, calculated at a frequency
Ω1 = t/(kℓ”z). Of the three different conditions in space cited above (Image
plane at finite, infinite distance or at the focus of a lens, two conditions
subsist:

• The observation distance z is after a simple linear dispersion, and
Ω1 = t/(kℓ”z)

• The observation distance is at the focal distance of a time lens, and
Ω1 = t/fT where fT = 1/ϕ̈ is the focal distance of the “time lens”
created by an applied phase modulation ϕ̈ (cf. Section 1.6.3)4.

The physical meaning of these analogies are that, after propagation of long
distance in a dispersive medium, the temporal variation of any signal is
replaced by its Fourier transform.

1.6.3 Geometric optics in time

In geometric optics, one considers sources to be δ-functions, and rays to
propagate in straight lines. We will start first with imaging, showing that
the simple lens equation applied also to temporal optics. Next we will show
how one of the most powerful tool in spatial optics — the propagation matrix
— can be used in time domain and applied to the calculation of laser cavities.

Analogy between spatial and temporal imaging

The analogy between pulse and beam propagation was applied to estab-
lish a time–domain analog of an optical imaging system by Kolner and
Nazarathy [21]. Optical microscopy, for example, serves to magnify tiny
structures so that they can be observed by a (relatively) low–resolution sys-
tem such as our eyes. The idea of the “time lens” is to magnify ultrafast
(fs) transients so that they can be resolved, for example, by a relatively
slow oscilloscope. Of course, the opposite direction is also possible, which
would lead to data compression in space or time. While Table 1.2 illustrates
the space–time duality for free–space propagation we now need to look for

4The distance z of observation is then z = fT /kℓ”, where kℓ” is the dispersion of the
medium following the time lens
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devices resembling imaging elements such as lenses. From Fourier optics it
is known that a lens introduces a quadratic phase factor, thus transforming
a (Fourier–limited) input beam (parallel beam) into a spatially chirped (fo-
cused) beam. The “time equivalent” lens is a quadratic phase modulator.
Quadratic dispersion through a medium with GVD is the temporal analogue
of diffraction. Let us consider the lens arrangement of Fig. 1.10, in which
the light from an object — represented by the field envelope E(r) —, at a
distance d1 from the lens, is imaged on a screen at a distance d2 from the
lens. The real image is produced on the screen if the distance and focal
distance of the lens satisfy the lens formula:

1

d1
+

1

d2
=

1

f
(1.198)

With some approximations, one can derive the time–domain equivalent of
the Gaussian lens formula [21], for an optical system [Fig. 1.10 (b)] in which
the initial signal Ẽ(t) is propagated for a distance d1 through a dispersive
medium characterized by a wave vector k2, is given a quadratic phase modu-
lation by a “time lens”, and propagates for a distance d2 through a medium
of wave vector k2:(

d1
d2k1
dΩ2

)−1

+

(
d2

d2k2
dΩ2

)−1

= (fT /ω0)
−1 . (1.199)

In this “temporal lens formula”, d1,2(d
2k1,2/dΩ

2) are the dispersion charac-
teristics of the object and image side, respectively, and ω0/fT = ∂2ϕ/∂t2 is
the parameter of the quadratic phase modulation impressed by the modu-
lator. As in optical imaging, to achieve large magnification with practical
devices, short focal lengths are desired. For time imaging this translates
into a short focal time fT which in turn requires a suitably large phase
modulation.

Note that the real image of an object can only be recognized on a screen
located at a specific distance from the lens, i.e., in the image plane. At
any other distance the intensity distribution visible on a screen does usually
not resemble the object, because of diffraction. Likewise, the dispersive
element broadens each individual pulse (if we assume zero input chirp). It
is only after the time lens and a suitably designed second dispersive element
that a “pulse train” with the same contrast as the input (but stretched or
compressed) emerges.

One possible approach to create a large phase modulation is cross-phase
modulation, in which a properly shaped powerful “pump” pulse creates a
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diffraction
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Figure 1.10: Space–time analogy of imaging. (a) Spatial imaging configuration.
The “object” is a graphic representation of a succession of a three pulse sequence.
The “real image” shows a magnified, inverted picture. (b) The temporal imaging
configuration. A pair of gratings on either side of the time lens represents a disper-
sive length characterized by d2k/dΩ2, see also Chapter ??. The object is a three
pulse sequence. The “image” is a reversed, expanded three pulse sequence. Possible
time lenses are explained in the text. (Adapted from [22].)

large index sweep (quadratic with time) in the material of the “time lens”.
Another approach is to use sum or difference frequency generation to impart
the linear chirp of one pulse into the pulse to be “imaged”. The linear chirp
can be obtained by propagating of a strong pulse through a fiber. A detailed
review of this “parametric temporal imaging” can be found in refs. [23,
22]. The time-equivalent of a long propagation distance (large diffraction)
is a large dispersion, which can be obtained with a pair of gratings, see
Chapter ??. Note that in a standard magnifying optical system with a
single lens, the real image is inverted with respect to the object. The same
applies to the temporal imaging: the successive pulses appear in reverse
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order in the image.

ABCD matrix

Review of ABCD matrix in space An ABCD matrix [24] is a ray trans-
fer matrix which describes the effect of an optical element on a laser beam.
It can be used both in geometrical optics and for propagating Gaussian
beams. The paraxial approximation is always required for ABCD matrix
calculations. Tracing of a light path through an optical system can then be
performed by multiplying an element matrix by a vector representing the
light ray: (

y2
α2

)
=

(
A B
C D

)
·
(

y1
α1

)
(1.200)

where y and α refer to transverse displacement and offset angle from an
optical axis respectively. The subscripts ‘1’ and ‘2’ denote the coordinates
before and after an optical element. For example, a thin lens with focal
length f has the following ABCD matrix:(

1 0
− 1

f 1

)
, (1.201)

and propagation through free space over a distance d is associated with the
matrix: (

1 d
0 1

)
(1.202)

transition from space to time Geometric optics can be seen as an ap-
proximation of Gaussian propagation, where the propagation distance is
much larger than the Rayleigh range. Therefore, the propagation in a linear
medium is in a straight line making an angle α with the optics axis:

w = w0

√
1 +

(
z

ρ0

)2

≈ w0

ρ0
z = αz =

2

kℓw0
z. (1.203)

The same approximation can be made in the time domain to define the
“optical inclination” α:

τ = τ0

√
1 +

(
z

Ld

)2

≈ τ0
Ld

z = αT z =
2k”ℓ
τG0

z. (1.204)
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Note that in contrast to the space domain where α is dimensionless, αT

has the dimension of the inverse of a velocity. The generic operation of
Eq. (1.200) has its time domain equivalent:(

T2

αT,2

)
=

(
A B
C D

)
·
(

T1

αT,1

)
(1.205)

where T , the correspondent of the transverse displacement y, is a tempo-
ral position. In the time equivalent of the propagation matrix (1.202), the
distance d is replaced by k”ℓd, while the time equivalent of the lens ma-
trix (1.201) has the element −1/f replaced by an imposed chirp Φ̈ which,
for instance, in the case of Kerr modulation, is equal to:

Φ̈ =
2πℓKerr

λ
n2

I

τ2G
, (1.206)

where ℓKerr is the length of the nonlinear medium characterized by an inten-
sity dependent index n2I. The matrix representation of the imaging problem
of Fig. 1.10, in space, is:(

y′

α′

)
=

(
1 d2
0 1

)(
1 0
− 1

f 1

)(
1 d1
0 1

)(
y
α

)
, (1.207)

while the time correspondent is:(
T ′

α′

)
=

(
1 k”2d2
0 1

)(
1 0

−Φ̈ 1

)(
1 k”1d1
0 1

)(
T
α

)
(1.208)

The various level of approximation of space-time analogy are summarized
in Fig. ??.

1.6.4 Gaussian pulses as analogue of Gaussian beams

As we have seen in the previous section the quadratic phase factor in Eq. (1.192)
broadens an unchirped input pulse and leads to a (linear) frequency sweep
across the pulse (chirp) while the pulse spectrum remains unchanged. In
an analogous manner we can interpret Eq. (1.191) for the beam profile. A
“bandwidth-limited” Gaussian beam means a beam without phase varia-
tion across the beam, which, in terms of Eq. (1.182), requires a radius of
curvature of the phase front R = ∞. Thus, a Gaussian beam is “bandwidth-
limited” at its waist where it takes on its minimum possible size (at a given
spatial frequency spectrum). Multiplication with a quadratic phase factor
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Gaussian pulse Gaussian beam

bandwidth-limited pulse at z = 0 beam waist at z = 0
(unchirped pulse) (plane phase fronts)

Ẽ0(t) ∝ e−(t/τG0)
2

Ẽ0(Ω) ∝ e−(τG0Ω/2)2
ũ0(x) ∝ e−(x/w0)

2

ũ0(kx) ∝ e−(kxw0/2)
2

Propagation through a medium of Free space propagation over
length L (dispersion) distance L (diffraction)

Ẽ(Ω, L) ∝ exp

[
−
(
τG0Ω

2

)2

− i
k′′ℓ LΩ

2

2

]

Ẽ(t, L) ∝ exp

[
−(1 + iā)

(
t

τG

)2
]

∝ exp

[
iωℓ

t2

2p̃(L)

]
ā = L/Ld

τG(L) = τG0

√
1 + ā2

ũ(kx, L) ∝ exp

[
−
(
w0kx
2

)2

+ i
Lkx

2

2kℓ

]
ũ(x, L) ∝ exp

[
−(1 + ib̄)

( x
w

)2]
∝ exp

[
−ikℓ

x2

2q̃(L)

]
b̄ = L/ρ0

w(L) = w0

√
1 + b̄2

Chirp coefficient (slope)

φ̈ =
2ā

1 + ā2
1

τ2G0

Wavefront curvature

1

R
=

b̄

1 + b̄2
1

ρ0

Characteristic (dispersion) length

Ld =
τ2G0

2k′′ℓ

Characteristic (Rayleigh) length

ρ0 =
nπw2

0

λℓ
=

kℓw
2
0

2

Complex pulse parameter Complex beam parameter

1

p̃(L)
= φ̈(L) +

2i

τ2G(L)

1

q̃(L)
=

1

R(L)
+

iλℓ

πw2(L)

Table 1.2: Comparison of dispersion and diffraction
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Figure 1.11: Space-time equivalence, starting from the Fourier transform of
Maxwell’s equation in space (left) and in time (right). F.T. indicates Fourier trans-
form. Fraunh. is the Fraunhofer approximation.

to describe the beam propagation, cf. Eq. (1.191), leads to beam broadening
and “chirp.” The latter simply accounts for a finite phase front curvature.
Roughly speaking, the spatial frequency components which are not needed
to form the broadened beam profile are responsible for the beam divergence.
Table 1.2 summarizes our discussion comparing the characteristics of Gaus-
sian beam and pulse propagation.

1.6.5 Time-space analogy applied to cavity calculations

“p” complex parameter, time correspondent of the spatial “q”
parameter

A convenient quantity, labeled the q parameter, has been defined for Gaus-
sian beams. It concatenates the information on the beam radius w and the
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radius of curvature R in a single complex quantity defined by:

1

q
=

1

R
− i

λ

πw2
(1.209)

It has been observed that the modification of the q parameter by an optical
element can be expressed in terms of the elements of the ABCD matrix:

1

q2
=

C +D/q1
A+B/q1

(1.210)

where q1 and q2 represent the value of the q parameter before and after the
optical element, respectively. Equation (1.210) is often represented in the
form: (

q2
1

)
=

(
A B
C D

)(
q1
1

)
. (1.211)

For equivalence with Eq. (1.210), a re-normalization of the ‘q’ vector is
needed after the matrix multiplication.

An example of application of ABCD matrices in space is the study of cav-
ity stability. For a cavity characterized by an ABCD matrix, the evolution
of the ‘q’ parameter over N round trips is given by:(

qN
1

)
=

(
A B
C D

)
·
(

qN−1

1

)
=

(
A B
C D

)N−1

·
(

q1
1

)
(1.212)

It can be shown [24] that, for the beam to be trapped in the cavity, there is
a stability condition: −1 ≤ 1

2(A+D) ≤ 1.
The time equivalent of the q parameter:

1

p
= φ̈− 2i

τ2G
, (1.213)

where φ̈ = ∂2φ
∂t2

is the second derivative of the phase in the middle of the

pulse, and τG [remembering that τp =
√
2 ln 2τG] is the Gaussian pulse width.

The matrices for dispersion and time lensing as defined in Eq. (1.208)can be
applied.

Application to a simple mode-locked cavity – stability criterium

To further clarify the time-space analogy, we consider a simple mode-locked
laser cavity as sketched in Fig. 1.12. The time equivalent of the “flat mirror
– curved mirror (radius R)” cavity [length L - Fig. 1.12 (a)], is one that
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Figure 1.12: Example of s simple laser cavity in space (a) and in time (b). The
round-trip matrix start at the flat mirror (before the dispersion in (b).

starts from a bandwidth limited pulse at one end, propagates through the
dispersion (k”L) of the cavity, goes through a Kerr self phase modulation
(Φ̈), then dispersion again to the starting point [Fig. 1.12 (a)]. The ABCD
matrix for this cavity is, in space:(

1− 2
RL 2L(1− 2

RL)

−4L
R 1− 2

RL

)
(1.214)

and in time: (
1 + 2k′′ℓΦ̈ 2k′′ℓ(1 + k′′ℓΦ̈)

2Φ̈ 1 + 2k′′ℓΦ̈

)
(1.215)

Stable operation of the laser requires that the q or p parameter is equal to
itself after a round-trip [24] leading to the solution:

1

p
=

D −A

2B
∓ i

2B

√
4− (A+D)2. (1.216)

For a real solution to exist, the stability criterium is:

(A+D)2 < 4 (1.217)

which for the space cavity implies R ≤ ∞ and R ≥ L; the latter limit giving
the smallest beam waist at the flat mirror (concentric cavity). For the time
cavity, the stability criterium is −2 < Φ̈k”L < 0, which implies opposite
sing for the phase modulation and dispersion. The minimum pulse in the
time cavity is given by:

τ2G = 4B
√
4− (A+D)2 = 16k”L(1 + Φ̈k”L)

√
2Φ̈k”L− (Φ̈k”L)2. (1.218)

The shortest pulse duration is achieved for the “time concentric” cavity with
Φ̈k”L = −2.
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1.7 Numerical modeling of pulse propagation

The generation and application of femtosecond light pulses requires one to
study their propagation through linear and nonlinear optical media. Those
studies have been undertaken not only to satisfy theorists. They are very
necessary to design and optimize experiments, and to save time and money.
Because of the complexity of interactions taking place numerical methods
have to be used in many cases. From the mathematical point of view it
is desirable to develop a numerical model optimized with respect to com-
puter time and accuracy for each experimental situation to be described.
In this section we will present a procedure that allows one to study pulse
propagation through a variety of materials. This model is optimized neither
with respect to computer time nor with respect to accuracy. However, it
is very universal and is directly associated with the physics of the problem.
Moreover, it has been successfully applied to various situations. Among
them are, for instance, pulse propagation through nonlinear optical fibers
and amplifiers and pulse evolution in fs lasers. Without going into the nu-
merical details, we will briefly describe the main features of this concept. In
the course of the book we will then present various examples.

In the frame of approximations discussed in the section of beam propa-
gation the electric field can be represented as

E(x, y, z, t) =
1

2
ũ(x, y, z)Ẽ(z, t)ei(ωℓt−kℓz) + c.c. (1.219)

=
1

2
U(x, y, z, t)ei(ωℓt−kℓz) + c.c.

where Ẽ is the complex pulse envelope and ũ describes the transverse beam
profile. The medium through which the pulse travels is not to be specified.
In general, it will respond linearly as well as nonlinearly to the electric field.
For example, the pulse changes shape and chirp due to dispersion while it
is amplified or absorbed nonlinearly because of a time dependent gain coef-
ficient. Therefore, the wave equation derived before, for the case of linear
dispersive media, must be supplemented by certain nonlinear interaction
terms. In following chapters we will discuss those nonlinear processes in
detail. For the moment we will introduce them only formally. Let us first
assume that a change in the beam profile can be neglected. Then the behav-
ior of the field is fully described by its complex envelope Ẽ . The propagation
equation in local coordinates reads

∂

∂z
Ẽ =

1

2
ik′′ℓ

∂2

∂t2
Ẽ − D + B1 + B2 + · · ·+ Bn (1.220)
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where the terms Bi stand for contributions from nonlinear light matter in-
teraction. A direct numerical evaluation of Eq. (1.220) often requires solving
a set of nonlinear, partial differential equations. Note that for the determi-
nation of the Bi, additional (differential) equations describing the medium
must be considered. As with partial differential equations in general, the
numerical procedures are rather complicated. Moreover, they may differ
largely from each other even when the problems seem to be similar from the
physical point of view.

A more intuitive approach can be chosen, as outlined next. The sample of
length L is divided into M slices of length ∆z = L/M ; each slice sufficiently
thin as to induce only a small change in the pulse parameters. Assuming that
the complex envelope at propagation distance z = m∆z (m = 1, 2, · · · ,M)
is given by Ẽ(t, z), the envelope at the output of the next slice (z+∆z) can
be obtained from Eq (1.220) as

Ẽ(t, z +∆z) = Ẽ(t, z) +
[
1

2
ik′′ℓ

∂2

∂t2
Ẽ(t, z)−D + B1(t, z, Ẽ)

+ B2(t, z, Ẽ) + · · ·+ Bn(t, z, Ẽ)
]
∆z (1.221)

which we can be written formally as

Ẽ(t, z +∆z) = Ẽ(t, z) + δk′′ Ẽ(t, z) + δDẼ(t, z) + δ1Ẽ(t, z)
+δ2Ẽ(t, z)+, · · · ,+δnẼ(t, z). (1.222)

The quantities δiẼ(z, t) represent the (small) envelope changes due to the
various linear and nonlinear processes. For their calculation the envelope
at z only is required. The action of the individual processes is treated as if
they occur successively and independently in each slice. The pulse envelope
at the end of each slice is then the sum of the input pulse plus the different
contributions. The resulting envelope Ẽ(t, z + ∆z) serves as input for the
next slice, and so on until z +∆z = L.

The methods which can be applied to determine δiẼ depend on the
specific kind of interaction. For example, it may be necessary to solve a set
of differential equations, but only with respect to the time coordinate. As
mentioned before, the discussion of nonlinear optical processes will be the
subject of following chapters.

This type of numerical calculation is critically dependent on the num-
ber of slices. It is the strongest interaction affecting the propagating pulse
which determines the length of the slices. As a rule of thumb, the envelope
distortion in each slice must not exceed a few percent, and doubling and
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halving of M must not change the results more than the required accuracy
allows.

Many propagation problems have been investigated already with ps and
ns light pulses, theoretically as well as experimentally. The severe problem
when dealing with fs light pulses is dispersion, which enters Eq (1.222)
through δ′′k Ẽ (GVD) and δDẼ (higher order dispersion). From the discussion
in the preceding sections we can easily derive expressions for these quantities.
If only GVD needs to be considered, we can start from Eq (1.110)

Ẽ(Ω, z +∆z) = Ẽ(Ω, z)e−ik′′ℓ Ω
2∆z/2 (1.223)

which, for sufficiently small ∆z, can be approximated as

Ẽ(Ω, z +∆z) ≈ Ẽ(Ω, z)− 1

2
ik′′ℓΩ

2∆zẼ(Ω, z). (1.224)

Thus we have for δk′′ Ẽ(t, z)

δk′′ Ẽ(t, z) ≈ F−1
{
−1

2
ik′′ℓΩ

2∆zẼ(Ω, z)
}
. (1.225)

If additional dispersion terms matter, we can utilize Eq. (1.174) and obtain

δDẼ(t, z) = F−1

{
−i

∞∑
n=3

1

n!
k
(n)
ℓ Ωn∆zẼ(Ω, z)

}
. (1.226)

Next, let us consider a change in the beam profile. This must be taken
into account if the propagation length through the material is long as com-
pared with the confocal length. In addition, beam propagation effects can
play a role if the setup to be modelled consists of various individual elements
separated from each other by air or vacuum. This is the situation that is,
for instance, encountered in lasers. It is the evolution of Ũ = ũẼ rather than
only that of Ẽ that has to be modelled now. The change of Ũ from z to
z +∆z is

Ũ(x, y, z +∆z, t) = Ũ(x, y, z, t) + δŨ (1.227)

where
δŨ = ũδẼ + Ẽδũ. (1.228)

The change of the pulse envelope δẼ can be derived as described above. For
the determination of δũ we can evaluate the diffraction integral (1.189) over
a propagation length or equivalently proceed to the Fourier space and use
Eq. (1.181). For Gaussian beams we may simply use Eq. (1.187).
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1.8 Space–time effects

For very short pulses a coupling of spatial and temporal effects becomes
important even for propagation in a nondispersive medium. The physical
reason is that self–diffraction of a beam of finite transverse size (e.g., Gaus-
sian beam) is wavelength dependent. A separation of time and frequency
effects according to Eqs. (1.178) and (1.179) is clearly not feasible if such
processes matter. One can construct a solution by solving the diffraction
integral (1.189) for each spectral component. The superposition of these
solutions and an inverse Fourier–transform then yields the temporal field

distribution. Starting with a field Ẽ(x′, y′,Ω) = F
{
Ẽ(x′, y′, t)

}
in a plane

Σ′(x′, y′) at z = 0 we find for the field in a plane Σ(x, y) at z = L:

Ẽ(x, y, L, t) = F−1

{
iΩe−iΩL/c

2πcL

∫ ∫
dx′dy′ Ẽ(x′, y′,Ω)

× exp

[
−i

Ω

2Lc

(
(x− x′)2 + (y − y′)2

)]}
(1.229)

where we have assumed a nondispersive medium with refractive index n = 1.
Solutions can be found by solving numerically Eq. (1.229) starting with an
arbitrary pulse and beam profile at a plane z = 0. Properties of these
solutions were discussed by Christov [25]. They revealed that the pulse
becomes phase modulated in space and time with a pulse duration that
changes across the beam profile. Due to the stronger diffraction of long–
wavelength components the spectrum on axis shifts to shorter wavelengths.

For a Gaussian beam and pulse profile at z = 0, i.e., Ẽ(x′, y′, 0, t) ∝
exp(−r′2/w2

0) exp(−t2/τ2G0) exp(iωℓt) with r′2 = x′2 + y′2, the time–space
distribution of the field at z = L is of the form [25]:

Ẽ(r, z = L, t) ∝ exp

(
− η2

τ2G

)
exp

[(
−w0ωℓτG0

2LcτG
r

)2
]
exp

(
i
ωℓτ

2
G0

τ2G
η

)
(1.230)

where
τ2G = τ2G0 + [w0r/(Lc)]

2 (1.231)

and η =
[
t− L/c− r2/(2Lc)

]
. This result shows a complex mixing of spatial

and temporal pulse and beam characteristics. The first term in Eq. (1.230)
indicates a pulse duration that increases with increasing distance r from
the optical axis. For an order of magnitude estimation let us determine the
input pulse duration τG0 at which the pulse duration has increased to 2τG0

at a radial coordinate r = w after the beam has propagated over a certain
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distance L >> ρ0. From Eq. (1.231) this is equivalent to τG0 = w0r/(Lc).
For r = w with w ≈ Lλ/(πw), cf. Eq. (1.184), the pulse duration becomes
τG0 ≈ λ/(πc). Obviously, these effects become only important if the pulses
approach the single-cycle regime.

1.9 Problems

1. Verify the cB factors of the pulse–duration–bandwidth–product of a
Gaussian and sech-pulse as given in Table 1.1.

2. Calculate the pulse duration τ̄p defined as the second moment in
Eq. (1.49) for a Gaussian pulse and compare with τp (FWHM).

3. Consider a medium consisting of particles that can be described by
harmonic oscillators so that the linear susceptibility in the vicinity of
a resonance is given by Eq. (1.155). Investigate the behavior of the
phase and group velocity in the absorption region. You will find a
region where vg > vp. Is the theory of relativity violated here?

4. Assume a Gaussian pulse which is linearly chirped in a phase modula-
tor that leaves its envelope unchanged. The chirped pulse is then sent
through a spectral amplitude–only filter of spectral width (FWHM)
∆ωF . Calculate the duration of the filtered pulse and determine an
optimum spectral width of the filter for which the shortest pulses are
obtained. (Hint: For simplification you may assume an amplitude only

filter of Gaussian profile, i.e., H̃(ω − ω) = exp

[
− ln 2

(
ω−ω
∆ωF

)2]
. )

5. Derive the general expression for dn/dΩn in terms of derivatives with
respect to λ.

6. Assume that both the temporal and spectral envelope functions E(t)
and E(Ω), respectively, are peaked at zero. Let us define a pulse dura-
tion τ∗p and spectral width ∆ω∗

p using the electric field and its Fourier
transform by

τ∗p =
1

|E(t = 0)|

∫ ∞

−∞
|E(t)|dt

and

∆ω∗
p =

1

|E(Ω = 0)|

∫ ∞

−∞
|E(Ω)|dΩ.
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Show that for this particular definition of pulse duration and spectral
width the uncertainty relation reads

τ∗p∆ω∗
p ≥ 2π.

7. Derive Eqs. (1.61) and (1.62). Hint: Make use of Parsival’s theorem

2π

∫ ∞

−∞
|f(t)|2dt =

∫ ∞

−∞
|f(Ω)|2dΩ

and the fact that F {tf(t)} = −i d
dΩF {f(t)}.

8. A polarization — to second order in the electric field — is defined as
P (2)(t) ∝ χ(2)E2(t). We have seen that the preferred representation for
the field is the complex quantity E+(t) = 1

2E(t) exp[i(ωt+φ(t)]. Give a
convenient description of the nonlinear polarization in terms of E+(t),
E(t) and φ(t). Consider in particular second harmonic generation and
optical rectification. Explain the physics associated with the various
terms of P (2) (or P+(2), if you can define one).

9. Starting from the one–dimensional wave equation (1.70), show that
the slowly–varying envelope approximation corresponds essentially to
neglecting self-induced reflection.
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