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Chapter 1

Fundamentals

1.1 Characteristics of femtosecond light pulses

Femtosecond light pulses are electromagnetic wave packets and as such are fully
described by the time and space dependent electric field. In the frame of a semi-
classical treatment the propagation of such fields and the interaction with matter are
governed by Maxwell’s equations with the material response given by a macrosco-
pic polarization. In this first chapter we will summarize the essential notations and
definitions used throughout the book. The pulse is characterized by measurable
quantities which can be directly related to the electric field. A complex represen-
tation of the field amplitude is particularly convenient in dealing with propagation
problems of electromagnetic pulses. The next section expands on the choice of
field representation.

1.1.1 Representation of the electric field in the time and the frequency
domain

Let us consider first the temporal dependence of the electric field neglecting its
spatial and polarization dependence, i.e., E(x,y,z,1) = E(¢). A complete description
can be given either in the time or the frequency domain. Even though the measured
quantities are real, it is generally more convenient to use complex representation.
For this reason, starting with the real E(¢), one defines the complex spectrum of the
field strength £(Q), through the complex Fourier transform (%):

EQ) =F(EQ)} = f N E()e” ™ dt = |E(Q)|® 1.1)

-0

In the definition (1.1), |E(Q)| denotes the spectral amplitude and ®(Q) is the spectral
phase. Here and in what follows, complex quantities related to the field are typi-

3



4 CHAPTER 1. FUNDAMENTALS

cally written with a tilde.
Since E(?) is a real function, E(Q) = E*(-Q) holds. Given E(Q), the time
dependent electric field is obtained through the inverse Fourier transform (1)

Et)y=F"! {E(Q)} = % f E©Q)e™dQ (1.2)
The physical meaning of this Fourier transform is that a pulse can be created by
adding a number of waves of different frequency. To illustrate this point let us add
N =2M + 1 monochromatic fields of equal amplitude &y. Their frequencies €2, are
equally spaced about a center frequency w, and they have the same phase at t = 0,
where they add constructively. The total field

M
E(t) = Egcos(wet) + Ey Z {cos[(w¢ + nAQ)t] + cos[(wr — nAQ)t]} (1.3)

n=1

after some algebra with trigonometric functions and geometric series, can be writ-
ten as

sin (%AQI)

B0 =% sin(%AQt)

cos(wgt). (1.4)

This wave form is sketched in Fig. 1.1 for different numbers N of participating
monochromatic waves. We recognize wave packets (pulses) that occur with a pe-
riod Ty independent of N. Their maxima can be expected when all waves add
constructively. Mathematically, this happens when the denominator in Eq. (1.4)
is zero, thus Tg = 2n/AQ. The pulses have finite length 7 because the different
spectral components eventually run out of phase after they all add in phase. For
the packet centered at ¢ = 0 this happens when the argument of the sin function in
the numerator NAQt/2 = nr. Thus, 7 = 2n/(NAQ). While details of these periodic
wave packets will be explained later we want to point out a few things here already.

e To form a single pulse, Tk — co, we need a continuous spectrum, which
means for the frequency spacing AQ — 0.

o The length of the pulse is inversely proportional to NAQ, that is, the overall
spectral width covered by the participating waves.

e The rapid field oscillations are determined by the center frequency wy, see
cos(wet) term in Eq. (1.4). They occur independently of the term in brackets,
which was responsible for the envelope of the pulse train and the repetition
period. Ramifications of this will become evident when we introduce the
carrier to envelope phase (CEP).
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1/4f

ﬂk < P
1 1

MWMNV\WWWMM/MMMMWWWWWMM
N=21

electric field E(t)/N

0 timet

Figure 1.1: Representation of a pulse as a sum of N cosine waves equally spaced in fre-
quency and of equal amplitude as described by Eqgs. (1.3) and (1.4) for AQ = 0.01Q. The
graphs for different NV are shifted vertically for better visibility. Note the field amplitude is
divided by N and Af = AQ/2nr.

For practical reasons it may not be convenient to use functions, which are non-
zero for negative frequencies, as needed in the evaluation of Eq. (1.2). Frequently
a complex representation of the electric field, also in the time domain, is desired.
Both aspects can be satisfied by introducing a complex electric field as

ﬁm:%lﬁ&mﬂ%z (1.5)

and a corresponding spectral field strength that contains only positive frequencies:

EQ) for Q>0
0

for Q<0 (1.6)

E*(Q) = |EQ)e™® = {

E*(1) and E*(Q) are related to each other through the complex Fourier transform
defined in Eq. (1.1) and Eq. (1.2), i.e.

F@:%jWFQW%m (1.7)

(o)
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and -
ET(Q) = f E* (e ™ dy. (1.8)

The real physical electric field E(¢f) and its complex Fourier transform can be ex-
pressed in terms of the quantities derived in Eq. (1.7) and Eq. (1.8) and the cor-
responding quantities £7(r), E~(Q) for the negative frequencies. These quantities
relate to the real electric field:

E=E*0+E (@) (1.9)
and its complex Fourier transform:

EQ)=E*(Q)+E(Q) (1.10)

Alternate Approach: the Hilbert transform

In communications, one looks for ways to separate channels. This can be made
by selecting different frequency bands with filters. Another approach is to separate
signals by an abrupt phase shift. Different channels correspond thus to different
phases. An abrupt phase shift of 7 is used in electro-optics dithering of laser gy-
ros [1]. The Hilbert transform correspond to applying a phase shift of 7/2 to the
components of a signal. The Hilbert transform of a function g(¢) is defined as:

o LT ()
g(t)_; —00 (t_T)

dr. (1.11)

The original function can be recovered through the inverse Hilbert transform:

_ 1 e
g = <) a0

dr. (1.12)

In both cases the operation involves a convolution of g(r) with 1/(n7).
The Fourier transform of a convolution is the
product of the Fourier transforms. The Fou-
rier transform of 1/(x7) is known as the “sig-
num function” depicted in Fig. 1.2. This sign +i
function corresponds indeed to a phase shift
of /2 between positive and negative frequen-
cies. The Hilbert transform g(¢) is also defi-
ned as the analytical continuation of the of the
function g(#). Given a real function g(¢), one E——

sign(QY)

Figure 1.2: signum  function
sign(Q).
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defines the complex “analytic signal” g, (¢) of
8(1) by:
g+(1) = g(1) +ig(0), (1.13)

of which the Fourier transform is:
G.(Q) =G+ sgn(Q)E(Q). (1.14)

The transformation from G(Q) to the complex function G, (L) corresponds to eli-
minating the negative part of the Fourier transform by adding its opposite.

This is exactly how E(f) was defined in Section 1.1.1 above. The correspon-
dence between the Hilbert transform notations used in system communications [2]
and the notations of Section 1.1.1 is:

G.(Omega) = 2E*(Q) as defined in Eq. (1.10)
g+(0) = 2E*(¢) as defined in Eq. (1.10)
g(t) = E(@)

This approach to introduce the complex field through Hilbert transformation is
much more convoluted than the direct Fourier transform approach of the previous
section. It is introduced here because it has been re-introduced recently as a new
approach to nonlinear optics by Conforti ef al. [3] and their followers [4,5]. The
context is that of defining a nonlinear polarization:

P() = P E(1)Ei(). (1.15)
In complex notations, one often writes:
P(t) = xPE (1) Ei(t). (1.16)

Instead, Conforti et al. [3] define the complex P(1) by taking the Fourier transform
of P(¢) defined by Eq (1.15), eliminating the negative part, and taking the inverse
Fourier transform. No need to evoke the Hilbert transform to perform that opera-
tion. The two approaches are equivalent when the spectra of the fields E and E;
do not overlap.

Amplitude and phase
It can be shown that E*(¢) can also be calculated through analytic continuation of
E(®)

E*(t) = E()+iE'(1) (1.17)

where E’(f) and E(¢) are Hilbert transforms of each other. In this sense £*(7) can
be considered as the complex analytical correspondent of the real function E(?).
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The complex electric field £*(¢) is usually represented by a product of an am-
plitude function and a phase term:

E*(n) = %S(t)eir @ (1.18)

In most practical cases of interest here the spectral amplitude will be centered
around a mean frequency w, and will have appreciable values only in a frequency
interval Aw small compared to w,. In the time domain this suggests the conve-
nience of introducing a carrier frequency w, and of writing E*(¢) as:

- 1 L . 1 -~ .
E*(r) = 58(t)e""ee"’”(’)e’w” = 58(t)e"”” (1.19)

where ¢(7) is the time dependent phase, E() is called the complex field envelope
and &(¢) the real field envelope, respectively.

The constant phase term e is most often of no relevance, and can be neg-
lected. There are however particular circumstances pertaining to very short pulses
where the outcome of the pulse interaction with matter depends on ¢,, often re-
ferred to as “carrier to envelope phase” (CEP). The measurement and control of
©. can therefore be quite important. Figure 1.3(a) shows the electric field of two
pulses with identical &(r) but different CEP ¢, = 0 and ¢, = 7r/2. It is obvious that
the difference can be important in the case of nonlinear processes, such as for in-
stance third harmonic generation creating a field proportional to the third power of
the original field as shown in Fig.1.3(b).

The electric field can formally be represented in a form similar to Eq. (1.19)
but the mathematical entity does not always correspond to a physically possible
propagating ultrashort pulses. Since the laser pulse represents a propagating elec-
tromagnetic wave packet the dc component of its spectrum vanishes. Hence the
time integral over the electric field is zero:

f E(f)dt = f E()e 04t = F(E(1)}qg = 0. (1.20)
It can easily be shown that Eq. (1.20) is satisfied for a pulse of the form E(¢) =
exp[—21n2(t/‘rp)2] cos(wet + ¢p) with a CEP of 7/2 but not for ¢, = 0. Indeed the
spectra shown in Fig. 1.3(c) support this result. The conclusion is that care must
be taken when using the convenience of defining a pulse envelope for few-cycle
pulses. We will discuss the carrier to envelope phase in more detail in Chapters 6
and 14.

While the description of the field given by Eqgs. (1.17) through (1.19) is quite
general, the usefulness of the concept of an envelope and carrier frequency as defi-
ned in Eq. (1.19) is limited to the cases where the bandwidth is only a small fraction
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Figure 1.3: (a) Electric field of two extremely short wave forms, E(f) =
exp|—2In2(1/7,)?| cos(wet + go) with ¢, = 0 and ¢, = 7/2. The full width of half maxi-
mum of the intensity envelope, 7,, was chosen as 7, = /w¢. (b) The electric field cubed
of both wave forms. (c) Spectra |[E~(Q)|? and |E*(Q)|*. Note the two fields have different
spectral components at Q = 0 and only the one with ¢ = /2 describes a propagating pulse
(zero dc component).

of the carrier frequency:

A
29«1 (121)

we
For inequality (1.21) to be satisfied, the temporal variation of &(¢) and ¢(f) within
an optical cycle T = 2n/w¢ (T = 2 fs for visible radiation) has to be small. The
corresponding requirement for the complex envelope &(¥) is

a0

< we|E@)| (1.22)

Keeping in mind that today the shortest light pulses contain only a few optical
cycles, one has to carefully check whether a slowly varying envelope and phase can
describe the pulse behavior satisfactorily. If they do, the theoretical description of
pulse propagation and interaction with matter can be greatly simplified by applying
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the slowly varying envelope approximation (SVEA), as will be evident later in this
chapter.

Given the spectral description of a signal, E*(Q), the complex envelope &(7) is
simply the inverse transform of the translated spectral field:

- . 1 - .
&) = E)e'*V = > f 2ET(Q+ wp)e™¥dQ; (1.23)

(%)

where the modulus &(¢) in Eq. (1.23) represents the real envelope. The optimum

E(t) = &E(t) cos|wet + ¢(t)]

ks
\} t

(a) (b) !

S
~~
o~
—
N
>

\4

£(2)

1 . 1 -
1E-(9)] = SIE(© +y [EHQ)| = S |8 - w)|
2 2

......

A\ 4

(©) —wy 0 wy Q
_o (79) SpectrT phase A\@b(ﬂ)

::. | “'. ' | >

@ Few [ @\ Q

Figure 1.4: (a) Electric field, (b) time dependent carrier frequency, (c) spectral amplitude
and (d) spectral phase of a linearly upchirped pulse.

“translation” in the spectral domain wy is the one that gives the envelope &(f) with
the least amount of modulation. Spectral translation of Fourier transforms is a
standard technique to reconstruct the envelope of interference patterns, and is used
in Chapter 10 on diagnostic techniques. The Fourier transform of the complex
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envelope &(1) is the spectral envelope function:

&Q) = f Ene ™ dr=2 f E*(0)e w0t gy, (1.24)

o0 (o8]

The choice of w, is often such that the spectral amplitude &E(Q) is centered about
the origin Q = 0.

Let us now discuss more carefully the physical meaning of the phase function
¢(?). The choice of carrier frequency in Eq. (1.19) should be such as to minimize
the variation of phase ¢(#). The first derivative of the phase factor I'(¢) in Eq. (1.18)
establishes a time dependent carrier frequency (instantaneous frequency):

d
W) = wr+ — (). (1.25)

While Eq. (1.25) can be seen as a straightforward definition of an instantaneous
frequency based on the temporal variation of the phase factor I'(¢), we will see in
Section 1.1.5 that it can be rigourously derived from the Wigner distribution. For
dy/dt = b = const., a non-zero value of b just means a correction of the carrier
frequency which is now wj, = w¢ +b. For dp/dt = f(1), the carrier frequency varies
with time and the corresponding pulse is said to be frequency modulated or chirped.
For d?p/dt* < (>)0, the carrier frequency decreases (increases) along the pulse,
which then is called down(up)chirped.

From Eq.(1.18) it is obvious that the decomposition of I'(¢) into w and ¢(¢) is
not unique. The most useful decomposition is one that ensures the smallest dy/dt
during the intense portion of the pulse. A common practice is to identify w, with
the carrier frequency at the pulse peak. A better definition — which is consistent
in the time and frequency domains — is to use the intensity weighted average
frequency:

[ mPomd: [T IEHQPQQ
<Cl)>: © 5 = 0 | ~
[CIemPRdr [T IEH(Q)PdQ

(1.26)

The various notations are illustrated in Fig. 1.4 where a linearly up-chirped
pulse is taken as an example. The temporal dependence of the real electric field is
sketched in the top part of Fig 1.4. A complex representation in the time domain
is illustrated with the amplitude and instantaneous frequency of the field. The
positive and negative frequency components of the Fourier transform are shown in
amplitude and phase in the bottom part of the figure.
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1.1.2 Power, energy, and related quantities

Let us imagine the practical situation in which the pulse propagates as a beam
with cross section A, and with E(¢) as the relevant component of the electric field.
The (instantaneous) pulse power (in Watt) in a dispersionless material of refractive
index n can be derived from the Poynting theorem of electrodynamics [6] and is
given by
1 t+T1/2
P(1) = €ocn f ds — f E(t)ar (1.27)
A T Jirp
where c is the velocity of light in vacuum, ¢ is the dielectric permittivity and fA as
stands for integration over the beam cross section. The power can be measured by
a detector (photodiode, photomultiplier etc.) which integrates over the beam cross
section. The temporal response of this device must be short as compared to the
speed of variations of the field envelope to be measured. The temporal averaging is
performed over one optical period T = 2r/w,. Note that the instantaneous power as
introduced in Eq. (1.27) is then just a convenient theoretical quantity. In a practical
measurement 7 has to be replaced by the actual response time 7 of the detector.
Therefore, even with the fastest detectors available today (1z ~ 10713 — 107 125),
details of the envelope of fs light pulses can not be resolved directly.
A temporal integration of the power yields the energy W (in Joules):

W= f " P")dt (1.28)

where the upper and lower integration limits essentially mean “before” and “after”
the pulse under investigation.
The corresponding quantity per unit area is the intensity (W/cm?), also called

fluence:
1 t+T1/2
€Cn— f E>(¢)dr
T Ji-rp2

1)

1 L 1 ~
EeocnSZ(t) =2eycnET(HE™(f) = EeocnS(t)S*(t) (1.29)
and the energy density per unit area (J/cm?):

W= foo I(t)Hdr (1.30)

Sometimes it is convenient to use quantities which are related to photon numbers,
such as the photon flux # (photons/s) or the photon flux density F (photons/s/cm?):
P 1(n)

T(r):h—w and  F() =3 = (1.31)



1.1. CHARACTERISTICS OF FEMTOSECOND LIGHT PULSES 13

where 7iw, is the energy of one photon at the carrier frequency.

The spectral properties of the light are typically obtained by measuring the
intensity of the field, without any time resolution, at the output of a spectrometer.
The quantity, called spectral intensity, that is measured is:

S(Q) = n(QEH(Q) (1.32)

where 7 is a scaling factor which accounts for losses, geometrical influences, and
the finite resolution of the spectrometer. Assuming an ideal spectrometer, |77|> can
be determined from the requirement of energy conservation:

Inl? f | E*(Q) |* dQ = 2€ycn f E*()E™(n)dt (1.33)
and Parseval’s theorem [7]:
00 y 1 00 B
f E*(1)Pdt = — f | EX(Q) | dQ (1.34)
—0o0 2n 0

from which follows |77|2 = gocn/n. The complete expression for the spectral inten-
sity [from Eq. (1.32)] is thus:

S@ =" lE@+wf. (1.35)

Figure 1.5 gives examples of typical pulse shapes and the corresponding spectra.

The complex quantity E* will be used most often throughout the book to
describe the electric field. Therefore, to simplify notations, we will omit the su-
perscript “+”whenever this will not cause confusion.

1.1.3 Pulse duration and spectral width

Unless specified otherwise, we define the pulse duration 7, as the full width at
half maximum (FWHM) of the intensity profile, IE()?, and the spectral width
Aw, as the FWHM of the spectral intensity IE(Q)]>. Making that statement is an
obvious admission that other definitions exist. Precisely because of the difficulty of
asserting the exact pulse shape, standard waveforms have been selected. The most
commonly cited are the Gaussian, for which the temporal dependence of the field
is:

&(t) = Egexp{—(t/16)*} (1.36)

and the secant hyperbolic:

&) = Eysech(t/Ty). (1.37)
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Figure 1.5: Temporal profiles and the corresponding spectra for different pulse shapes.
The pulses have the same duration (FWHM 7,) and the same peak intensity at = 0. The
spectra are normalized.

Gaussian pulse & = exp[—l.385(t/‘r,,)2]
sech - pulse &) = sech[1.763(t/7p)]
Lorentzian pulse E@ = [1+1.656(t/7,)*1"
asym. sechpulse &) = 3.08[exp(1.041/7,+0.28)+exp(~3.13t/7, - 0.84)]™"

The parameters 76 =7,/ V2In2 and 7, = 7,/1.76 are generally more convenient to
use in theoretical calculations involving pulses with these assumed shapes than the
FWHM of the intensity, 7.

Since the temporal and spectral characteristics of the field are related to each
other through Fourier transforms, the bandwidth Aw, and pulse duration 7, can-
not vary independently of each other. There is a minimum duration-bandwidth
product:

Aw, T, =21Av,T, > 210CR. (1.38)

cp 1s a numerical constant on the order of 1, depending on the actual pulse shape.
Some examples are shown in Table 1.1. The equality holds for pulses without
frequency modulation (unchirped) which are called “bandwidth limited” or “Fou-
rier limited”. Such pulses exhibit the shortest possible duration at a given spectral
width and pulse shape. We refer the reader to Section 1.1.5, for a more general
discussion of the uncertainty relation between pulse and spectral width based on
mean-square deviations.

The shorter the pulse duration, the more difficult it becomes to assert its de-
tailed characteristics and physical meaning. In the femtosecond domain, even the
simple concept of pulse duration seems to fade away in a cloud of mushrooming
definitions. Part of the problem is that it is difficult to determine the exact pulse
shape. For single pulses, the typical representative function that is readily accessi-
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Shape Intensity Tp Spectral Awp cp | {TpAQy)
profile I(t) FWHM | profile S (2) | FWHM MSQ
2 (Qrg)?
Gauss e~ 2/76) 1177t | e 2 |2.355/71g|0.441 0.5
sech sech?(t/t5) | 17637, | sech?Z2% | 1.122/7,|0.315| 0.525

Lorentz | [1+(t/7)*17% |1.2871;| e 29 10.693/7,|0.142 0.7

asym. [e’/Ta+e—3t/Ta]_2 1.0437, | sech™e | 1.677/7,|0.278
sech

square 1 for |t/7,| <1 T sincz(QT,) 2.78/7, [0.443 3.27
, 0 elsewhere

Table 1.1: Examples of standard pulse profiles. The spectral values given are for
bandwidth-limited (chirp-free) pulses. Note that the Gaussian is the shape with the mi-
nimum product of mean square deviation (MSQ) of the intensity and spectral intensity, see
Section 1.1.5.

ble to the experimentalist is the intensity autocorrelation:

Ain(T) = foo IOI(t—7)dt (1.39)

(o)

The Fourier transform of the correlation (1.39) is the real function:
Aim(Q) = T(QT(Q) (1.40)

where the notation 7(Q) is the Fourier transform of the function /(¢), which should
not be confused with the spectral intensity S (€2). The fact that the autocorrelation
function Aj,(7) is symmetric, hence its Fourier transform is real [7], implies that
little information about the pulse shape can be extracted from such a measurement.
Furthermore, the intensity autocorrelation (1.39) contains no information about the
pulse phase or coherence. This point is discussed in detail in Chapter 10.

1.1.4 Gaussian pulses

Having introduced essential pulse characteristics, it seems convenient to discuss an
example to which we can refer to in later chapters. We choose a Gaussian pulse
with linear chirp. This choice is one of analytical convenience: the Gaussian shape
is not the most commonly encountered temporal shape. The electric field is given
by

&(t) = Ege~IHaU/T6) (1.41)
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with the pulse duration

7, = V2In2 1. (1.42)

Note that with the definition (1.41) the chirp parameter a is positive for a downchirp
(de/dt = —2at/r%). The Fourier transform of (1.41) yields

B & QZ 2
& = &VT6 o Lip - BT (1.43)
V1 +a2 4(1+a?)
with the spectral phase given by:
HO) = — L arctan(@ + —2T6_? (1.44)
= ——arctan(a) + ——- .
2 4(1+a?)
It can be seen from Eq. (1.43) that the spectral intensity is the Gaussian:
P&l Q’rg?
S(wp+Q) = L2206 ) SYTGT (1.45)
Nywa 2(1+a?)
with a FWHM given by:

1
Aw, =27Av, = — /81n2(1 +a2) (1.46)
TG

For the pulse duration-bandwidth product we find

21n2
Avyty = =1+ a2 (1.47)

T

Obviously, the occurrence of chirp (a # 0) results in additional spectral compo-
nents which enlarge the spectral width and lead to a duration bandwidth product
exceeding the Fourier limit (2In2/7 ~ 0.44) by a factor V1 + a2, consistent with
Eq. (1.38). We also want to point out that the spectral phase given by Eq. (1.44)
changes quadratically with frequency if the input pulse is linearly chirped. While
this is exactly true for Gaussian pulses as can be seen from Eq. (1.44), it holds
approximately for other pulse shapes. In the next section, we will develop a con-
cept that allows one to discuss the pulse duration-bandwidth product from a more
general point of view and independent of the actual pulse and spectral profile.

1.1.5 Wigner distribution, second order moments, uncertainty relati-
ons
Wigner distribution

The Fourier transform as defined in Section 1.1.1 is a widely used tool in beam and
pulse propagation. In beam propagation, it leads directly to the far field pattern of
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a propagating beam (Fraunhofer approximation) of arbitrary transverse profile. Si-
milarly, the Fourier transform leads directly to the pulse temporal profile, following
propagation through a dispersive medium, as we will see at the end of this chap-
ter. The Fourier transform gives a weighted average of the spectral components
contained in a signal. Unfortunately, the exact spatial or temporal location of these
spectral components is hidden in the phase of the spectral field, which is most often
not readily available. It is not straightforward to look at the electric field in time
and make a statement about the spectral components (and vice versa) without ac-
tually taking a Fourier transform. The Wigner function tries to solve this problem
by creating a mathematical entity which describes the time and spectral compo-
nents at the same time, fullfilling the need for new two-dimensional representation
of the waves in either the plane of space—wave vector, or time—angular frequency.
Such a function was introduced by Wigner [8] and applied to quantum mechanics.
The same distribution was applied to the area of signal processing by Ville [9].
Properties and applications of the Wigner distribution in Quantum Mechanics and
Optics are reviewed in two recent books by Schleich [10] and Cohen [11]. A clear
analysis of the close relationship between Quantum Mechanics and Optics can be
found in ref. [12]. In the time—angular-frequency domain, the Wigner distribution
of a function E(f) is defined byl:

Wep(t,Q) = f E(HE)E*(t—f)e-l’mds
. 2 2
1 o S\ ~ s\
= — | Ela+i\g(a=2)e 14
) ( +2) ( 2)6 ds (1.48)

One can see that the definition of the Wigner function is a local (i.e. at a given
time) representation of the spectrum of the signal, since time integration yields the
spectral amplitude:

f Wi = [EQ. (1.49)

It is also a local (i.e. at a given spectral component) representation of the signal,
since frequency integration yields the temporal intensity:

f We(t,Q)dQ = 27r|E(t)|2 (1.50)
In the notation “Wg, the subscript E refers to the use of the instantaneous complex

electric field E in the definition of the Wigner function, rather than the electric field
envelope & = Eexpliwet + ip(t)] defined at the beginning of this chapter. There is a

It and Q are conjugated variables as in Fourier transforms. The same definitions can be made in
the space—wavevector domain, where the variables are then x and k.
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simple relation between the Wigner distribution ‘W, of the instantaneous field E,
and the Wigner distribution “Wg of the real envelope amplitude &:

f P (t L3 ) Hwct+5/ 204 p(+5/2)]
2

—00

We(t,Q)

x &* (l _ %)e—i[wl(f—S/Z)ﬂp(l—s/Z)]e—iQsds

j—\oo 8(t + %)8* (z - %)e—i[g—(wﬁtb(l))]sds

Welt, [Q - (we+ @)} (1.51)

We will drop the subscript “E” and “&” for the Wigner function when the dis-
tinction is not essential.

The intensity and spectral intensities are directly proportional to frequency
and time integrations of the Wigner function. In accordance with Eqs. (1.29) and
Eq. (1.35):

1 f‘x’
We(t,Q)dQ = 1(¢) (1.52)
2\po/€ J-e °
! f We(t,Q)dt =S (Q). (1.53)
2o/ € J-oo

Figure 1.6 shows the Wigner distribution of an unchirped Gaussian pulse ((a),
left) versus a Gaussian pulse with a linear chirp (quadratic phase modulation) ((b),
right). The introduction of a quadratic phase modulation leads to a tilt (rotation)
and flattening of the distribution. This distortion of the Wigner function results
directly from the relation (1.51) applied to a Gaussian pulse. We have defined in
Eq. (1.41) the phase of the linearly chirped pulse as ¢(¢) = —ar? /Té. If Wanchirp
is the Wigner distribution of the unchirped pulse, the linear chirp transforms that
function into:

2at
Wchirp = (Wunchirp(t, Q- 7_2)’ (1.54)

G

hence the tilt observed in Fig. 1.6. Mathematical tools have been developed to
produce a pure rotation of the phase space (¢, {2). We refer the interested reader to
the literature for details on the Wigner distribution and in particular on the fracti-
onal Fourier transform [13, 14]. It has been shown that such a rotation describes
the propagation of a pulse through a medium with a quadratic dispersion (index of
refraction being a quadratic function of frequency) [15].
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Figure 1.6: Wigner distribution for a Gaussian pulse. Left (a), the phase function ¢(r) =
@o is a constant. On the right (b), Wigner distribution for a linearly chirped pulse, i.e. with
a quadratic phase modulation ¢(r) = ar®>. The elliptical curves are lines of equal Wigner
function intensity. The intensity is graded from 0 (black) to the peak (white).

Moments of the electric field

It is mainly history and convenience that led to the adoption of the FWHM of
the pulse intensity as the quantity representative of the pulse duration. Sometimes
pulse duration and spectral width defined by the FWHM values are not suitable
measures. This is, for instance, the case in pulses with substructure or broad wings
causing a considerable part of the energy to lie outside the range given by the
FWHM. In these cases it may be preferable to use averaged values derived from
the appropriate second—order moments. It appears in fact, as will be shown in
examples of propagation, that the second moment of the field distribution is a better
choice.

For the sake of generality, let us designate by f(x) the field as a function of the
variable x (which can be the transverse coordinate, transverse wave vector, time or
frequency). The moment of order n for the quantity x with respect to intensity is
defined as:

L s oPdx

1.55
Lo 1f(o)Pdx (19

(x")

The first order moment, (x), is the “center of mass” of the intensity distribution,
and is most often chosen as reference, in such a way as to have a zero value. For
example, the center of the transverse distribution will be on axis, x = 0, or a Gaus-
sian temporal intensity distribution &gy exp[—(t/rc)z] will be centered at r = 0. A
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good criterium for the width of a distribution is the mean square deviation (MSQ):

(Ax) = V{(x2) —(x)2. (1.56)

The explicit expressions in the time and frequency domains are:

1 1 (™ ak
(t,) = (Ary= [W I i tzl(t)dt—ﬁ( I N tl(t)dt) l (1.57)

. o 213
(Awp) = (AQ) = [%f QZS(Q)dQ—%(f QS(Q)dQ) l (1.58)

(%Y

where S () is the spectral intensity defined in Eq. (1.32). Whenever appropriate
we will assume that the first-order moments are zero, which yields (Ax) = /(x2).
The second moments can also be defined using the Wigner distribution [Eq. (1.48)]:

[ 5 2We(t,.dtdQ [ 2|E(t)dt

[ [ Wet,Q)dtdQ ) [ E(n)Pdt

[ [ 2We(,QddQ 7 QY E(Q)dQ
[ [ We(t,Q)dtdQ ) [T IEQ)PdQ

() (1.59)

Q% = (1.60)

While the above equations do not bring anything new, the Wigner distribution lets
us define another quantity, which describes the coupling between conjugated vari-

ables: N
[ [ (= )@= QY Wi(t, Q)drdD

[ [ Wet,Q)dtdQ

A non-zero (t,Q2) implies that the center of mass of the spectral intensity evolves
with time, as in Fig. 1.6. One can thus define an instantaneous frequency:

[ QWE(t, Q)dQ
5 We@t,d0

By substituting the definition of the Wigner distribution Eq. (1.48) in Eq. (1.62), it
is possible to demonstrate rigourously the relation (1.25). Indeed, substituting the
definition (1.51) in Eq. (1.62) leads to:

[ QWe[t.Q - (w +¢)1dQ
[ We(t, dQ
[219Q +wp + ¢ Welr, Q1

[ We(1,)dQ
we + (D), (1.63)

(1,Q) =

(1.61)

w(t) =

(1.62)

w(t)
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where we used the fact that f Q' We(t,Q)dQ =0.

There is a well known uncertainty principle between the second moment of
conjugated variables. If k is the Fourier-conjugated variable of x, it is shown in
Appendix B that:

> (1.64)

!
4Ty
where we have defined a shape factor “M?”, which has been extensively used to
describe the departure of beam profile from the “ideal Gaussian™ [16]. This relation

can be applied to time and frequency:

@y =Y

M* 1
4 ~ 4
Equality only holds for a Gaussian pulse (beam) shape free of any phase modu-
lation, which implies that the Wigner distribution for a Gaussian shape occupies
the smallest area in the time/frequency plane. It is also important to note that
the uncertainty relations (1.64) and (1.65) only hold for the pulse widths defined
as the mean square deviation. For a Gaussian pulses defined by its electric field

EMN =&y GXP[—(I/TG)Z]Z

(PXQ?) = (1.65)

2
N
) =

Q% = iz (1.66)
G

The product of the two numbers is indeed 1/4, the minimum of the inequality (1.65).
while for the products of the full width at half maximum (FWHM) of the inten-
sity and spectral intensity (generally referred to as the “time-bandwidth product”
cg = TpAv, = 0.441. In fact, the pulse time-bandwidth product product is not mi-
nimum for a Gaussian pulse, as illustrated in Table 1.1, which gives the value of
cp for various pulse shapes without phase modulation. It remains that, for a given
pulse shape, cp is the smallest for pulses without frequency modulation (unchirped)
which are called “bandwidth limited” or “Fourier limited”. Such pulses exhibit the
shortest possible duration at a given spectral width and pulse shape.

If there is a frequency variation across a pulse, its spectrum will contain additi-
onal spectral components. Consequently, the modulated pulse possesses a spectral
width which is larger than the Fourier limit given by column five in Table 1.1.

Relation to Quantum Mechanics

The Heisenberg uncertainty relation is contained directly in Eqs (1.64) and (1.65),
when taking into account particle wave duality. Indeed, a moving particle with
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energy W = p?/2m has an associated wave packet centered at the frequency w =
W/h. This is where the Plank constant enters into the uncertainty relation (1.65).
The wave packet has a frequency distribution of second moment (Q?), related by
inverse Fourier transform to the temporal distribution, with a second moment in
time (r2), leading to the relation:

M*
_ 2 —_

2\ W2y —
<l>(W>—4 1

(1.67)
In space, the wave packet representing the particle has a momentum k = p/h.
Hence, Equation (1.64) applied to the wave representation of a particle is the Hei-
senberg uncertainty relation in space:

M* R

(NP = Tz (1.68)

Chirped pulses

A quadratic phase modulation plays an essential role in light propagation, be it in
time or space. Since a spherical wavefront can be approximated by a quadratic
phase (¢(x) o x2, where x is the transverse dimension) near any propagation axis
of interest, imparting a quadratic spatial phase modulation will lead to focusing or
de-focusing of a beam. The analogue is true in time: imparting a quadratic phase
modulation (¢(7) o %) will lead to pulse compression or broadening after propaga-
tion through a dispersive medium. These problems relating to pulse propagation
will be discussed in several sections and chapters of this book. In this section
we attempt to clarify quantitatively the relation between a quadratic chirp in the
temporal or frequency space, and the corresponding broadening of the spectrum
or pulse duration, respectively. The results are interchangeable from frequency to
temporal space.

Let us first assume that a laser pulse, initially unchirped, propagates through a
dispersive material that leaves the pulse spectrum, |&(Q)[?, unchanged but produces
a quadratic phase modulation in the frequency domain. The pulse spectrum is cen-
tered at the average frequency (Q)) = w,. The average frequency does not change,
hence the first nonzero term in the Taylor expansion of ¢(£2) is

1 d*¢

HQ =5

—| (@Y, (1.69)
2 dQ?|,

where ¢(Q) determines the phase factor of £(Q):

E(Q) = E(Q)e D, (1.70)
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The first and second order moments are, according to the definitions (1.55):

[T &wéayd [T LDE@aQ |49
D= o T ™ Ao =<d—Q> (1.71)
[ 1E@)Par NS
and
" [ &woéarar [ w|"5“’)| dQ
t = =
[Cewrdr [T 1E@Pdt
LTy -
[CiE@pde ) |’ '

It is left to a problem at the end of this chapter to derive these results. Since the
initial pulse was unchirped and its spectral amplitude is not affected by propagation
through the transparent medium, the first term in Eq. (1.72) represents the initial
second order moment (r*)y. Substituting the expression for the quadratic phase
Eq. (1.69) into Eq. (1.55) for the first order moment, we find from Eq. (1.72):

d’¢

(Y= +| 5o5

] Q. (1.73)

The frequency chirp introduces a temporal broadening (of the second order mo-
#g) |

oo | -

Likewise we can analyze the situation where a temporal phase modulation

ment) directly proportional to the square of the chirp coefficient, [

o) = ‘jl—‘f 0t2 is impressed upon the pulse while the pulse envelope, |E(1), re-
mains unchanged. This temporal frequency modulation or chirp, characterized by
the second derivative in the middle (center of mass) of the pulse, leads to a spectral
broadening given by:

d2
(@) =@+ =3

] () (1.74)

where (Q?)( refers to the spectrum of the input pulse and (*) is the (constant)
second-order moment of time.

Equations (1.73) and (1.74) demonstrate the advantage of using the mean square
deviation to define the pulse duration and bandwidth, since it shows a simple rela-
tion between the broadening in the time or spectral domain, due to a chirp in the
spectral or time domain, respectively independent of the pulse and spectral shape.
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For the two different situations described by Eqs. (1.73) and (1.74), we can apply
the uncertainty relation, Eq. (1.65),

M4 1
2 2\ _ -
(PHQ >_—4 Ke > 1 (1.75)

We have introduced a factor of chirp «., equal to

Ke=1+

M* [ d*¢

2
H(2)2 | dO? 0] (1.76)

in case of a frequency chirp and constant spectrum, or

Ke =

Mm* [dzgo

2
2]

in case of a temporal chirp and constant pulse envelope.

In summary, using the mean square deviation to define the pulse duration and
bandwidth:

o the duration—bandwidth product +/(2){(Q?) is minimum (0.5) for a Gaus-
sian pulse shape, without phase modulation.

e For any pulse shape, one can define a shape factor M? equal to the minimum
duration—bandwidth product for that particular shape.

e Any quadratic phase modulation — or linear chirp — whether in frequency
or time, increases the bandwidth duration product by a chirp factor «.. The
latter increases proportionally to the second derivative of the phase modula-
tion, whether in time or in frequency.

1.2 Pulse propagation

So far we have considered only temporal and spectral characteristics of light pulses.
In this subsection we shall be interested in the propagation of such pulses through
matter. This is the situation one always encounters when working with electromag-
netic wave packets (at least until somebody succeeds in building a suitable trap).
The electric field, now considered in its temporal and spatial dependence, is again
a suitable quantity for the description of the propagating wave packet. In view of
the optical materials that will be investigated, we can neglect external charges and
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currents and confine ourselves to nonmagnetic and uniform media. A wave equa-
tion can be derived for the electric field vector E from Maxwell equations (see for
instance Ref. [17]) which in Cartesian coordinates reads

b L L LA W d?
)E(x,y,z,t) :/J()ﬁp(x’y’z’ t) > (178)

where p is the magnetic permeability of free space. The source term of Eq. (1.78)
contains the polarization P and describes the influence of the medium on the field
as well as the response of the medium. Usually the polarization is decomposed into
two parts:

P =PL+ PV, (1.79)

The decomposition of Eq. (1.79) is intended to distinguish a polarization that varies
linearly (PX) from one that varies nonlinearly (PV*) with the field. Historically, P~
represents the medium response in the frame of “ordinary” optics, e.g., classical
optics [18], and is responsible for effects such as diffraction, dispersion, refraction,
linear losses and linear gain. Frequently, these processes can be attributed to the
action of a host material which in turn may contain sources of a nonlinear polari-
zation PVE, The latter is responsible for nonlinear optics [19-21] which includes,
for instance, saturable absorption and gain, harmonic generation and Raman pro-
cesses.

As will be seen in Chapters 3, both P and in particular are often related
to the electric field by complicated differential equations. One reason is that no
physical phenomenon can be truly instantaneous. In this chapter we will omit
PVE. Depending on the actual problem under consideration, PV will have to be
specified and added to the wave equation as a source term.

PNL

1.2.1 The reduced wave equation

Equation (1.78) is of rather complicated structure and in general can solely be
solved by numerical methods. However, by means of suitable approximations and
simplifications, one can derive a “reduced wave equation” which will enable us to
deal with many practical pulse propagation problems in a rather simple way. We
assume the electric field to be linearly polarized and propagating in the z-direction
as a plane wave, i.e., the field is uniform in the transverse x,y direction. The wave
equation has now been simplified to:

(82 1 6%

62
i c_zﬁ)E(Z’ 0= o PHG0) (1.80)
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As known from classical electrodynamics [17] the linear polarization of a medium
is related to the field through the dielectric susceptibility y. In the frequency dom-
ain we have

PL(Q,2) = e x(VE(Q,2) (1.81)

which is equivalent to a convolution integral in the time domain

t
Piit,2) = eof dt’ ({"E(z,t—1"). (1.82)
Here € is the permittivity of free space. The finite upper integration limit, #, ex-
presses the fact that the response of the medium must be causal. The polarization
at ¢ must not depend on electric field values at later times. For a nondispersive me-
dium, which implies an “infinite bandwidth” for the susceptibility (y(€2) = const),
the medium response is instantaneous, i.e., memory free. In general, y(¢) descri-
bes a finite response time of the medium which, in the frequency domain, means
nonzero dispersion. This simple fact has important implications for the propaga-
tion of short pulses and time varying radiation in general. We will refer to this
point several times in later chapters — in particular when dealing with coherent
interaction.
The Fourier transform of (1.80) together with (1.81) yields

2

g—zz + QZE(Q),uo} E(z,Q) =0 (1.83)

where we have introduced the dielectric constant
e(Q) =[1+x(Q)]e. (1.84)

For now we will assume a real susceptibility and dielectric constant. Later we will
discuss effects associated with complex quantities. The general solution of (1.83)
for the propagation in the +z direction is

E(Q.2) = E(Q.0)e™ %, (1.85)
where the propagation constant k(2) is determined by the dispersion relation of

linear optics
2

K(Q) = Q*e(Q)uo = ?—an(g), (1.86)

and n(Q) is the refractive index of the material. For further consideration we ex-
pand k(Q) about the carrier frequency wy

k(Q) = k(we) + 6k, (1.87)
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where )
dk 1 &2k
bk=—| (Q-w)+= —| Q-wp)?+... (1.88)
dQ|,, 2 dQ?|,,
and write Eq. (1.85) as
E(Q,7) = E(Q,0)e kezgmiokz (1.89)

where k% = w%e(wg),uo = w%nz(wg) /2. In most practical cases of interest, the Fou-
rier amplitude will be centered around a mean wave vector kg, and will have ap-
preciable values only in an interval Ak small compared to k;. In analogy to the
introduction of an envelope function slowly varying in time, after the separation of
a rapidly oscillating term, cf. Egs. (1.19)- (1.22), we can define now an amplitude
which is slowly varying in the spatial coordinate

E(Q,2) = E(Q+ wy,0)e 1%, (1.90)

Again, for this concept to be useful we must require that

d 4 ;
‘d_zS(Q’Z) < ke|E(Q,2)| (1.91)

which implies a sufficiently small wave number spectrum

Ak

1. 1.92
ke < ( )

In other words, the pulse envelope must not change significantly while travelling
through a distance comparable with the wavelength A, = 27/w,. Fourier transfor-
ming of Eq. (1.89)) into the time domain gives

- 1(1 0 - . . .
E(t,2)= 5{; f dQE(Q,O)e"‘SkZe’(Q_‘“f)t}e’(“’"‘k‘Z) (1.93)

o0

which can be written as

~ 1~ .
E(,2) = 5, Z)el @D (1.94)

where &(t,7) is now the envelope varying slowly in space and time, defined by the
term in the curled brackets in Eq. (1.93).

Further simplification of the wave equation requires a corresponding equation
for & utilizing the envelope properties. Only a few terms in the expansion of k()
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and €(Q2), respectively, will be considered. To this effect we expand €(€2) as series
around wy, leading to the following form for the linear polarization (1.81)

PL(Q )= (e(a)g) €+ Z Y dQ”

(Q - we)”] EQ,2). (1.95)

In terms of the pulse envelope, the above expression corresponds in the time dom-
ain to

- 1 -
PL(1,2) 5{[e(w5> —elé(t.2)

N Z( ) € rfwf) —8(t )} l(w[l—kfz)’ (196)

n=1

where €™(wy) = a‘z;ne o The term in the curled brackets defines the slowly va-
rying envelope of the polarization, P~. The next step is to replace the electric field
and the polarization in the wave equation (1.80) by Eq. (1.93) and Eq. (1.96), re-

spectively. We transfer thereafter to a coordinate system (77,§) moving with the

. -1 L . . »
group velocity vg = (% w[) , which is the standard transformation to a “retarded

frame of reference:

=z np=t-= (1.97)
Ug
and a 9 19 8 a
- : - (1.98)

%% wor  aa

A straightforward calculation leads to the final result:

d &> i 0({0 20)\x
—&- —k”—8 === 1.99
o~ 270 on? D= 2k (')f(@f Vg (')7]) (1.99)
The quantity
= - £ () = 2nwee" D (wy)
k n=3
+ n(n-1)e" (1.100)

contains dispersion terms of higher order, and has been derived by taking directly
the second order derivative of the polarization defined by the product of envelope
and fast oscillating terms in Eq. (1.96). The indices of the three resulting terms have



1.2. PULSE PROPAGATION 29

been re-defined to factor out a single derivative of order (n) of the field envelope.
The second derivative of &:

v %k 1 du,
£ 02 o 02 dQ o
1

= - [2 —2p0€(we) — 4wepoeP(we) — wipoeP(we)| - (1.101)
2ke | vz
is the group velocity dispersion (GVD) parameter. It should be mentioned that the
GVD is usually defined as the derivative of v, with respect to A, dv,/dA, related to
k" through
dv,  Quy Pk
dl ~ 2me dO?°
So far we have not made any approximations and the structure of Eq. (1.99) is
still rather complex. However, we can exploit at this point the envelope proper-
ties (1.22) and (1.91), which, in this particular situation, imply:

l(ﬁ _ Eﬁ)g‘ _ 1(2 _ lﬁ)g
ke \O&  vg On ke\Oz vy Ot

The right—hand side of (1.99) can thus be neglected if the prerequisites for introdu-
cing pulse envelopes are fulfilled. This procedure is called slowly varying envelope
approximation (SVEA) and reduces the wave equation to first—order derivatives
with respect to the spatial coordinate.

If the propagation of very short pulses is computed over long distances, the
cumulative error introduced by neglecting the right hand side of Eq. (1.99) may be
significant. In those cases, a direct numerical treatment of the second order wave
equation is required.

Further simplifications are possible for a very broad class of problems of practi-
cal interest, where the dielectric constant changes slowly over frequencies within
the pulse spectrum. In those cases, terms with n > 3 can be omitted too (D = 0),
leading to a greatly simplified reduced wave equation:

(1.102)

< |é| (1.103)

ﬁé ik”a—zé =0 1.104
ag (nﬂf)_z [anz (ﬂ,f)— ( . )

which describes the evolution of the complex pulse envelope as it propagates through
a loss-free medium with GVD. The reader will recognize the mathematical struc-
ture of well-known equations from other areas of physics - for example, the one—
dimensional Schrodinger equation and the one—dimensional heat diffusion equa-
tion.
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1.2.2 Retarded frame of reference

In the case of zero GVD [k}’ = 0 in Eq. (1.104)], the pulse envelope does not change
at all in the system of local coordinates (1,£). This illustrates the usefulness of
introducing a coordinate system moving at the group velocity. In the laboratory
frame, the pulse travels at the group velocity without any distortion.

In dealing with short pulses as well as in dealing with white light (see Chap-
ter 2) the appropriate “retarded frame of reference” is moving at the group rather
than at the wave (phase) velocity. Indeed, while a monochromatic wave of fre-
quency € travels at the phase velocity v,(Q2) = ¢/n(€2), it is the superposition of
many such waves with differing phase velocities that leads to a wave packet (pulse)
propagating with the group velocity. The importance of the frame of reference mo-
ving at the group velocity is such that, in the following chapters, the notation z and
¢ will be substituted for £ and 7, unless the laboratory frame is explicitly specified.

Some propagation problems — such as the propagation of coupled waves in
nonlinear crystals discussed in Chapter 3 — are more appropriately treated in the
frequency domain. As a simple exercise, let us derive the group velocity directly
from the solution of the wave equation in the form of Eq. (1.89)

E(Q,72) = E(Q,0)e kzemiokz, (1.105)

The amplitude of the field spectrum |E(Q,z)| = |E(Q,0)| represented on the top left
of Fig. 1.7 is not changed by propagation. We assume that the expansion of the
wave vector k(€2), Eq. (1.87), can be terminated after the linear term, that is

dk
0k= —

we

The inverse Fourier-transform of Eq. (1.105) now yields

eUdQ  (1.107)

~ ; - dk
B = o [ BQoep|-i g
(o) = e | B >exp[ i

(Q—wy)z

W,

— ei(w(t—kfz)f E(Ql +w€’0)ei(t—kzz)gl,dgl

(%)

where we substituted Q = Q" + w, and k; = j—g w, 1O obtain the last equation. This
equation is just the inverse Fourier-transform of the field spectrum shifted to the
origin (i.e., the spectrum of the envelope £(Q), represented on the lower left of
Fig. 1.7) with the Fourier variable “time” now given by (t— kz,z). Carrying out the
transform yields

~ 1~ . ~ .
E(z,z)zEa(z,z)e“wff—kﬂ): &(r—kjz,0) ek, (1.108)

| =
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Figure 1.7: The Fourier transform amplitude (E(£2,0) is sketched in the upper left, and the
corresponding field in the time domain on the upper right (solid line). The lower part of the
figure displays the field amplitudes, E(CQ) on the left, centered at the origin of the frequency
scale, and the corresponding inverse Fourier transform &(#). Propagation in the frequency
domain is obtained by multiplying the field at z = 0 by the phase factor exp(—it;€2), where
T4 = z/vg is the group delay. In the time domain, this corresponds to delaying the pulse by
an amount 74 (right). The delayed fields |E(z, )| and &(z, ¢) are shown in dotted lines on the
right of the figure.

We have thus the important result that, in the time domain, the light pulse has been
delayed by an amount (7, = k;z) proportional to distance. Within the approximation
that the wave vector is a linear function of frequency, the pulse is seen to propagate
without distortion with a constant group velocity v, given by either of the three
expressions:

1 dk

— = —| =k 1.109
Vg aQl,, ¢ ( )
1 ng wye dn

— = —4—= — 1.110
Vg c " c dQly, ( )
1 ng Adn

— = ————1. 1.111
Vg c ¢ da, ( )

The first term in Egs. (1.110) and (1.111) represent the phase delay per unit length,
while the second term in these equations is the change in carrier to envelope phase
per unit length. We note that the dispersion of the wave vector (dk/dQ) or of
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the index of refraction (dn/dA) is responsible for a difference between the phase
velocity v, = ¢/ng and the group velocity v,. In a frame of reference moving at
the velocity vg, &(z, 1) remains identically unchanged. Pulse distortions thus only
result from high order (higher than 1) terms in the Taylor series expansion of k(€2).
For this reason, most pulse propagation problems are treated in a retarded frame of
reference, moving at the velocity v,.

Forward/Backward propagating waves

We consider an ultrashort pulse plane wave propagating through a dielectric me-
dium. Before the arrival of the pulse, there are no induced dipoles, and for the index
of refraction we assume that of a vacuum (n = 1). As the dipoles are driven into
motion by the first few cycles of the pulse, the index of refraction changes to the
value n of the dielectric. One consequence of this causal phenomenon is the “pre-
cursor” predicted by Sommerfeld and Brillouin, see for example [17]. One might
wonder if the discontinuity in index created by a short and intense pulse should
not lead to a reflection for a portion of the pulse? This is an important question
regarding the validity of the first order approximation to Maxwell’s propagation
equations. If, at = 0, a short wave packet is launched in the +z direction in a ho-
mogeneous medium, is it legitimate to assume that there will be no pulse generated
in the opposite direction?

The answer that we give in this section is that, in the framework of Max-
well’s second order equation and a linear polarization, there is no such “induced
reflection”. This property extends even to the nonlinear polarization created by the
interaction of the light with a two-level system.

If we include the non-resonant part of the linear polarization in the index of
refraction n (imaginary part of n), the remainder polarization P including all non-
linear and resonant interaction effects, adding a phenomenological scattering term
o leads to the following form of the second order wave equation:

a_zz C2 81‘2 —P+——F (1112)

. n?o? - & . nod -

( ) B TR

The polarization appearing in the right hand side can be instantaneous, or be the
solution of a differential equation as in the case of most interactions with resonant
atomic or molecular systems. Resonant light-matter interactions will be studied in
detail in Chapter 3. The wave equation Eq. (1.112) can be written as a product
of a forward and backward propagating operator. Instead of the variables ¢ and z,
it is more convenient to use the retarded time variable corresponding to the two
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possible wave velocities +c/n:

z. (1.113)
In the new variables, Maxwell’s equation (1.112) becomes:
? - Ao V. no(a )| -
E=—¢{—|—+—| P+—|—+—|;E. 1.114
asor nz{ 4 (8s+8r) Y (6s+8r) ( )

We seek a solution in the form of a forward and a backward propagating field of
amplitude Er and Ep:

. 1~ 1. .
E= §8Fe"”” + 5836”‘"”. (1.115)

Substitution into Maxwell’s Eq. (1.112):

- d & co(d 8 14
W 2iwp— — | =+ +2i =&
¢ [lw€8r+8s6r+2n (8s+é?r+ lwg)]Z i
1
2

ds 0sor 2n\ds Or
,u_0c2 ﬁ+£ 215,
4n?2 \ds Or

. 2 -
+ g [21‘0)5& + o + 2 (i + 9 +2iw€)] Ep

(1.116)

which we re-write in an abbreviated way using the differential operators £ and M
for the forward and backward propagating waves, respectively:

2 2
~ ~ HoC 0 0 ~
Epe + MEpe't" = ———|—+—| P. 1.117
Lore Be 4n? (6s (9r) ( )
In the case of a linear medium, the forward and backward wave travel indepen-
dently. If, as initial condition, we choose Ep=0 along the line r+s =0 (r = 0),
there will be no back scattered wave. If the polarization is written as a slowly

varying amplitude:
U S SR
P=Lppoon y Lppgor (1.118)
2 2
the equations for the forward and backward propagating wave also separate if Pr is

only a function of Er, and Pp only a function of Eg. This is because a source term
for P can only be formed by a “grating” term, which involves a product of E&r.
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It applies to a polarization created by near resonant interaction with a two-level sy-
stem, using the semi-classical approximation, as will be considered in Chapters 3.
The separation between forward and backward travelling waves has been demon-
strated by Eilbeck [22,23] outside of the slowly-varying approximation. Within the
slowly varying approximation, we generally write that the second derivative with
respect to time of the polarization as —w?@, and therefore, the forward and bac-
kward propagating waves are still uncoupled, even when P = P(Er,Ep), provided
there is only a forward propagating beam as initial condition.

1.2.3 Dispersion

For nonzero GVD (k; # 0) the propagation problem (1.104) can be solved either
directly in the time or in the frequency domain. In the first case, the solution of the
partial differential equation is [24]

&(t,2) =

_\2
=) )dl". (1.119)

1 <
—_— f &E(',z=0)exp (z —
\ /27rik2’z —00 2ky'z

As we will see in subsequent chapters, it is generally more convenient to treat linear
pulse propagation through transparent linear media in the frequency domain, since
only the phase factor of the envelope &(Q) is affected by propagation.

It follows directly from the solution of Maxwell’s equations in the frequency
domain [for instance Eqs. (1.85) and (1.90)] that the spectral envelope after propa-
gation through a thickness z of a linear transparent material is given by:

i

E(Q.7) = E(Q,0)e® = §Q,0)exp (—ék;’gzz -5

kg”Q%—...). (1.120)

Thus we have for the temporal envelope

i

o — o i ’”
&t =F! {S(Q,O) exp (—Ek[ O%z- Y

k}"Q%—...)}. (1.121)
If we limit the Taylor expansion of k to the GVD term &/, we find that an initi-
ally bandwidth-limited pulse develops a spectral phase with a quadratic frequency
dependence, resulting in chirp.
2
|

We had defined a “chirp coefficient”
when considering in Section 1.1.5 the influence of quadratic chirp on the uncer-
tainty relation Eq. (1.75) based on the successive moments of the field distribution.

ke=1

Mm* [ d¢
4125 | d
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In the present case, we can identify the phase modulation:

a4

—— 1.122
aQl,, ~ F (1.122)

Since the spectrum (in amplitude) of the pulse | &E(Q,z) |* remains constant [as
shown for instance in Eq. (1.120)], the spectral components responsible for chirp
must appear at the expense of the envelope shape, which has to become broader.

At this point we want to introduce some useful relations for the characterization
of the dispersion. The dependence of a dispersive parameter can be given as a
function of either the frequency Q or the vacuum wavelength A. The first, second
and third order derivatives are related to each other by

d 22 d
L - L9 1.123
dQ 2rc dA ( )
d? 2, d? d
- P— +21— 1.124
dQ? (2re)? ( da? d/l) ( )
d3 /13 d3 d2 d
— = —— (P—+61P— +61— 1.125
dQ3 (2nc)3 ( da3 d12 d/l) ( )

The dispersion of the material is described by either the frequency dependence
n(Q) or the wavelength dependence n(A) of the index of refraction. The deriva-
tives of the propagation constant used most often in pulse propagation problems,
expressed in terms of the index n, are:

dk n Qdn 1 dn

dk _on Qdn _1( dn 1.126
a0 ¢ Cdo c(” d/l) (1.126)
2 2 2

k- %ﬂJﬁﬂ:(i)l 24 (1.127)
a2 cda T car \are)\ T an

3 2 Q 3 21 2 3

Ik §M+_M:_(i)_3azﬂ+fﬂ (1.128)
Frex ca2 camd - \oxe) et an

The second equation, Eq. (1.127), defining the group velocity dispersion (GVD)
is the frequency derivative of 1/v,. Multiplied by the propagation length L, it des-
cribes the frequency dependence of the group delay. It is sometimes expressed in
fs2 um~!.

A positive GVD corresponds to

d*k
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1.2.4 Gaussian pulse propagation

For a more quantitative picture of the influence that GVD has on the pulse propa-
gation we consider the linearly chirped Gaussian pulse of Eq. (1.41)

é(l‘,Z =0)= (goe—(l+ia)(l/TGo)2 — 806_@/760)2 £i$(6:2=0)
entering the sample. To find the pulse at an arbitrary position z, we multiply

the field spectrum, Eq. (1.43), with the propagator exp (—i%kz,’QZz) as done in
Eq. (1.120), to obtain

E(Q,7) = Age ™Y (1.130)
where
T2
=G0 (1.131)
4(1+a?)
and )
ary, kz,/z
=60 ‘= 1.132
Y= i) 2 (1.132)

Ay is a complex amplitude factor which we will not consider in what follows and
7o describes the pulse duration at the sample input. The time dependent electric
field that we obtain by Fourier transforming Eq. (1.130) can be written as

2

y(Z)) ! (1.133)

E(t,z) = Ay exp —(1+— _—
T AR 2]

Obviously, this describes again a linearly chirped Gaussian pulse. For the “pulse
duration” (note 7, = V2In2 7¢) and phase at position z we find

76(2) = \/—[x2 y2(2)] (1.134)

_ ¥(2) 2
@(1,2) = 2+’ @] =il (1.135)

Let us consider first an initially unchirped input pulse (a = 0). The pulse duration

and chirp parameter develop as:
‘/ (1.136)

& 27/ Ly
FpPa = [Té0]1+(Z/Ld)2 (1.137)

and

76(2)
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We have defined a characteristic length:

2

B
Ly=-252 1.138
d 2%/ ( )

For later reference let also us introduce a so-called dispersive length defined as

2

00
Lp=-"2 (1.139)
kf

where for Gaussian pulses Lp =~ 2.77L,. Bandwidth limited Gaussian pulses double
their length after propagation of about 0.6Lp. For propagation lengths z > L, the
pulse broadening of an unchirped input pulse as described by Eq. (1.136) can be
simplified to

6@ 7 2K

6o L4l Téo

It is interesting to compare the result of Eq. (1.136) with that of Eq. (1.73),
where we used the second moment as a measure for the pulse duration. Since the
Gaussian is the shape for minimum uncertainty [Eq. (1.65)], and since d*¢/dQ?* =
—k’’z, one can derive the evolution equation for the mean square deviation of a
Gaussian pulse in a dielectric medium:

2 1N\2 .2
)=+ % 0<92>0 = () = (P + ('2,2); :

(1.140)

(1.141)

The latter equations reduces to Eq. (1.136) by substituting the relations between
mean square deviations and Gaussian widths [Eq. (1.66)].

If the input pulse is chirped (a # 0) two different behaviors can occur depen-
ding on the relative sign of a and k;". In the case of opposite sign, y?(z) increases
monotonously resulting in pulse broadening, cf. Eq. (1.134). If a and £}’ have equal
sign y?(z) decreases until it becomes zero after a propagation distance

2
TG0l
=D 1.142
T2k + ) (1142
At this position the pulse reaches its shortest duration
TG0
76(2) = TGmin = —— (1.143)

V1+ad?

and the time dependent phase according to Eq. (1.135) vanishes. From here on the
propagation behavior is that of an unchirped input pulse of duration 7g,, that is,
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the pulse broadens and develops a time-dependent phase. The larger the input chirp
(|al), the shorter the minimum pulse duration that can be obtained [see Eq. (1.143)].
The underlying reason is that the excess bandwidth of a chirped pulse is converted
into a narrowing of the envelope by chirp compensation, until the Fourier limit is
reached. The whole procedure including the impression of chirp on a pulse will be
treated in Chapter 9 in more detail.

There is a complete analogy between the propagation (diffraction) effects of
a spatially Gaussian beam and the temporal evolution of a Gaussian pulse in a
dispersive medium. For instance, the pulse duration and the slope of the chirp
follow the same evolution with distance as the waist and curvature of a Gaussian
beam, as detailed in Section 1.6. A linearly chirped Gaussian pulse in a dispersive
medium is completely characterized by the position and (minimum) duration of
the unchirped pulse, just as a spatially Gaussian beam is uniquely defined by the
position and size of its waist. To illustrate this point, let us consider a linearly
chirped pulse whose “duration” 75 and chirp parameter a are known at a certain
position z;. The position z, of the minimum duration (unchirped pulse) is found
again by setting y = 0 in Eq. (1.132):

2 2

G a T Gmin
= 4+ = + . 1.144
ez 2k} 1+a? a azk;,' ( )

The position z. is after z; if a and k;’ have the same sign?; before z; if they have
opposite sign. All the temporal characteristics of the pulse are most conveniently
defined in terms of the distance L = z -z, to the point of zero chirp, and the mi-
nimum duration 7Gp;,. This is similar to Gaussian beam propagation where the
location of the beam waist often serves as reference. The chirp parameter a and the
pulse “duration” 7 at any point L are then simply given by

a(L)
76(L)

L/Ly (1.145)

TGmin V1 + [a(L)]? (1.146)

where the dispersion parameter L; = Témm / (2|k2’|). The pulse duration bandwidth
product varies with distance L as

cp(L) = 21:2 V1 +[a(L)]? (1.147)

To summarize, Fig. (1.8) illustrates the behavior of a linearly chirped Gaussian
pulse as it propagates through a dispersive sample.

ZFor instance, an initially downchirped (a > 0) pulse at z = z. will be compressed in a medium
with positive dispersion (k" > 0).



1.2. PULSE PROPAGATION 39

Time 1000

20 30

1.0

Pulse Duration

0.0

*1009

1
our Ch/,,,ooo 2009

Figure 1.8: Propagation of a linearly chirped Gaussian pulse in a medium with GVD
[pulse shape (a), pulse duration for different input chirp (b)].

Simple physical consideration can lead directly to a crude approximation for
the maximum broadening that a bandwidth limited pulse of duration 7, and spectral
width Aw,, will experience. Each group of waves centered around a frequency Q
travels with its own group velocity v,(€2). The difference of group velocities over
the pulse spectrum becomes then:

s
AUg = [d_ﬂ]w Aa)p. (1148)
¢
Accordingly, after a travel distance L the pulse spread can be as large as

L
AT, = ‘A(—)
Vg

which, by means of Egs. (1.101) and (1.148), yields:

L
~ —|Av,| (1.149)
Vi

At = LK |Aw,. (1.150)
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Approximating 7, ~ Awl‘,l, a characteristic length after which a pulse has approxi-
mately doubled its duration can now be estimated as:

1
= ——. 1.151
Pk 1Aw? (15D
Measuring the length in meter and the spectral width in nm the GVD of materials
is sometimes given in fs/(m nm) which pictorially describes the pulse broadening
per unit travel distance and unit spectral width. From Eq. (1.150) we find for the
corresponding quantity

LAA

Aty c
— =2x—k}|. 1.152

For BK7 glass at 620 nm, k} ~ 6 x 1072°s?/m, and the GVD as introduced above
is about 300 fs per nm spectral width and meter propagation length.

1.2.5 Complex dielectric constant

In general, the dielectric constant, which was introduced in Eq. (1.83) as a real
quantity, is complex. Indeed a closer inspection of Eq. (1.82) shows that the finite
memory time of matter requires not only €, y to be frequency dependent but also
that they be complex. The real and imaginary part of & ¥ are not independent
of each other but related through a Kramers—Kronig relation. The consideration
of a real €(Q)) is justified as long as we can neglect (linear) losses or gain. This
is valid for transparent samples or propagation lengths which are too short for
these processes to become essential for the pulse shaping. For completeness we
will modify the reduced wave equation (1.104) by taking into account a complex
dielectric constant €(2) represented as

E(Q) = e(Q) +i€(Q). (1.153)

Let us assume €(Q2) to be weakly dispersive. The same procedure introduced to
derive Eq. (1.104) can be used after inserting the complex dielectric constant &
into the expression of the polarization Eq. (1.95). Now the reduced wave equation
becomes

2S(z )—ik"a—zé(t Yy=k18(t,2) +i ﬁé(z )+ a—zé(z ) (1.154)
bz YT R g TSI TG SO T g ‘
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where
w
ki = {noei(wo (1.155)
= Lo |rewn + oL@ (1.156)
Ky = 2770 €Wy w{’dQEI o .
i = o letwn + 4w Le@| 402 d—ze(g) (1.157)
3= 4w€770 i\we ¢ 10¢ o a2 w[. .

In the above expressions, 19 = +/uo/€ ~ 377 Qms is the characteristic impedance
of vacuum. For zero-GVD, and neglecting the two last terms in the right-hand side
of Eq. (1.154), the pulse evolution with propagation distance z is described by

0 ~ ~
a—S(t,z)—mS(t,z) =0 (1.158)
<

which has the solution
&(t,2) = &(1,0)€'7. (1.159)

The pulse experiences losses or gain depending on the sign of x; and does not
change its shape. Equation (1.159) states simply the Lambert-Beer law of linear
optics.

An interesting situation is that in which there would be neither gain nor loss at
the pulse carrier frequency, i.e., €(w¢) = 0 and d%ei(Q)L[ # 0, which could occur
between an absorption and amplification line. Neglecting the terms with the second
temporal derivative of &, the propagation problem is governed by the equation

0 0 =
—&(t,2) —iko—E(t,2) = 0. 1.160
7 (t,2) = iky = &(1,2) ( )

The solution of this equation is simply

&(t,2) = E(t + k22, 0). (1.161)
To get an intuitive picture on what happens with the pulse according to Eq. (1.161),
let us choose an unchirped Gaussian pulse &(z,0) [see Eq. (1.41] for a = 0), entering

the sample at z = 0. From Eq. (1.161) we find:
&(t.2) = Et.0)exp|K3(z/76) |exp [-i2katz/7g . (1.162)

The pulse is amplified, and simultaneously its center frequency is shifted with pro-
pagation distance. The latter shift is due to the amplification of one part of the pulse
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spectrum (the high (low) — frequency part if k; < (>)0) while the other part is ab-
sorbed. The result is a continuous shift of the pulse spectrum in the corresponding
direction and a net gain while the pulse shape is preserved.

In the beginning of this section we mentioned that there is always an imagi-
nary contribution of the dielectric constant leading to gain or loss. The question
arises whether a wave equation such as Eq. (1.104), where only the real part of
€ was considered, is of any practical relevance for describing pulse propagation
through matter. The answer is yes, because in (almost) transparent regions the
pulse change due to dispersion can be much larger than the change caused by los-
ses. An impressive manifestation of this fact is pulse propagation through optical
fibers. High-quality fibers made from fused silica can exhibit damping constants
as low as 1 dB/km at wavelengths near 1 um, where the GVD term is found to
be k” ~ 75 ps?/km, see for example [25]. Consequently, a 100 fs pulse launched
into a 10 m fiber loses just about 2% of its energy while it broadens by about a
factor of 150. To illustrate the physics underlying the striking difference between
the action of damping and dispersion, let us consider a dielectric constant ()
originating from a single absorption line.

We will use the simple model of a classical harmonic oscillator consisting of
an electron bound to a nucleus to calculate the dispersion and absorption of that
line. The equation of motion of the electron is:

—t+a)0r+——=—E, (1163)

where wy = VC/m, (C being the “spring constant”) is the resonance frequency,
me, the electron mass, e its charge, and 1/7, the damping constant. Assuming an
electric field of the form E = (1/2)Ey exp(iQ), one finds the polarization P = Nyer
(Np being the number of oscillators (dipoles) per unit volume):

Noe? E
PQ)= 2 . (1.164)
me w2—0Q2+iQ/T,

Using the general relation between polarization and electric field P = gy E we
obtain an expression for the complex susceptibility:

C L —
V= o, W - +iQ/T.

(1.165)
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The real and imaginary parts of the susceptibility y can be calculated:

]V()e2 (‘U(z) - Qz) N0€2T2 AwT,

Xr= . o~ > (L166)
€ome (wy—Q2)> + Q2 /T 2me€owo 1+ Aw?T;
Noe? (Q/T.) _ Noe’Ty 1

Yi= (1.167)

ome (Wi - PR+ QT2 2meewo 1 +Au?T?
The second term of each equation above corresponds to the approximation of small
detuning Aw = wg—Q <K w,. 1/T> is the linewidth of the Lorentzian absorption
line, and T, = 2T, will be assimilated in Chapter 3 to the phase relaxation time of
the oscillators. The real and imaginary parts of the oscillator contribution to the
susceptibility are responsible for a frequency dependence of the wave vector. One

can write o
k(Q) = QJpo€o [1 +x ()] ~ =

For frequencies Q being sufficiently far from resonance, i.e. |[(wg—Q)7T3)| = [AwT;| >
1, but with |w, — Q| < w, (narrow pulse spectrum), the real and imaginary parts of
the propagation constant are given by:

1+%X(Q)] (1.168)

Q Q

k(Q) =~ —+B 1.16

Q) v (1.169)
ki(Q) =~ B Q (1.170)
’ - (AwT>)?’ ‘

where B = (Npe?T»)/(4eywocm,). The group velocity dispersion, responsible for
pulse reshaping, is:
2BT3wy
K'(Q) ~ ————.
[AwT,]?
For small travel distances L the relative change of pulse energy can be estimated
from Eq. (1.85) and Eq. (1.28) to be:

(1.171)

W)
W©O) ~
The relative change of pulse duration due to GVD can be evaluated from Eq. (1.136)

and we find: 5
(L) | ~2 % ‘
TGO

AW,y =1 —2k;L. (1.172)

ATyer = (1.173)

%
To compare both pulse distortions we consider their ratio, using Egs. (1.170),

(1.171), (1.172) and (1.173:
ATy 2 (TZ )4

AW, (AwT,)?

(1.174)
TGO
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At given material parameters and carrier frequency, shorter pulses always lead to
a dominant pulse spreading. For T, = 1070 s (typical value for a single electronic
resonance), and a detuning AwT> = 10*, we find for example:

ATy
A(M/rel

1200fs\*
0 S) . (1.175)

~ AW, (
TGo

To summarize, a resonant transition of certain spectral width 1/7% influences short
pulse (pulse duration < 1 ps) propagation outside resonance mainly due to disper-
sion. Therefore, the consideration of a transparent material (¢; ~ 0) with a fre-
quency dependent, real dielectric constant €(€2), which was necessary to derive
Eq. (1.104), is justified in many practical cases involving ultrashort pulses.

1.3 Interaction of light pulses with linear optical elements

Even though this topic is treated in detail in Chapter 2, we want to discuss here
some general aspects of pulse distortions induced by linear optical elements. These
elements comprise typical optical components, such as mirrors, prisms, and gra-
tings, which one usually finds in all optical setups. Here we shall restrict ourselves
to the temporal and spectral changes the pulse experiences and shall neglect a pos-
sible change of the beam characteristics. A linear optical element of this type can
be characterized by a complex optical transfer function

H(Q) = R(Q)e™ T (1.176)
that relates the incident field spectrum E;,(Q) to the field at the sample output EQ)
EQ) = R(Q)e VDE,(Q). (1.177)

Here R(Q) is the (real) amplitude response and W(L) is the phase response. As can
be seen from Eq. (1.177), the influence of R(Q) is that of a frequency filter. The
phase factor W(Q) can be interpreted as the phase delay which a spectral component
of frequency Q experiences. To get an insight of how the phase response affects the
light pulse, we assume that R(€2) does not change over the pulse spectrum whereas
Y(Q) does. Thus, we obtain for the output field from Eq. (1.177):

- 1 oo . .
E@) = 2—R f Ein(Q)e ™ g0y (1.178)
JT _

(o)

Replacing W(€2) by its Taylor expansion around the carrier frequency w; of the
incident pulse

P(Q) = Z ba(Q - wp)" (1.179)
n=0
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with the expansion coefficients

1 d"¥
by=— 1.180
" o, (1.180)
we obtain for the pulse
[ 1~ iwet
Ew = 580
1, . +oo
— ERe—lboelw[tf Em(Q)
Xexp[—izbn(Q—a)g)"]ei(g_“")(t_b‘)dﬂ. (1.181)
n=2

By means of Eq. (1.181) we can easily interpret the effect of the various expansion
coefficients b,. The term e is a constant phase shift (phase delay) having no
effect on the pulse envelope. A nonvanishing b, leads solely to a shift of the pulse
on the time axis f; the pulse would obviously keep its position on a time scale ¢’ =
t—by. The term b; determines a group delay in a similar manner as the first—order
expansion coefficient of the propagation constant k defined a group velocity in
Eq. (1.108). The higher—order expansion coefficients produce a nonlinear behavior
of the spectral phase which changes the pulse envelope and chirp. The action of the
term with n = 2, for example, producing a quadratic spectral phase, is analogous to
that of GVD in transparent media.

If we decompose the input field spectrum into modulus and phase E;,(Q) =
|E;n(Q)|exp(i®;,(Q)), we obtain from Eq. (1.177) for the spectral phase at the out-
put

Q) = D;,(Q) - Z b, (Q—wp)". (1.182)
n=0

It is interesting to investigate what happens if the linear optical element is chosen
to compensate for the phase of the input field. For Taylor coefficients with n > 2:

1 a

bn="1 acm

D;,(Q) (1.183)

we

A closer inspection of Eq. (1.181) shows that when Eq. (1.183) is satisfied, all
spectral components are in phase for r—b; = 0, leading to a pulse with maximum
peak intensity, as was discussed in previous sections. We will come back to this
important point when discussing pulse compression. We want to point out the for-
mal analogy between the solution of the linear wave equation (1.85) and Eq.(1.177)
for R(Q) = 1 and W(Q) = k(Q2)z. This analogy expresses the fact that a dispersive
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transmission object is just one example of a linear element. In this case we obtain
for the spectrum of the complex envelope

< < > 1
E(8,2) = &in(2,0)exp l—i Z ;ké")(fl - we)”z} (1.184)
n=0 """

where k) = (d" /dQ"k(Q),,-
Next let us consider a sequence of m optical elements. The resulting transfer
function is given by the product of the individual contributions H (€)

[ [Ri@ [exp {—iZ‘I’j(Q)
j=1 =1

which means an addition of the phase responses in the exponent. Subsequently, by
a suitable choice of elements, one can reach a zero-phase response so that the action
of the device is through the amplitude response only. In particular, the quadratic
phase response of an element (e.g., dispersive glass path) leading to pulse broa-
dening can be compensated with an element having an equal phase response of
opposite sign (e.g., grating pair) which automatically would re-compress the pulse
to its original duration. Such methods are of great importance for the handling of
ultrashort light pulses. Corresponding elements will be discussed in Chapter 2.

Q) =] |H@ = (1.185)
j=1

J

1.4 Generation of phase modulation

At this point let us briefly discuss essential physical mechanisms to produce a time
dependent phase of the pulse, i.e., a chirped light pulse. Processes resulting in a
phase modulation can be divided into those that increase the pulse spectral width
and those that leave the spectrum unchanged. The latter can be attributed to the
action of linear optical processes. Any transparent linear medium, or spectrally
“flat” reflector, can change the phase of a pulse, without affecting its spectral am-
plitude. The action of these elements is most easily analyzed in the frequency dom-
ain. As we have seen in the previous section, the phase modulation results from the
different phase delays which different spectral components experience upon inte-
raction. The result for an initially bandwidth-limited pulse, in the time domain, is a
temporally broadened pulse with a certain frequency distribution across the enve-
lope, such that the spectral amplitude profile remains unchanged. For an element
to act in this manner its phase response ¥(£2) must have non-zero derivatives of at
least second order as explained in the previous section.
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A phase modulation that leads to a spectral broadening is most easily discus-
sed in the time domain. Let us assume that the action of a corresponding optical
element on an unchirped input pulse can be formally written as:

E() = T(0)e®VE;, (1) (1.186)

where T" and © define a time dependent amplitude and phase response, respectively.
For our simplified discussion here let us further assume that 7' = const., leaving the
pulse envelope unaffected. Since the output pulse has an additional phase modu-
lation @(¢) its spectrum must have broadened during the interaction. If the pulse
under consideration is responsible for the time dependence of @, then we call the
process self-phase modulation. If additional pulses cause the temporal change of
the optical properties we will refer to it as cross-phase modulation. Often, phase
modulation occurs through a temporal variation of the index of refraction n of a
medium during the passage of the pulse. For a medium of length d the correspon-
ding phase is:

O(t) = —k(t)d = —zfn(t)d. (1.187)

In later chapters we will discuss in detail several nonlinear optical interaction sche-
mes with short light pulses that can produce a time dependence of n.

A time dependence of n can also be achieved by applying a voltage pulse at an
electro-optic material for example. However, with the view on phase shaping of
femtosecond light pulses the requirements for the timing accuracy of the voltage
pulse make this technique difficult.

1.5 Beam propagation

So far we have considered light pulses propagating as plane waves, which allowed
us to describe the time varying field with only one spatial coordinate. This simpli-
fication implies that the intensity across the beam is constant and, moreover, that
the beam diameter is infinitely large. Both features hardly fit what we know from
laser beams. Despite the fact that both features do not match the real world, such a
description has been successfully applied for many practical applications and will
be used in this book whenever possible. This simplified treatment is justified if
the processes under consideration either do not influence the transverse beam pro-
file (e.g., sufficiently short sample length) or allow one to discuss the change of
beam profile and pulse envelope as if they occur independently from each other.
The general case, where both dependencies mix, is often more complicated and,
frequently, requires extensive numerical treatment. Here we will discuss solely
the situation where the change of such pulse characteristics as duration, chirp, and
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bandwidth can be separated from the change of the beam profile. Again we restrict
ourselves to a linearly polarized field which now has to be considered in its com-
plete spatial dependence. Assuming a propagation in the z-direction, we can write
the field in the form:

1 - .
E=E(x,y,z,0) = Ea(x, 280 D e .. (1.188)

The scalar ii(x,y,z) is to describe the transverse beam profile and &(t,7) is the
slowly varying complex envelope introduced in Eq. (1.93). Note that the rapid
z-dependence of E is contained in the exponential function. Subsequently, i is as-
sumed to vary slowly with z. Under these conditions the insertion of Eq. (1.188)
into the wave equation (1.78) yields after separation of the time dependent part in
paraxial approximation [16]:

L AW
(@+a—y2—2zk¢;a—z)u(x,y,z)=0, (1.189)

which is usually solved by taking the Fourier transform along the space coordinates
x and y, yielding:

i(ky,ky,z) =0, 1.190
0z 2k i( y 2) ( )

where k, and k, are the Fourier variables (spatial frequencies, wave numbers). This
equation can be integrated and yields:

[ﬁ—i(k§+k§)

(ks ky2) = Tk, ke 57 (1.191)
where iig(ky, ky) = fi(ky,ky,0). Paraxial approximation means that the transverse
beam dimensions remain sufficiently small compared with typical travel distances
of interest.

Instead of using the differential equation (1.189), one can equivalently des-
cribe the field propagation by an integral equation. The basic approach is to
start with Huygens’ principle, and apply the Fresnel approximation for parax-
ial wave propagation [16]. Assuming that the field distribution (or beam profile)
a(x',y,7') = iip(x’,y’) is known in a plane z = 0; the field distribution #(x,y,z) in a
plane z = L is given by:

f ) f "oy e M D g gy (1.192)

l'elk[L

AL

i(x,y,z) =

This solution was obtained from Eq. (1.191) through an inverse Fourier transform
and is a convolution of #(x,y,0) and exp[—ik(x2 + y2) / (2L)].
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1.6 Analogy between pulse and beam propagation

1.6.1 Time analogy of the paraxial (Fresnel) approximation

Comparing the paraxial wave equation (1.189) and the reduced wave equation (1.104)
describing pulse propagation through a GVD medium we notice an interesting cor-
respondence. Both equations are of similar structure. In terms of the reduced
wave equation the transverse space coordinates x,y in Eq. (1.189) seem to play
the role of the time variable. This space-time analogy suggests the possibility of
translating simply the effects related to dispersion into beam propagation proper-
ties. For instance, we may compare the temporal broadening of an unchirped pulse
due to dispersion with the change of beam size due to diffraction. In this sense
free-space propagation plays a similar role for the beam characteristics as a GVD
medium does for the pulse envelope. To illustrate this in more detail let us start
with Eq. (1.191), and, for simplicity, restrict ourselves to one dimension. Throug-
hout this section we will also omit amplitude terms and irrelevant phase terms. The
field spectrum i at a distance z is related to the field spectrum i1 at z = 0:

fi(ky, 2) oc it (ky)e™5/ RO (1.193)

which has as inverse Fourier transform the convolution product:

. 0 kg ,
a(x,z) o F g (ki) ™/ 20 o f fig(x')e =Y g (1.194)
The last expression is the well known Fresnel integral.

Let us next recall Eq. (1.120), approximated to second order, which states that
the spectral field envelope &E(Q) after propagation through a length z of a transpa-
rent material with GVD is given by?:

E(Q.7) x E(Q,0)e 2K ¥ (1.195)

A comparison with Eq. (1.193) clearly shows the similarity between the diffraction
and the dispersion problem. The exponential phase factor k2z/(2k¢), which des-
cribes transverse beam diffraction in space, corresponds to the exponential phase
factor —k’’Q?z/2 which describes pulse distortion in time due to dispersion. In the
time domain, Eq. (1.195) also becomes a convolution integral:

=)

E(t,7) o f & ,0)e 7 dr, (1.196)

[ee)

3Note, for easier comparison with the diffraction problem we used here coordinates (z,z) even
though they refer to a frame (1,&) moving with the group velocity.
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which shows the expected similarities with its spatial analog Eq. (1.194).

Since Eq. (1.193) corresponded to the paraxial approximation, the analogy can
be carried over to successive subsets of that approximation. It will thus apply also
to Gaussian optics, and the time equivalent of the Fraunhofer approximation, as
will be shown in subsequent sections.

1.6.2 Time analogy of the far-field (Fraunhofer) approximation

The Fraunhofer (far-field) approximation is obtained from the Fresnel integral by
simplifying the exponent in Eq. (1.194):

k
il = XY ~ —ikeEx = —ikox! (1.197)
2z Z
yielding:
ii(x,z) o f fio(x")e "X gy (1.198)

Note that k, is the projection of the k; vector in the plane of observation of the
diffraction pattern. Depending on the observation geometry it is related to the
spatial coordinate x in the observation plane by:

o k, ~ ke, where 6, is the angle of observation,
o k. =ke(x/z) = ke0, for an image plane at finite distance z,
o k. =ke(x/f) for observation in the focal plane of a lens with focal length f.

The corresponding transition from the Fresnel to the Fraunhofer approximation

in the time domain
i(t—1)? itt’

—_— -, 1.199
2k} z ky'z ( )
yields for the field amplitude:
Q.0 f &t ,0)e a, (1.200)

which is the Fourier transform of the initial field (at z = 0). Here the “frequency”
coordinate Q" = 7/(k;'z) is related to the time coordinate 7 at the position of obser-
vation z, which is similar to the relationship between k, and x discussed previously.
The physical meaning of this analogy is that, after propagation of long distance in
a dispersive (GVD) medium, the temporal variation of any signal is given by its
Fourier transform at z = 0. As we will see in the next section we can even use a
time lens of focal length fr to perform paraxial “time imaging”. If we observe the
pulse described by Eq. (1.200) after such a lens t = Q' fr/a.
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1.6.3 Analogy between spatial and temporal imaging

The analogy between pulse and beam propagation was applied to establish a time—
domain analog of an optical imaging system by Kolner and Nazarathy [26]. Optical
microscopy, for example, serves to magnify tiny structures so that they can be
observed by a (relatively) low—resolution system such as our eyes. The idea of the
“time lens” is to magnify ultrafast (fs) transients so that they can be resolved, for
example, by a relatively slow oscilloscope. Of course, the opposite direction is
also possible, which would lead to data compression in space or time. Figure 1.9
compares imaging in space and time using lenses.

object B image
(a) plane (%) plane
!

s 4’
I I
Q: d, ky d, ks |
| |
1 1
~ 15 2: :
@Gl -_

diffraction diffraction
time
lens
(b) 1 1
L dki
1
1
‘L‘ ;LA
lE®? — & ~— @@
dispersion dispersion

Figure 1.9: Space-time analogy of imaging. (a) Spatial imaging configuration. The
“object” is a spatial intensity distribution resembling a three-pulse sequence. The “real
image” shows a magnified, inverted picture. (b) The temporal imaging configuration. A
GVD medium on either side of the time lens represents a dispersive length characterized
by dk’’. The “image” is a reversed, expanded three pulse sequence. Instead of a GVD bulk
medium, grating or prism sequences can also be placed in front and behind the lens. This
will be discussed in Chapter 2. (Adapted from [27].)

In the space domain, Fig. 1.9(a), we propagate the field from the object plane
at 7= 0 (transverse coordinate x") through the lens (coordinate X) to the observation
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plane (coordinate x). In paraxial approximation the transfer function of a thin lens
(%) = k12N (1.201)

adds a quadratic phase to the field at ¥. The two propagation steps can be described
using the Fresnel integral Eq. (1.194)

00 k.,
(%7 = dy) oc f fio(x)e T gy (1.202)
and . .
i X2 (v %)2
ii(x,z = d) +db) f W%,z = d)r(Ee 26 gx, (1.203)

where k1o =2nn;2/A = knj > are the propagation constants in the medium in front
and behind the lens, respectively.

Let us evaluate this image problem for a point source in the object plane at
X, Gio(x") = upd(x” — x3). This allows us to carry out the integration over x" in
Eq. (1.194) to obtain ii(X,d; ). Inserting this result and the lens transmission function
Eq. (1.201) into the second propagation integral yields

5 " . - , .k -
uge' 7 E ¢ T N0 a0 g (1.204)

i(x,z=d)+dy) f

—00

The terms of the phase ¢ in the integrand uge’® can be rearranged:

1k ki k), (ki , k ki, ko
=5\z—5-= —xy+ x| 55 — 1.205
¢ Z(f d dz)x +(d1x°+d2x) (2d1x0+2d2x ( )

Within the framework of geometric optics and the paraxial approximation the image
of a point object is a point and the lens aperture (integration limits) is infinitely
large. The integral Eq. (1.204) produces a Delta function

[k ’ k Y
el(di xo*ix)xdfc o< U 6(];71)66 + ];sz) (1.206)
1 2

(x,z=d;+dp) uof
if the phase term quadratic in X2, cf. Eq. (1.205) vanishes. This requires k; /d; +
ky/dy = k/ f. After dividing by k we recognize the standard form of the well known
imaging equation from geometric optics relating object and image distance to the

focal length of the lens
ni ny» 1
—+—=—. (1.207)
di dy f

From the argument of the Delta function we find for the transverse magnification

of an extended object M = —nd,/(n,d;). (Note an object extending from x = 0 to

xo produces an image bounded by x” = 0 and x;.)
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diffraction | dispersion
coordinate X t
ke 12
propagator | e~i2* ¢ %
ke 1
d k7d
2 Q2
lens ek e 2

Table 1.2: Corresponding terms of Fresnel diffraction and second-order dispersion
(GVD).

We now want to translate the spatial imaging problem to the time domain, see
Fig. 1.9(b). The equivalent of a lens with transmission function eke/2) is g qua-
dratic phase modulator in time described by e~@/@/1) Propagation (diffraction)
from the object to the lens to the image plane is replaced by quadratic dispersion
(GVD) in front and behind the lens. The dispersion can be introduced by propaga-
tion through a material with GVD or other optical elements as will be discussed in
Chapter 2.

In principle we could now repeat the derivation of Eq. (1.207) for time imaging.
Since the mathematical structure of the propagation equations in space and time are
identical as pointed out previously we can simply use the equivalencies summari-
zed in Table 1.2. After replacing the terms in the imaging equation, Eq. (1.207) we

obtain for the time-lens
1 1 a

The “magnification” in time is M7 = —kJ dy/(k} d).

In this “temporal lens formula”, d| ,gk'l” , are the dispersion characteristics of the
object and image side, respectively, and a/ f; = —d*®(t)/d1? is the quadratic phase
modulation impressed by the modulator determining the “focal length” of the time
lens. As in optical imaging, to achieve large magnification with practical devices,
short focal lengths are desired. For time imaging this translates into a short focal
time f7 which in turn requires a suitably large phase modulation.

Note that the real image of an object can only be recognized on a screen located
at a specific distance from the lens, i.e., in the image plane. At any other distance
the intensity distribution visible on a screen does usually not resemble the object.
Likewise, the dispersive element broadens each individual pulse (if we assume zero
input chirp). It is only after the time lens and a suitably designed second dispersive
element that a “pulse train” with the same contrast as the input (but stretched or
compressed) emerges.
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1.7 Gaussian beams and Gaussian pulses

An important particular solution of the wave equation within the paraxial approx-
imation is the Gaussian beam (see, e.g., [28]). In order to understand better the
space-time analogy for Gaussian beams/pulses, the derivation for the diffraction
problem is sketched below.

1.7.1 Gaussian beams

We look for a solution to the time-free paraxial wave equation:

- N
of the form:

i(x,y,2) = uoe_i[P QP uoe'™ (1.210)

The spatial derivatives needed in Eq. (1.209) are:
‘;—Z‘ = (—i‘;—f +i’;f—;j—‘;])u el (1.211)

and 5
% + giy’;’ = (—21'% - %rz)uoeif, (1.212)
where 7> = x?> +y%. Inserting the derivatives into the wave equation (1.209) and

ordering with respect to terms proportional to r° and 2 yields:

dpP 1 r ke (dg i
(_l‘_+t)r0uoelr+l_f(_q_l)r2uoelr :0 (1213)
dz § 2g \dz

To satisfy this equation for all r the terms in braces must vanish. This condition
produces a set of differential equations for P(z) and g(z):

iﬁ = l (1.214)
dz q

dg

— =1 1.215
dz ( )

The last equation gives:
G(z)=qo+z=ipo+z (1.216)



1.7. GAUSSIAN BEAMS AND GAUSSIAN PULSES 55

For reasons that will become obvious below we chose the z axis such that g is
purely imaginary at z = 0. We split 1/g in a real and an imaginary part:

1 1 i

g 1.217)
4 RG@) p@)
Evaluating the real and imaginary parts of Eq. (1.217) separately yields:
R(z)=z+p}/z (1.218)
and
p(2) = po(1+2°/pp). (1219)
With §(z) known Eq. (1.214) can now be integrated, leading to
P() = —iln(qo +Z)
q0
and
e @ 1 1 e (1.220)
.7z b .
go+z 1- i 1+ %
Po
where @ is the Guoy phase shift,
® = O(z) = arctan(z/po). (1.221)

G(z) according to Eq. (1.217) and Eq. (1.220) are now inserted into our ansatz for
the field, Eq. (1.210), which produces:

u ket ke
i(r,2) = ——— 2T ¢ 2 O (1.222)
J1+22/p5

The physical meaning of the real and imaginary part of 1/ becomes clear now -
R(z) is the radius of curvature of the wavefront and p(z) is related to the radius of
the lateral field distribution. Often it is convenient to introduce a beam radius w at
which the field has dropped to 1/e of its maximum at r = 0

2 A
w(z) = =P@=—p(). (1.223)
¢ s
With this substitution the Gaussian beam evolution is completely describes by

2 r Y
ii(r,7) = uo%e”%e’(m) "9 (1.224)
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Figure 1.10: Parameters of Gaussian beams

with
2
R(z) = z[l + —gJ
and
2
wz(z):w(z) 1+=1,
Py
where
L)
PO = ZWO

is the Rayleigh range with 2pg being the confocal parameter, and wy is the beam
waist.

Optical beams described by Eq. (1.224) exhibit a Gaussian intensity profile
transverse to the propagation direction with w(z) as a measure of the beam diameter,
as sketched in Fig. 1.10. The origin of the z-axis (z = 0) is chosen to be the position
of the beam waist wy = w(z = 0). The radius of curvature of planes of constant
phase is R(z). Its value is infinity at the beam waist (plane phase front)* and at
7z =o00. For —py > z < py, the beam size is within the limits wy <w < \/zwo. Given
the amplitude ug at a given beam waist and wavelength A, the field at an arbitrary
position (x,y,z) is completely predictable by means of Egs. (1.222) to (1.224).

4The phase term ©O(z) in Eq. (1.222) takes on a constant value and need not be considered for
2> po. A Gaussian beam at the position of its waist must not be confused with a plane wave [29].
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1.7.2 Gaussian pulses

The similarity of the equations governing diffraction and pulse propagation in a
GVD medium again suggest that a particular solution to the latter is a Gaussian
pulse with chirp. To find such a solution to the wave equation

o0& iky (0*E
—__t{Z=)=0 1.225
0z 2 ( or? ) ( )

we make now an ansatz similar to Eq. (1.210) of the form
Ez1) = Epe 19457 (1.226)

The complex p parameter replaces the complex g parameter of Gaussian beams
and, as in Eq. (1.217), is split into a sum of a real and an imaginary part:

R
P2 Rr(z) o@

(1.227)

We choose the z axis such that at z = 0 py = io is purely imaginary (Rr(z =0) =
o). Deriving the solutions for e 0@ Rr(z) and o (2) is straightforward with the
procedure used for Gaussian beams and left to a problem at the end of this chapter.
For the complex p parameter we obtain for example:

p(2) =ioo—kyz. (1.228)

These solutions used in Eq. (1.226) describe the propagation of a pulse with a
Gaussian envelope in a GVD medium:

~ & ot 2
E(z,1) = ~e "R10 ¢ 200 ¢~ 200 (1.229)
J1+(k/z/o)
with
Rr(2) k(1 0'% (1.230)
7)=- +—], .
g ¢ (k' 2)*
kNZ 2
O'(Z):O'o{1+( "2) l (1.231)
o
0
and

k'z
0(z) = arctan(—). (1.232)
2]
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If we compare Eqs. (1.229) and (1.41) we recognize that 20 is related to the pulse
duration
o =215 =1,/(2In2)

and Ry to the pulse chirp
1

Rr

An unchirped pulse at z = 0 can only increase its duration when propagating in a
GVD medium independent of the sign of k;’. This is the time equivalent of beam
widening due to diffraction starting from the beam waist. The pulse develops a
quadratic phase modulation (linear chirp), which corresponds to a quadratic phase
factor describing a finite phase front curvature of a Gaussian beam. In the far
field (|z| > po) the beam expands linearly with z. Likewise the pulse duration is
proportional to z if |k’ z| > 7go.

_(p

1.7.3 Matrices for the complex beam and pulse parameters

We saw that the complex beam parameter g concatenates the information on beam
width w and radius of curvature of the phase front R in a single complex quantity
for Gaussian beams:

= — i (1.233)

Likewise the interrelated pulse parameters duration 7¢ and chirp ¢ were lumped
into the complex pulse parameter p. This time equivalent of the § parameter was:

=—p-= (1.234)

The propagation of Gaussian beams over distances and the action of focusing
elements such as lenses and mirrors are conveniently described using 2 X 2 matrices
known from ray optics. A sequence of such elements is the product matrix, also
called system matrix. Table 1.3, second column, shows the matrix for propagation
of a distance d through a medium with index » and a thin lens of focal length f.

Let us assume the Gaussian beam parameters, that is g1, are known in a plane
%;. The task is to find the Gaussian beam, that is g, in a plane X;. The two
planes are separated by an optical system that can be described by an ABCD system
matrix. It turns out that the complex beam parameters of input and output beam

are simply related by
1 C+DJg
1_C&+Din (1.235)
G2 A+B/q
From our previous discussion we expect that corresponding matrices exist that
describe the modifications of a Gaussian pulse when propagating through GVD



1.7. GAUSSIAN BEAMS AND GAUSSIAN PULSES 59

element space time
. 1 d/n 1 —k/d
distance (0 1 ) (0 1 )

i ( 1 0) (1 O)
ens 1/ 1) \a/fr 1

Table 1.3: Optical matrices for displacement and lens, and their analogs in time. Note that
for the time lens a/ fr = —®, where ®(¢) is a quadratic phase introduced by a modulator.

elements and (time) lenses. Indeed, we just need to substitute the corresponding
quantities suggested by the imaging equations (1.207) and (1.208) and Table 1.2 in
the optical matrices. The result is shown in the right column of Table 1.3.

As an example, let us analyze an “imaging” geometry similar to Fig. 1.9 now
using Gaussian beams. A lens of focal length f transforms a Gaussian beam with a
waist located a distance d; in front of it to a Gaussian beam with waist at the image
distance d>. The beam parameters just in front and behind the lens are related to
each other N

1_cg+b_ 1.1 (1.236)
9 Ag+B  f 4
where we used the elements of the lens matrix from Table 1.3. From our previous
discussion, cf. Eq. (1.216), we can write the § parameters in terms of the Rayleigh
lengths po, pf, and the distance to the beam waist dy,d>:

1 1
- =- (1.237)
q ipo+d

and | |
=== . (1.238)
q en —d

This together with Eq. (1.236) produces the imaging equation for Gaussian beams:

1 1 1

= 1.239
di+ipo dr—ip, f ( )

Unlike in geometric optics object and image “size” (wo and wy)) enter explicitly
through the Rayleigh range. This is a consequence of diffraction.

The equivalent situation in time is a bandwidth-limited Gaussian pulse a dis-
tance d; in front of a time lens (quadratic phase modulator) with equivalent focal
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Figure 1.11: Focusing of (a) a Gaussian beam with its waist at the lens and (b) a Gaussian
bandwidth-limited pulse.

“length” fr. A Gaussian bandwidth limited pulse emerges a distance d, after the
lens. The image equation is obtained as above using Eq. (1.228) and the right

column of Table 1.3:
1 1 a

— + — = —
k'l’dl—w'o ké’d2+10'6 fr

(1.240)

Table 1.4 summarizes our comparison of Gaussian beam and pulse propagation.
As an example, Fig. 1.11 illustrates the analogy of focusing a Gaussian beam
and pulse compression. Let us assume that in both cases the incident field distribu-
tion is bandwidth-limited. The complex beam, pulse parameters at the lens input -
beam waist, unchirped pulse - are thus § = ipg and p = —io, respectively. For the
case of the time-lens we obtain from Eq. (1.240) for the complex pulse parameter

in the image plane:
1 1 a 1

:T=—+_— (1241)
P K fr oo
The real part of this equation yields the image distance
1
ki'dy = Ji—z (1.242)
@ 1+[fr/(aco)]
and the imaginary part produces the pulse duration
72 ’ 2 1
G =200==Tg— —— (1.243)
1+(2at%/ fr)
Similarly we find the position of the beam waist after the lens to be at:
1
(1.244)

= G
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Gaussian pulse

Gaussian beam

bandwidth-limited pulse at z =0
(unchirped pulse)

S()(t) o e—(t/TGO)2
En(Q) o~ TG0/

propagation through a medium of

length L (dispersion)
[ 2 ’” 2
- TGo82 .k[LQ
EQ,L) o« exp ( > ) i >
~ [ r\?
&, L) o« exp —(1+ic‘z)(—) }
G
= ‘ tz :|
o expl|—i
250
a = L/L
T6(L) = TGo V1 +a?

chirp coefficient (slope)

a1
L 7(2;0

characteristic (dispersion) length

2
GO

2k

complex pulse parameter

T
Ly=

1 2i

R
- P e

transformation of p between conjugate planes
of a time lens (transfer function e~ /2/1))

Ky UK a
di—ilg dy+iL,  fr

beam waist at z =0
(plane phase fronts)
2
fip(x) o e~ /o)
fo(ky) o e—(kxwo/Z)2
free-space propagation over
distance L (diffraction)

Lk,? ]

. 2
i(ky, L) oc exp _(W()2x) +1i %
4

[ 2
(L) o exp —(1+il3)(%)]
= . x2
] o exp»—zkgzq(L)}
b = Lipo
wl) = woV1+b?

wavefront curvature

1 b 1

R 1+p2 00
characteristic (Rayleigh) length

2
nawy _ k[WO

A¢ 2

complex beam parameter

PO =

1 1 ide

L) R@L) 2L

transformation of § between conjugate planes
of a lens (transfer function e/*"*/2)

ni N n 1
di+ipy dr—ipy f

Table 1.4: Comparison of Gaussian pulses and Gaussian beams: dispersion versus dif-

fraction
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In both cases the image planes are not in the focal planes of the lenses, but further
away from the lens. This is contrary to the geometric optics case discussed pre-
viously, cf. Egs. (1.207) and (1.208). If self-diffraction can be neglected over the
focal distance, pg > f, we reproduce d, = f. The corresponding condition for the
time lens is that the pulse duration is much larger than the “focal time” of the lens
(modulator), g > /fr/a.

Figure 1.11 and Eq. (1.243) suggest the possibility of pulse compression, which
will be discussed in detail in later chapters. The time-lens (modulator) impresses
a linear chirp onto the bandwidth-limited input pulse resulting in spectral broade-
ning while keeping the pulse duration unchanged. The bandwidth in excess over
the Fourier limit allows the pulse to shorten while propagating through the dis-
persive medium on the image side until it reaches the image plane where it is
bandwidth-limited again but of shorter duration. The conjugate (image) plane is to
the right of the lens only if a/fr and k;’ have the same sign. If the lens produces
up (down) chirp, negative (positive) GVD on the image side is necessary for chirp
compensation.

In practice, electronically driven modulators are not able to reach the modula-
tion speeds and amplitudes required for shaping fs pulses. One possible approach
to create a large phase modulation is cross-phase modulation, in which a properly
shaped powerful “pump” pulse creates a large index sweep (quadratic with time)
in the material of the “time lens”. Another approach is to use sum or difference fre-
quency generation to impart the linear chirp of one pulse into the pulse to be “ima-
ged”. The linear chirp can be obtained by propagating of a strong pulse through
a fiber. A detailed review of this “parametric temporal imaging” can be found in
refs. [27,30]. The time-equivalent of a long propagation distance (large diffraction)
is a large dispersion, which can be obtained with a pair of gratings, see Chapter 2.

While we treated here dispersion and diffraction separately they occur simulta-
neously when pulses propagate. We will discuss this and the corresponding optical
matrices in Chapter 2.

1.8 Space-time effects in non-dispersive media

For very short pulses a coupling of spatial and temporal effects becomes important
even for propagation in a nondispersive medium. The physical reason is that self—
diffraction of a beam of finite transverse size (e.g., Gaussian beam) is wavelength
dependent. A separation of time and frequency effects according to Egs. (1.188)
and (1.189) is clearly not feasible if such processes matter. One can construct a
solution by solving the diffraction integral (1.192) for each spectral component.
The superposition of these solutions and an inverse Fourier—transform then yields
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the temporal field distribution. Starting with a field E(x’,y’,Q) = T{E(x’,y’, t)} in
a plane X'(x’,y") at z = 0 we find for the field in a plane X(x,y) at z = L:

B iQe—iQL/c 5
E(xayaLst) = T_l{—ffd'x,dy,E('x/’y,’Q)
2ncL
. N2 N2
X exp —lz—Lc((x—x) +(—y) )]} (1.245)

where we have assumed a nondispersive medium with refractive index n = 1. So-
Iutions can be found by solving numerically Eq. (1.245) starting with an arbitrary
pulse and beam profile at a plane z = 0. Properties of these solutions were discussed
by Christov [31]. They revealed that the pulse becomes phase modulated in space
and time with a pulse duration that changes across the beam profile. Due to the
stronger diffraction of long—wavelength components the spectrum on axis shifts to
shorter wavelengths.
For a Gaussian beam and pulse profile at z =0, i.e.,

E(x',y,0,t) o exp(—r’z/wé) exp(—tz/réo) exp(iwet)

with 72 = x> +y"2, the time—space distribution of the field at z = L is of the
form [31]:

. 7]2 WoWeTGo 2 we 72
E(rz=L1) exp(——z)exp (——r) exp|i— 2y (1.246)
T, 2Lctg ¢,
where
7% =150 + [wor/(Lo)] (1.247)

and n = [t—L/c— r*/ (2Lc)]. This result shows a complex mixing of spatial and
temporal pulse and beam characteristics. The first term in Eq. (1.246) indicates a
pulse duration that increases with increasing distance r from the optical axis. For
an order of magnitude estimation let us determine the input pulse duration 7 at
which the pulse duration has increased to 27gg at a radial coordinate r = w after
the beam has propagated over a certain distance L >> pg. From Eq. (1.247) this is
equivalent to 7o = wor/(Lc). For r =w with w = LA/(zw), cf. Eq. (1.219), the pulse
duration becomes 7o ~ 4/(mc). Obviously, these effects become only important if
the pulses approach the single-cycle regime.

Problems

1. Verify the cp factors of the pulse—duration—bandwidth—product of a Gaussian
and sech-pulse as given in Table 1.1.
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. Calculate the pulse duration 7, defined as the second moment in Eq. (1.57)

for a Gaussian pulse and compare with 7, (FWHM).

. Consider a medium consisting of particles that can be described by harmonic

oscillators so that the linear susceptibility in the vicinity of a resonance is gi-
ven by Eq. (1.165). Investigate the behavior of the phase and group velocity
in the absorption region. You will find a region where v, > v,. Is the theory
of relativity violated here?

. Assume a Gaussian pulse which is linearly chirped in a phase modulator

that leaves its envelope unchanged. The chirped pulse is then sent through
a spectral amplitude—only filter of spectral width (FWHM) Awp. Calculate
the duration of the filtered pulse and determine an optimum spectral width of
the filter for which the shortest pulses are obtained. (Hint: For simplification
you may assume an amplitude only filter of Gaussian profile, i.e., H(w—w) =

exp —an(ﬁ)z] )

. Derive the general expression for d"/dQ" in terms of derivatives with respect

to A.

. Assume that both the temporal and spectral envelope functions &(¢) and

&(Q), respectively, are peaked at zero. Let us define a pulse duration 7),
and spectral width Aw, using the electric field and its Fourier transform by

1 (o)
e — E()|dt
= EG=0) Lo' @
and

i 1 =
Aoy = e 70 i _le@ide

Show that for this particular definition of pulse duration and spectral width
the uncertainty relation reads

* *
TpAa)p > 2.

. Derive Egs. (1.71) and (1.72). Hint: Make use of Parsival’s theorem

2 f ) |f(0)Pdt = f ) |F(Q)PdQ

(%)

and the fact that F {tf ()} = —i-5F {£(1)}.
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8. Repeat the steps shown in the text for Gaussian beam propgation to derive
the equivalent relations for Gaussian pulses, Egs. (1.229) to (1.232).

9. A polarization — to second order in the electric field — is defined as PA(f) oc
YPE?(r). We have seen that the preferred representation for the field is the
complex quantity E* (1) = %S(t) expli(wt + ¢(1)]. Give a convenient descrip-
tion of the nonlinear polarization in terms of E*(¢), &(f) and ¢(f). Consider
in particular second harmonic generation and optical rectification. Explain
the physics associated with the various terms of P (or P*?®, if you can
define one).

10. Starting from the one—dimensional wave equation (1.80), show that the slowly—
varying envelope approximation corresponds essentially to neglecting self-
induced reflection.
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CHIR® OR NOT TOo CHIRP ...

... THAT 1S THE CHALLENGE



Chapter 2

Femtosecond Optics

2.1 Introduction

Whether short pulses or continuous radiation, light should follow the rules of "clas-
sical optics”. There are, however, some properties related to the bending, propa-
gation, and focalization of light that are specific to fs pulses. Ultrashort pulses are
more “unforgiving” of some “defects” of optical systems, as compared to ordinary
light of large spectral bandwidth, i.e., white light.! Studying optical systems with
fs pulses helps in turn to improve the understanding and performances of these sy-
stems in white light. We will study properties of basic elements (coatings, lenses,
prisms, gratings) and some simple combinations thereof. The dispersion of the in-
dex of refraction is the essential parameter for most of the effects to be discussed
in this chapter. Some values are listed for selected optical materials in Table 2.1.
As already noted in Chapter 1, the second derivative of the index of refraction is
positive over the visible spectrum for most transparent materials, corresponding to
a positive group velocity dispersion (GVD). There is a sign reversal of the GVD in
fused silica around 1.3 um, which has led to zero dispersion or negative dispersion
fibers.

Often a transparent material will be characterized by a fit of the index of re-
fraction as a function of wavelength. Values for most nonlinear materials can be
found in ref. [1]. A common form is the Sellmeier equation:

BiA;  ByA; Bidj
+ +
Z-C1 3-C 13-C;

() =1+ 2.1)

I'Such light can be regarded as superposition of random fluctuations (short light pulses), the mean
duration of which determines the spectral width. A measurement of the light intensity, however,
averages over these fluctuations.
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In the case of fused silica, the parameters are':

Bi  6.96166300-10~! ym™
B, 4.07942600-107! ym=2
By 8.97479400-107! ym=
C; 4.67914826-1073 ym?
C, 1.35120631-1072 ym?
Csz  9.79340025-10%! ym?

with the wavelength A, expressed in microns. Another example of a possible fit
function is the Laurent series formula:

+—=+— (2.2)

C

2 2

n“(A) =A+Bl+—+ Y
A A

D E F
Y
¢t

For crystalline quartz with extraordinary and ordinary index n, and n,, respectively,

the parameters are2:

Parameter for n, forn, Unit
A 2.38490000- 10" 2.35728000- 10*°

B —-1.25900000- 1072 —1.17000000- 107>  pym™>
C 1.07900000- 102 1.05400000-1072  um?
D 1.65180000-10%  1.34143000-10™%  um*
E —1.94741000-107% —4.45368000-10~7  m®
F 9.36476000-107%  5.92362000-1078%  ym?®

The wavelength A, being expressed in microns.

An interesting material for its very high index in the visible—near infrared is
ZnS. The first and second order dispersion are plotted in Fig. 2.1.

We shall start this chapter with an analysis of a simple Michelson interferome-
ter.

2.2 White light and short pulse interferometry

Incoherent radiation has received increasing attention as the poor man’s fs source
(even the wealthiest experimentalist will now treat bright incoherent sources with
a certain amount of deference). The similarities between white light and fem-
tosecond light pulses are most obvious when studying coherence properties, but
definitely transcend the field of coherent interactions.

2The values for fused silica and quartz are courtesy of CVI, Albuquerque, New Mexico
(www.cvi.com).
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material Ao mwe) n(we) nAp) n(we) n’"(Ae) n(we) n"(Ap)
1072 1072 1073 1074

[nm] [fs] [um™']  [fs’]  [um7?] [fs’]  [um™3]

BK7 400 1.5307 1.13 -13. 3.0 1.10 6.9 -12.

500 1.5213 0.88 6.6 23 396 7.7 35

620 15154 0.75 3.6 1.6 150 13 -1.1

800 1.5106 0.67 2.0 0.06 0.05 39 -29

1000 1.5074 0.73 14 32 0016 114 -.09

SF6 400 1.8674 5.8 -67. 30 7.40 214 -120

500 1.8236 3.7 -28. 16 2.00 86 21.

620 1.8005 2.7 -13. 12 70 50 5.3

800 1.7844 2.0 5.9 8 22 56 1.2

1000 1.7757 1.71 3.2 4 0.08 115 -36

SF10 400 1.7784 4.6 54, 24 5.9 183 -98.

500 1.7432 3.0 22. 13 1.6 69 -17.

620 1.7244 22 -11. 9 56 42 4.2

800 1.7112 1.7 -5.0 6 17 58 -1.0

1000 1.7038 1.5 2.8 2 0.06 132 0.3

SF14 400 1.8185 5.3 -62. 27 6.8 187  -10.9

500 1.7786 2.8 -25. 15 1.9 85 2.0

620 1.7576 2.5 -12. 10 63 50 4.8

800 1.7430 1.8 55 7 20 54 -1.1

1000 1.7349 1.6 3.0 34 0.072 110 -33

SQ1 248 15121 236 72. 11 15. 76 -520.

308 1.4858 1.35 -27. 4.1 33 23 -66.0

400 1.4701 0.93 -11. 23 86 6  -9.80

500 1.4623 0.73 55 1.8 32 6  -2.80

620 1.4574 0.62 -3.0 1.2 13 13 -0.89

800 1.4533 0.58 1.7 0.4 0.04 41 024

1000 1.4504 0.67 1.3 38 0012 121 -0.08

1300  1.4469 1.0 -1.1 -14  -.0003 446  -0.02

1500 1.4446 1.4 1.2 27 -.0031 915  -0.01
LaSF9 620 1.8463 228 112 9.04 50
800 1.8326 1.76 -5.20 5.79 17

ZnSe 620 2586 14.24 30. 1173 2.0 -15.

800 2511 835 -15. 63.3 0.69 -3.

Table 2.1: Dispersion parameters for some optical materials. BK7 is the most commonly
used optical glass. The SF. .. are dispersive heavy flint glasses. SQ1 is fused silica. The dis-
persion parameters for the glasses were calculated with Sellmeir’s equations and data from
various optical catalogs. The data for the UV wavelengths must be considered as order of
magnitude approximations. The ZnSe data are taken from Ref. [2]. Using Eqs. (1.124)-
(1.128), the dispersion values given in terms of n({2) can easily be transformed into the

corresponding values for k(Q2).
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Figure 2.1: First order dispersion in um~! (left) and second order dispersion in ym™>
(right) of ZnS.

¢ : [I ¢ \"} [IRef

D D

Figure 2.2: Left: balanced Michelson interferometer. Right: for the measurement of mir-
ror dispersion, a reflecting sample is inserted between the beam splitter and the reference
mirror Ref. (dotted line). The deflected beam is shown as a dashed line orthogonal to the
displaced reference mirror Ref;.

Let us consider the basic Michelson interferometer sketched in Fig. 2.2. The
real field on the detector, resulting from the interferences of £ and Ej, is E =
E\|(t—71)+ E»(¢) with T being the delay parameter. The intensity at the output of the
interferometer is given by the electric field squared averaged over one light period
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T [Eq. (1.29)]:

t+T/2
I1(t,7) eocnf f [E1(f' —7)+ Ex())dr
1

-T/2
= 2ecnlEf(t—1)+ES(OIET(t—7)+ E5(1)]

1
= Eeocn {8%0 -7)+ 8§(t)

+ &1t =D& + &1 (- 1)E3 (e ). (2.3)

Here again, we have chosen to decompose the field in an amplitude function & and
a phase function centered around a somewhat arbitrary average frequency of the
radiation, wy, as in Egs. (1.18) and (1.19).

The actual signal recorded at the output of the interferometer is the intensity,
I, averaged over the response time 7 of the detector. In the case of ultrashort
pulses 7 > 7, holds and what is being measured is the time integral f_ z:o It ,7)dt .
We will use the notation ( ) for either integration or averaging, which results in a
quantity that is time independent. Assuming thus that all fluctuations of the signal
are averaged out by the detector’s slow response, the measured signal reduces to
the following expression:

€cn
4
eocn {A11(0) + A (0) + AT, (1) + Ay (7). (2.4)

I(7)

(€D +(ED +(E1t-DEe ™™ + & 1-DE (e 7))

On the right hand side of the first line in Eq. (2.4) we recognize correlation functi-
ons similar to that in Eq. (1.39), except that they involve the electric fields rather
than the intensities. In complete analogy with the definitions of the complex elec-
tric fields, the two complex functions correspond to positive and negative spectral
components3 of a correlation function A>(7) = ATZ(T) +AI2(T), where, e.g., the
positive frequency component is defined as:

A 12(7)

1 -~ ~ .
7 (&1t =) ™)
1 ~ .
= Eﬂlz(r)e’“’” (2.5)

The Fourier transform of the correlation of two functions is the product of the
Fourier transforms [3]:

3Spectrum is defined here with respect to the conjugate variable of the delay parameter .
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AL@ f Aly(m)e ™ ¥dr = f Ap(r)e w0 qr

1~ -
= ZST (Q = wp)E(Q— wy)
= E(QEXQ) (2.6)

In the ideal case of infinitely thin beam splitter, nondispersive broadband reflec-
tors and beam splitters, E| = E», and the Fourier transform (2.6) is real. Corre-
spondingly, the correlation defined by Eq. (2.5) is an electric field autocorrelation
which is a symmetric function with respect to the delay origin 7 = 0. This fun-
damental property is of little practical importance when manipulating data from
a real instrument, because, in the optical time domain, it is difficult to determine
exactly the “zero delay” point, which requires measurement of the relative delays
of the two arms with an accuracy better than 100 A. It is therefore more convenient
to use an arbitrary origin for the delay 7, and use the generally complex Fourier
transformation of Eq. (2.6).

For an ideally balanced interferometer, the output from the two arms is identi-
cal, and the right-hand side of Eq. (2.6) is simply the spectral intensity of the light.
This instrument is therefore referred to as a Fourier spectrometer.

Let us turn our attention to the slightly “unbalanced” Michelson interferometer.
For instance, with a single beam splitter of finite thickness d’, the beam 2 will have
traversed L = d’/cos(6,) = d (6, being the angle of refraction) more glass than
beam 1 (Fig. 2.2). It is well known that the “white light” interference fringes are
particularly elusive, because of the short coherence length of the radiation, which
translates into a very restricted range of delays over which a fringe pattern can
be observed. How will that fringe pattern be modified and shifted by having one
beam traverse a path of length 2d in glass rather than in air (assumed here to be
dispersionless)? Let E (1) refer to the field amplitude at the detector, corresponding
to the beam that has passed through the unmodified arm with the least amount of
glass. Using Eq. (1.177) with R = 1, ¥(Q) = k(Q)L and considering only terms
with n < 2 in the expansion of ¥, cf. Eq. (1.179), we find the second beam through
the simple transformation:

ExQ) = Ej(Q)exp{—iL[k(Q)-Q/cl]}
P . Q ’ ké’L 2
~ EI(Q)exp{—z[(kg—?)L+k€L(Q—wg)+T(Q—w5) ]}
2.7

-1
where, as outlined earlier, (kz;)‘1 = ([%]w ) determines the group velocity of a
4
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wave packet centered around wy and kj’ = [%]w is responsible for group velo-
4

city dispersion (GVD). The time dependent electric field is given by the Fourier

transform of Eq. (2.7). Neglecting GVD we find for the complex field envelope:

&Ex(t) = e K kio0LE, [t — (k,— 1/c)L]. (2.8)

Apart from an unimportant phase factor the obvious change introduced by the glass
path in one arm of the interferometer is a shift of time origin, i.e., a shift of the
maximum of the correlation. This is a mere consequence of the longer time needed
for light to traverse glass instead of air. The shift in “time origin” measured with
the “unbalanced” versus “balanced” Michelson is

, 1
- 1)

I:{(H—l)-l-a)g
C

AT

ﬂ

),

L dn

Z{(n— 1)-1&[5}1[}, (2.9)

where we replaced k; by Eq. (1.127). The first term in the right-hand side of the se-
cond and third equation represents the temporal delay resulting from the difference
of the optical pathlength in air (n ~ 1) and glass. The second term contains the
contribution from the group velocity in glass. In the above derivation, we have not
specifically assumed that the radiation consists of short pulses. It is also the case
for white light continuous wave (cw) radiation that the group velocity contributes
to the shift of zero delay introduced by an unbalance of dispersive media between
the two arms of the interferometer.

The third (and following) terms of the expansion of k(£2) account for the defor-
mation of the fringe pattern observed in the recording of Fig. 2.3. The propagation
can be more easily visualized in the time domain for fs pulses. The group velocity
delay is due to the pulse envelope “slipping” with respect to the waves. The group
velocity dispersion causes different parts of the pulse spectrum to travel at different
velocity, resulting in pulse deformation. The result of the Michelson interferogram
is a cross-correlation between the field amplitude of the “original” pulse and the
signal propagated through glass.

The same considerations can be applied to white light, which can be viewed
as a temporal random distribution of ultrashort pulses. The concept of incoherent
radiation being constructed out of a statistical time sequence of ultrashort pulses is
also useful for studying coherence in light—matter interactions, as will be studied
in detail in Chapter 3 on coherent interactions.
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Figure 2.3: “White light” Michelson interferogram. The fringes of the balanced interfe-
rometer are shown on the left. The fringe pattern shifts to the right and is broadened by the
insertion of a thin quartz plate in one arm of the interferometer.

The correlation [Egs. (2.4) and (2.5)] is maximum for exactly overlapping sta-
tistical phase and intensity fluctuations from both arms of the interferometer. These
fluctuations have a duration of the order of the inverse bandwidth of the radiation,
hence can be in the fs range for broad bandwidth light. Each of these individual
fs spikes will travel at the group velocity. Dispersion in group velocity causes
individual frequency components of these spikes to travel at different speeds, re-
sulting most often in pulse stretching. If the source for the interferogram of Fig. 2.3
had been a fs pulse, the recording on the right of the figure would represent the
cross—correlation between the field of the stretched—out pulse &,(f) with the origi-
nal (shorter) pulse & (¢) (of which the autocorrelation is shown on the left of the
figure). Such a measurement can be used to determine the shape of the field & (0.
The limiting case of a cross—correlation between a ¢ function and an unknown
function yields the function directly. Indeed, the unbalanced Michelson is a power-
ful tool leading to a complete determination of the shape of fs signals, in amplitude
and phase, as will be seen in Chapter 10.

In the case of the incoherent radiation used for the recording of Fig. 2.3, the
broadened signal on the right merely reflects the “stretching” of the statistical fluc-
tuations of the white light. This measurement however provides important infor-
mation on material properties essential in fs optics. To illustrate this point we
will show how the displacement of the “zero delay” point in the interferogram of
Fig. 2.3 can be used to determine the first terms of an expansion of the transfer
function of linear optical elements.
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According to Eq. (2.6), the Fourier transform of the correlation function A1+1 (1)
measured with the balanced interferometer* is simply the spectral field intensity
of the source. It is difficult, and not essential, to determine exactly the zero point,
and therefore the measurement generally provides Afl (t + 7.)explig,), which is
the function ATI (7) with an unknown phase (¢, ) and delay (7.) error. Similarly, the
cross-correlation measured after addition of a dielectric sample of thickness L/2 in
one arm of the interferometer (right hand side of Fig. 2.3) is 141*2(7' + Tf)exp(icp f),
which is the function Afz(r) with an unknown phase (¢y) and delay (7 ) error. The
ratio of the Fourier transforms of both measurements is:

- P -
A 0 ExQ) it ro-s-p0)
A'l"l (Q) e_l(QTe_‘)oe) El(Q)

e_i[k(Q)L+Q(Tf_Te)_(‘Pf_SDe)]’ (2.10)

where we have made use of Egs. (2.6) and (2.7). Unless special instrumental pro-
visions have been made to make (¢r = ¢.), and (77 = 7.), this measurement will
not provide the first two terms of a Taylor expansion of the dispersion function
k(Q). This is generally not a serious limitation, since, physically, the undetermi-
ned terms are only associated with a phase shift and delay of the fs pulses. The
white light interferometer is an ideal instrument to determine the second and hig-
her order dispersions of a sample. Writing the complex Fourier transforms of the
interferograms in amplitude and phase:

A1p(Q) = App(Q)eV 2
A11(Q) = A (Q)e!1 @ 2.11)

we find that, for an order (n) larger than 1, the dispersion is simply given by:

(n) (n) (n)
d k__[d Yo d l/’u] 2.12)

dQm | dQm  aQm

Equation (2.12) is not limited to dielectric samples. Instead, any optical trans-
fer function A which can be described by an equation similar to Eq. (1.176), can
be determined from such a procedure. For instance, the preceding discussion re-
mains valid for absorbing materials, in which case the wave vector is complex,
and Eq. (2.12) leads to a complete determination of the real and imaginary part
of the index of refraction of the sample versus frequency. Another example is the
response of an optical mirror, as we will see in the following subsection.

414?1 (7) corresponds to the third term A~f2(‘r) in Eq. (2.4) taken for identical beams (subscript 1 =
subscript 2), not to be confused with the first term A1 (0) in that same equation.
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2.3 Dispersion of interferometric structures

2.3.1 Mirror dispersion

In optical experiments mirrors are used for different purposes and are usually cha-
racterized only in terms of their reflectivity at a certain wavelength. The latter gives
a measure about the percentage of incident light intensity which is reflected. In de-
aling with femtosecond light pulses, one has however to consider the dispersive
properties of the mirror [4,5]. This can be done by analyzing the optical transfer
function which, for a mirror, is given by

H(Q) = R(Q)e™ ™, (2.13)

It relates the spectral amplitude of the reflected field £,(Q) to the incident field
Ep(Q2) .
E.(Q) = R(Q)e ™DE\Q). (2.14)

Here R(Q)? is the reflection coefficient and W(Q) is the phase response of the mir-
ror. As mentioned earlier a nonzero W(£2) in a certain spectral range is unavoidable
if R(QY) is frequency dependent. Depending on the functional behavior of W(Q)
(cf. Section 1.3 in Chapter 1), reflection at a mirror not only introduces a certain
intensity loss but may also lead to a change in the pulse shape and to chirp genera-
tion or compensation. These effects are usually more critical if the corresponding
mirror is to be used in a laser. This is because its action is multiplied by the num-
ber of effective cavity round trips of the pulse. Such mirrors are mostly fabricated
as dielectric multilayers on a substrate. By changing the number of layers and
layer thickness a desired transfer function, i.e., reflectivity and phase response, in
a certain spectral range can be realized. As an example, Fig. 2.4 shows the ampli-
tude and phase response of a broadband high—reflection mirror and a weak output
coupler. Note that, although both mirrors have very similar reflection coefficients
around a center wavelength Ay, the phase response differs greatly. The physical ex-
planation of this difference is that R(Q2) [or R(4)] far from wq = 27rc/ g (not shown)
influences the behavior of W(Q) [or ¥(A)] near wy.

Before dealing with the influence of other optical components on fs pulses, let
us discuss some methods to determine experimentally the mirror characteristics. In
this respect the Michelson interferometer is not only a powerful instrument to ana-
lyze a sample in transmission, but it can also be used to determine the dispersion
and reflection spectrum of a mirror. The interferogram from which the reference
spectrum can be obtained is shown on the left of Fig. 2.3. Such a symmetric in-
terference pattern can only be achieved in a well compensated Michelson interfe-
rometer (left part of Fig. 2.2) with identical (for symmetry) mirrors in both arms,
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Figure 2.4: Amplitude and phase response for a high reflection multilayer mirror (dashed
line) and a weak output coupler (solid line) as a function of the wavelength (from [5]).

which are also broadband (to obtain a narrow correlation pattern). For a most accu-
rate measurement, the mirror to be measured should be inserted in one arm of the
interferometer rather than substituted to one of the reference mirrors. Otherwise,
the dispersive properties of that reference mirror cannot be cancelled. In Fig. 2.2
(left), a sample mirror is indicated as the dotted line, deflecting the beam (dashed li-
nes) towards a displaced end mirror. As in the example of the transmissive sample,
insertion of the reflective sample can in general not be done without losing the rela-
tive phase and delay references. The cross-correlation measured after substitution
of the sample mirror in one arm of the interferometer (right hand side of Fig. 2.3)
is ATZ(T +75) exp(iga f), which is the function ATZ(T) with an unknown phase (¢r)
and delay (7) error. The ratio of the Fourier transforms of both measurements is
in analogy with Eq (2.10):

I‘EE () e_i.(QTf_‘pf) ?2(9) e—i[Q(Tf—Te)—(tﬁf—sDe)]
Ah Q) e~ i(QTe—pe) E(Q)
— R(Q)Ze—i[Z‘P(QHQ(Tf—Te)—(wf—%)] ) (2.15)

This function is independent of the dispersive and absorptive properties of the refe-
rence mirrors. The squared field reflection coefficient and the factor 2 in the phase
account for the fact that the beam is reflected twice on the sample mirror. Both the
amplitude R and phase W of the transfer function H(Q) can be extracted from the
measurement, with the limitation that, in general, this measurement will not pro-
vide the first two terms of a Taylor expansion of the phase function W(£2). Again,
this is not a serious limitation, since, physically, the undetermined terms are only
associated with a phase shift and delay of the fs pulses. Using the notations of
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Egs. (2.11), the phase shift —¥(Q) upon reflection of the mirror is simply given by:
1
Y(Q) = —5[1/’12(9)—!!/11(9)+a+b9] (2.16)

where a and b are constants that can generally not be determined,

The Michelson interferometer using white light is one of the simplest and
most powerful tools to measure the dispersion of transmissive and reflective op-
tics. Knox et al. [6] used it to measure directly the group velocity by measuring
the delay induced by a sample, at selected wavelengths (the wavelength selection
was accomplished by filtering white light). Naganuma et al. [7] used essentially
the same method to measure group delays, and applied the technique to the mea-
surement of “alpha parameters” (current dependence of the index of refraction in
semiconductors) [8]. In fs lasers, the frequency dependence of the complex re-
flection coefficient of the mirrors contributes to an overall cavity dispersion. Such
a dispersion can be exploited for optimal pulse compression, provided there is a
mechanism for matched frequency modulation in the cavity. Dispersion will sim-
ply contribute to pulse broadening of initially unmodulated pulses, if no intensity
or time dependent index is affecting the pulse phase, as will be discussed later. It is
therefore important to diagnose the fs response of dielectric mirrors used in a laser
cavity.

A direct method is to measure the change in shape of a fs pulse, after reflection
on a dielectric mirror, as proposed and demonstrated by Weiner et al. [9]. It is clear
in the frequency domain that the phases of the various frequency components of the
pulse are being scrambled, and therefore the pulse shape should be affected. What
is physically happening in the time domain is that the various dielectric layers of
the coating accumulate more or less energy at different frequencies, resulting in
a delay of some parts of the pulse. Therefore, significant pulse reshaping with
broadband coatings occurs only when the coherence length of the pulse length is
comparable to the coating thickness. Pulses of less than 30 fs duration were used
in Refs. [9, 10]. As shown above, determination of the dispersion in the frequency
domain can be made with a simple Michelson interferometer. The latter being a
linear measurement, yields the same result with incoherent white light illumination
or femtosecond pulses of the same bandwidth.

An alternate method, advantageous for its sensitivity, but limited to the determi-
nation of the group velocity dispersion, is to compare glass and coating dispersion
inside a fs laser cavity. As will be seen in Chapter 6, an adjustable thickness of
glass is generally incorporated in the cavity of mode-locked dye and solid state la-
sers, to tune the amount of group velocity dispersion for minimum pulse duration.
The dispersion of mirrors can be measured by substituting mirrors with different
coatings in one cavity position, and noting the change in the amount of glass re-
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Figure 2.5: Schematic diagram of a Fabry-Perot interferometer. (a) Normal incidence.
f15 is the transmission from outside (1) to inside (2); 7>; the transmission from inside (2)
to outside (1); 7> the reflection from outside (1) to inside (2) and 7»; the reflection from
inside (2) to outside (1). (b) Tilted Fabry-Perot at an angle 6,,,. The internal angle of
incidence is 6;,. The fields add up in phase along a wavefront at N X BC (N — oo) from B.

quired to compensate for the additional dispersion [5,11]. The method is very
sensitive, because the effect of the sample mirror is multiplied by the mean number
of cycles of the pulse in the laser cavity. It is most useful for selecting mirrors for
a particular fs laser cavity.

2.3.2 Fabry-Perot and Gires-Tournois interferometer
The symmetric Fabry-Perot

So far we have introduced (Michelson) interferometers only as a tool to split a
pulse and to generate a certain delay between the two partial pulses. In general,
however, the action of an interferometer is more complex. This is particularly
true for multiple-beam devices such as a Fabry—Perot interferometer. Let us first
consider a symmetric Fabry-Perot, with two identical parallel dielectric reflectors
spaced by a distance d. We will use the notations 7;; for the field transmission, and
7ij for the field reflection, as defined in Fig. 2.5. When the Fabry-Perot is tilted,
the fields add in phase along a wavefront normal to the rays (outside the Fabry-
Perot) as sketched in Fig. 2.5 (b). If kg is the wave vector in air and k the optical
path inside the Fabry-Perot, the complex field transmission function is found by
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summing the successive optical path:

rf-'(Q) — flsz]e—i(kAB+koN‘BC) +

ikBXD —i[kAB+ko(N—-1)BC]

fiohre “Fo1ipe

. 2 .
ikBXD e—l[kAB+k0(N—2)BC] + .. (217)

+i12 (6_ ' 7’217’21)
The exponential exp[—iko/N BC] can be put in factor of the whole expression. Being
just a phase factor, it is generally ignored. The optical path AB is nd/ cos 8;,, where
n is the index of refraction inside the Fabry-Perot, while the difference in optical

path BXD — BC appearing in the power series is:

2nd 2nd  2ndsin’6;, 2ndcosb;
R ondtan 6y, sinyy, = —e _ M Bin _ ZRECOSTn (5 1g)
cos B, cos 8, cos Bout c
Substituting in Eq. (2.17):
- o . ) 1
T(Q) = F1pfpy e~ tkd/ cosOin) (2.19)

1- ;;%] e~2ikd cos b, :

The dependence on tilt angle 6;, is somewhat counter-intuitive. The term d/ cos 6;,
in the exponential on the numerator indicates that, as expected, the optical path
length increases with angle. The exponential on the denominator dcos8;, shows
instead the opposite trend, as if the optical path were to shrink as the Fabry-Perot is
tilted. This is not the case, as it is a later wavefront originating at B that coincides
with the one issued from C. The assumption of a plane wave of infinite extend was
made in the derivation of Eq.(2.17). In a beam of limited transverse size, the sum
in Eq.(2.17) is limited to a finite number N of reflections before the rays wander
off the beam cross section. The number N decreases with the tilt angle 6;,, leading
to the phase factor in the denominator turning over from dcos#é;, to d/cos0;,, as
demonstrated experimentally in reference [12].

The total phase shift of a round-trip inside the Fabry-Perot, including the phase
shift ¢, upon reflection on each mirror is:

0(Q2) = 2¢, —2k()d cos ;. (2.20)

Introducing ¢ in Eq. (2.19) leads to the transfer function for the symmetrical Fabry-

Perot:
1

_ 2 s’
1 5.e

T(Q) = fiafy ekl 0s0) (2.21)

where R = |Fi2|? is the intensity reflection coefficient of each mirror [13]. A similar
procedure leads to the field reflection:

N o . . 1
R(Q) = Fip + F1oba  Fop e kA0St — (2.22)
1—72 eid
21
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As shown in Appendix A, the phases of the field reflection and transmission coef-
ficients of the coatings 7;; and #;; have to be such that:

(712?2“1 + ?Tzflg) + (721?{2 + 7’;11712)71 =0, (2.23)

where 7 is the index of refraction of the substrate of the coating, and we considered
only normal incidence. As mentioned in Appendix A, Eq. (2.23) for the symmetric
interface (n = 1) applies also to any optical system, hence to the field reflection and
transmission of the Fabry-Perot:

RT*+RT =0. (2.24)

The latter equation is general, applying as well to the general expression Egs. (2.21)
and (2.22) and to the asymmetric Fabry-Perot or Gires-Tournois to be discussed
next. There is however a caveat that the energy conservation (2.24) assumes that
the two coatings satisfy their own energy conservation relation Eq. (2.23).

In general, the exact phase shifts of a coating are not known. Fortunately,
within the frequency range where they are constant, the values of the phase shifts
of the 2 coatings affect only the position of the resonances, leaving the shape and
width of the transmission curve unchanged. Therefore, it is convenient to use the
particular phase combination 712f1 — 72721 = 1 and 715 = -7, for which the field
transmission reduces to:

(1 _ R)e—ikd/ cosb;,

T@= 1 —Reid

(2.25)

For that same phase combination, one finds the complex reflection coefficient of

the Fabry-Perot:
)

RQ) = ———= 2.26
@=—— (2.26)
One can easily verify that, if — and only if — kd is real:

IR +IT = 1. 2.27)

Equations (2.25) and (2.26) are transfer functions for the field spectrum. The
dependence on the frequency argument Q occurs through k = n(Q)Q/c and pos-
sibly ¢,(Q). With n(Q) complex, the medium inside the Fabry-Perot is either an
absorbing or an amplifying medium, depending on the sign of the imaginary part
of the index. We refer to a problem at the end of this chapter for a study of the
Fabry-Perot with gain.
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Figure 2.6: Effect of a Fabry-Perot interferometer on a light pulse. (a) If the mirror
spacing is larger than the geometrical length of the incident pulse, an exponentially de-
caying sequence of pulses follows the Fabry-Perot, like ducklings follow mother duck. (b)
If the mirror spacing is smaller than the geometric length of the incident pulse, the pulse
spectrum is spectrally filtered, resulting a longer transmitted pulse.

The functions 7 (©) and R(Q) are complex transfer functions, which implies
that, for instance, the transmitted field is:

Eou(©) = T (QEin(Q) (2.28)

where E;, is the incident field. Equation (2.28) takes into account all the dynamics
of the field and of the Fabry-Perot. In the case of a Fabry-Perot of thickness d <
cTp, close to resonance (6(€2) < 1), the transmission function 77(Q) is a Lorentzian,
with a real and imaginary part connected by the Kramers Kronig relation. We refer
to a problem at the end of this chapter to show how dispersive properties of a
Fabry-Perot can be used to shape a chirped pulse.

In the case of a Fabry-Perot of thickness d > ct), the pulse spectrum covers
a large number of Fabry-Perot modes. The free spectral range of the Fabry—Perot
interferometer is much smaller than the spectral width of the pulse. Hence the
product (2.28) will represent a frequency comb, of which the Fourier transform is
a train of pulses. Intuitively indeed, we expect the transmission and/or reflection of
a Fabry-Perot interferometer to consist of a train of pulses of decreasing intensity
if the spacing d between the two reflecting surfaces is larger than the geometrical
pulse length, [Fig. 2.6(a)]. The latter condition prevents interference between field
components of successive pulses.There is however an interesting situation where
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interference between successive pulses is restored. If the Fabry-Perot is inserted
in the cavity of a mode-locked laser, its modes couple to those of the laser. The
successive pulses form a “minicomb” intertwined with the main laser comb [12,
14,15].

On the other hand if d is smaller than the pulse length the output field is deter-
mined by interference, as illustrated in Fig. 2.6(b). An example of a corresponding
device was the dielectric multilayer mirror discussed before, which can be consi-
dered as a sequence of many Fabry—Perot interferometers. Here the free spectral
range of one interferometer is much broader than the pulse spectrum and it is the
behavior around a resonance which determines the shape of pulse envelope and
phase. The actual pulse characteristics can easily be determined by multiplying the
field spectrum of the incident pulse with the corresponding transfer function (2.25).
For a multilayer mirror this function can be obtained by a multiplication of matri-
ces for the individual layers, as detailed in Appendix A.
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Figure 2.7: Schematic diagram of a Gires—Tournois interferometer.

The Gires-Tournois interferometer

Among the various types of interferometers that can be used for pulse shaping, we
choose to detail here the Gires—Tournois interferometer [16]. This interferometer
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is nothing else than an asymmetric Fabry-Perot in the limit of one reflector having
a reflectivity of R = 1. This leads in principle to a very high and almost constant
amplitude transmission while the spectral phase can be tuned continuously. This
device has been used to control the GVD in a fs laser in a similar manner as gratings
and prisms. The Gires—Tournois is topologically identical to a ring interferometer,
with all mirrors but one being perfect reflectors. The lone transmitting mirror is
used as input and output. The Gires—Tournois is also topologically identical to a
high-Q microring in integrated optics, with input and output made through evanes-
cent wave coupling to a fiber. For all these devices, the output amplitude is close to
unity, whether or not the wave inside the ring is at resonance or not. It is left as an
exercise at the end of this chapter to transpose the formulae of the Gires—Tournois
to the situation of a ring interferometer.

The Gires—Tournois interferometer is a particular case of asymmetric Fabry-
Perot interferometer with one mirror (mirror M;) having a reflection coefficient
of (almost) 1. Consequently the device is used in reflection. A simple approach
is to derive an equation for the field reflection usiing the same particular phase
combination 715721 — Fi221 = 1 and 71 = =75, that led to Egs. (2.25) and (2.26).
The transfer function in the limit of mirror M, having a reflection coefficient of 1
is:

—r+é'

R(Q)e ™ = (2.29)

1 —re®
where § is the phase delay® between two successive partial waves that leave the
interferometer and r is the (real) amplitude reflection of M, (assumed to be non-
dispersive).

The phase response determined by Eq. (2.29) can be written as

(2.30)

2 .
‘P(Q):—arctan[ (” —Dsind ]

2r—(r2+1)cosd

Taking the derivative of both sides of this expression, and dividing by [tan®> ¥ +
1] yields:
a¥y (r*=1)=2r(r* = 1)coss ds
dQ  (1+r%)2+4rcosd[rcosd—(1+7r2)] dQ’
It is interesting to find the expression for the group delay at the exact resonances,
i.e. the values of Q that make ¢ = 2N

_(r+1) ds
res \r—1)dQ

SIn the definition of the phase delay (2.20) applied to the Gires-Tournois interferometer, 6 is the
internal angle.

(2.31)

d¥
dQ

(2.32)

res
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Figure 2.8: Gires-Tournois interferometer for fs light pulses using dielectric multilayers.
By rotating two parallel interferometers the overall dispersion can be adjusted through a
change of the external angle of incidence ® and the number of reflections. Note, the beam
direction is not changed. The lateral displacement can be compensated by a second pair of
interferometers (from [17]).

The group velocity dispersion of the device is calculated from the second derivative
of the expression (2.31):

2v (r* = 1)-2r(>~Dcoss  d*6
dQ?  (1+r2)2+4rcosd[rcoss — (1 +r2)] dQ2
2r(r2 ~ )sin6[4r(r? + 1) cos 5 —dr? cos?6 — 2 - 3] ( ds )2
+ - .
{(1+72)2 +4rcosdlrcoss — (1 +r2)]) agd

(2.33)

As shown in the definition Eq. (2.20), the second derivative of ¢ contains the
group velocity dispersion (—k”’) of the material inside the interferometer. This ma-
terial dispersion is enhanced by the factor (r+ 1)/(r — 1) in condition of resonance.
This factor can be very large in the case a of high finesse resonator (1 —r <« 1).

The GVD given by Eq. (2.33) can be tuned continuously by adjusting 6 which
can be either through a change of the mirror separation d or through a change of
the external angle of incidence ®. Gires and Tournois [16] conceived this inter-
ferometer to adapt to optical frequencies the pulse compression technique used in
radar (sending a frequency modulated pulse through a dispersive delay line). Du-
guay and Hansen were the first to apply this device for the compression of pulses
from a He-Ne laser [18]. Since typical pulse durations were on the order of several
hundred ps the mirror spacing needed to be in the order of few mm. To use the
interferometer for the shaping of fs pulses the corresponding mirror spacing has
to be in the order of few microns. Heppner and Kuhl [19] overcame this obvious
practical difficulty by designing a Gires—Tournois interferometer on the basis of
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dielectric multilayer systems, as illustrated in Fig. 2.8(a). The 100% mirror M>
is a sequence of dielectric coatings with alternating refractive index deposited on
a substrate. A certain spacer of optical thickness d consisting of a series of 1/2
layers of one and the same material is placed on top of M,. The partially reflective
surface M is realized by one A/4 layer of high refractive index. The dispersion
of this compact device can be tuned by changing the angle of incidence and/or the
number of passes through the interferometer. A possible arrangement which was
successfully applied for GVD adjustments in fs lasers [17] is shown in Fig. 2.8(b).

Gires-Tournois as a limit of asymmetric Fabry-Perot interferometer

Using the same procedure as for the symmetric Fabry-Perot, one finds the fol-
lowing expressions for the transmission and reflection of the asymmetric Fabry-
Perot:

flafyze™
g = — 2.34
1 = Fp Fpze™2i¢ 239
Fiofae2
R = i+ —12021€ (2.35)

1- 721 7236_2i¢

There is always a resonance dip in the reflection. Figure 2.9 show the reflection,
transmission and phase for a 6 mm thickness fused silica Fabry-Perot, The reflecti-
vities of 99% and 99.975% provide a very narrow resonance (50 MHz FWHM)
and a correspondingly steep phase dispersion. Even the very high reflectivity of
99.975% does not prevent a transmission of nearly 10% at resonance.

2.3.3 Chirped mirrors

As mentioned in the previous section, the Gires-Tournois interferometer exhibits a
reflectivity close to one over a broad spectrum. This was accomplished by an end
mirror of high reflectivity (M, in Fig. 2.8). The dispersion on the other hand can
be controlled by the spacer and the front mirror. This is expressed in the phase
6(Q) and ¢,(Q) in Eq. (??). The problem is that both mirrors at the same time form
a Fabry-Perot structure that has relatively narrow resonances and subsequently a
rather complicated dispersion behavior. The most desired alternative would be a
process to generate a pre-defined reflection and phase behavior, R(Q2) and ¥(Q).
Optimization programs applied to dielectric multi-layer systems offer such an in-
triguing and interesting possibility. A dielectric multi-layer system consists of a
sequence of films characterized by a certain refractive index n; and thickness d;. In
principle, computer algorithms can be used to find a sequence of (d;,n;) combina-
tions representing individual films that come closest to a pre-defined reflection and
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Figure 2.9: Transmission and reflection characteristics of a 6 mm Fabry-Perot with coa-
tings of 99% and 99.975% reflectivity. (a) intensity transmission; (b) phase of the transmis-
sion transfer function, (c) imaginary versus real part of the transmission transfer function;
(d) intensity reflection; (e) phase of the reflection transfer function, (f) imaginary versus
real part of the reflection transfer function,

phase behavior in a certain spectral range. Of course, there are certain technical
constraints that need to be considered, for example the total thickness and number
of layers, the manufacturing tolerances in n; and d;, and the limited choice of avai-
lable refractive indices n; (suitable materials). This approach will gain importance
in the future as the amplitude and phase responses needed become more and more
complicated.

In many cases mirrors are desired that have a constant reflectivity and certain
dispersion behavior, for example a constant amount of GVD within a pre-defined
spectral range. This idea was pursued by Szipoks et al. [20], leading to what is now
called chirped mirrors. The basic idea is sketched in Fig. 2.10. High-reflection mir-
rors typically consist of stacks of alternating high and low refractive index quarter-
wave layers. A chirped mirror is a sequence of those stacks with changing reso-
nance frequency. Wave-packets of different center frequency are thus reflected at
different depths, making the group delay upon reflection a function of frequency.

Unfortunately this is an oversimplified picture that neglects subresonances in
particular between the layers and the first air-film interface. This leads to a modu-
lation of the GVD. For this reason computer optimization is necessary to tune the
film parameters for a smooth dispersion curve.

Improvements in the initial layer sequence used as a starting point for the fi-
nal computer optimization have been accomplished, for example, by modulating
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Figure 2.10: Wave packets of different center frequencies are reflected at different depths
of a chirped mirror. The mirror consists of stacks of alternating high and low refractive
index layers at different resonance frequencies.

the ratio of the thickness of the high- and low-index layer of the chirped mirror
(double chirped mirror) [21], by superimposing a quasi-periodic modulation on
the linear modulation of the layer thickness [22], and by coating the backside of
the substrate [23,24]. As we will see in following chapters such mirrors have made
an impressive impact on femtosecond laser source development.

2.4 Focusing elements

2.4.1 Singlet lenses

One main function of fs pulses is to concentrate energy in time and space. The abi-
lity to achieve extremely high peak power densities depends partly on the ability
to keep pulses short in time, and concentrate them in a small volume by focusing.
The difference between group and phase velocity in the lens material can reduce
the peak intensity in the focal plane by delaying the time of arrival of the pulse
front propagating through the lens center relative to the pulse front propagating
along peripheral rays. The group velocity dispersion leads to reduction of peak in-
tensity by stretching the pulse in time. As pointed out by Bor [25,26], when simple
focusing singlet lenses are used, the former effect can lead to several picosecond
lengthening of the time required to deposit the energy of a fs pulse on focus.

Let us assume a plane pulse and phase front at the input of a spherical lens
as sketched in Fig. 2.11. According to Fermat’s principle the optical path along
rays from the input phase front to the focus is independent of the radius coordinate
r. The lens transforms the plane phase front into a spherical one which converges
in the (paraxial) focus. Assimilating air as vacuum, it is only while propagating
through the lens that the pulses experience a group velocity v, different from the
phase velocity v, = ¢/n. The result is a pulse front that is delayed with respect to
the (spherical) phase front, depending on the amount of glass traversed. As we
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pul;c and
phase front

Figure 2.11: (a) delay of the pulse front with respect to the phase front, in the case of a
singlet lens. (b) spread of the focal region due to chromatic aberration.

have seen in Chapter 1, the group velocity is:

i\~ c
Vg=|—=| =——, (2.36)
¢ (dQ ) n— A
where Ay is the wavelength in vacuum. The difference in propagation time between

the phase front and pulse front after the lens at radius coordinate r is:

AT(r) = (l - l)L(r), (2.37)

Up Vg
where L(r) is the lens thickness. The group delay AT'(r) is also the difference of
the time of arrival at the focus of pulses traversing the lens at distance r from the
axis and peripheral rays touching the lens rim. Pulse parts travelling on the axis
(r = 0) will arrive delayed in the focal plane of a positive lens compared with pulse
parts traversing the lens at » > O . For a spherical thin lens, the thickness L is given
by

2 2
B ro—r 1 _i
L(r) = > (171 Rz) (2.38)

where R, are the radii of curvature of the lens and ry is the radius of the lens
aperture.® Substituting the expressions for the group velocity (2.36) and for the
lens thickness (2.38) into Eq. (2.37) yields for the difference in time of arrival
between a pulse passing through the lens at the rim and at r:

ro=r (1 1\(.dn
AT(r) = 2 — 2= 2.
" 2 (Rl Rz)( d/l) (2.39)
r(z)—rz d (1
= A—|—
2 d/l(f

6Regarding sign considerations we will use positive (negative) R for refracting surfaces which
are concave (convex) towards the incident side.



92 CHAPTER 2. FEMTOSECOND OPTICS

where the focal length f has been introduced by 1/f = (n— 1)(RI1 -R, . Equa-
tion (2.40) illustrates the connection between the radius dependent pulse delay and
the chromaticity d/dA(1/f) of the lens. For an input beam of radius r, the pulse
broadening in the focus can be estimated with the difference in arrival time AT’ of
a pulse on an axial ray and a pulse passing through the lens at ry:

b d (1

To illustrate the effects of group velocity delay and dispersion, let us assume
that we would like to focus a 50 fs pulse at the excimer laser wavelength of 248
nm (KrF) down to a spot size of 0.6 um, using a fused silica lens (singlet) of
focal distance f = 30 mm. Let us further assume that the input beam profile is
Gaussian. Since the half divergence angle in the focused beam is 6 = A/(wwy),
the radius w of the Gaussian beam [radial dependence of the electric field: &) =
S(O) expf —r?/w?}] incident on the lens should be approximately 6f = (1/mwp) f = 4
mm. To estimate the pulse delay we evaluate AT’ at rp, = w:

, w? d (1
AT (}’bZW) = %ﬂﬁ(?)

_W_Z(A@)
2cf(n-1\"da

0> f dn
2c(n-1) (’15)' @41)

For the particular example chosen, n ~ 1.51, Adn/dA ~ —0.17, and the difference in
time of arrival (at the focus) of the rays at » = 0 and r, = w is ~ 300 fs, which can
be used as a rough measure of the pulse broadening.

The effect of the chromaticity of the lens on the spatial distribution of the light
intensity near the focal plane is a spread of the optical energy near the focus, be-
cause different spectral components of the pulse are focused at different points on
axis. For a bandwidth limited Gaussian pulse of duration 7, = V2In2 759 with
spectral width Ad = 0.4411%/ cTp, the focus spreads by the amount:

2d(l/f)A [ 0.441 dn

A=l = M=oy s, A

(2.42)

Applying Eq. (2.42) to our example of a 30 mm fused silica lens to focus a 50 fs
pulse, we find a spread of Af = 60 um, which is large compared to the Rayleigh
range of a diffraction limited focused monochromatic beam py = wy/6 ~ 5 um.
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We can therefore write the following approximation for the broadening of the

beam: w(Af)/wo = \1+(Af/200)* = (Af/2pg). Substituting the value for Af
from Eq. (2.42):

w(Af) _ _0.44x 0> f (/l@) . _0‘447TAT" (2.43)

wo T, 2c(n—1)\ da T

We note that the spatial broadening of the beam due to the spectral extension of the
pulse, as given by Eq. (2.43), is (within a numerical factor) the same expression as
the group velocity delay [Eq. (2.41)] relative to the pulse duration. In fact, neither
expression is correct, in the sense that they do not give a complete description of
the spatial and temporal evolution of the pulse near the focus. An exact calculation
of the focalization of a fs pulse by a singlet is presented in the subsection that
follows.

In addition to the group delay effect, there is a direct temporal broadening of the
pulse in the lens itself due to GVD in the lens material, as discussed in Section 1.5.
Let us take again as an example the fused silica singlet of 30 mm focal length and
of 16 mm diameter used to focus a 248 nm laser beam to a 0.6 um spot size. The
broadening will be largest for the beam on axis, for which the propagation distance
through glass is L(r = 0) = dy = r(z)/{Zf(n — 1)} =2.1 mm. Using for the second-
order dispersion at 250 nm Ad’n/dA? ~ 2.1 um~' [25], we find from Eq. (1.136)
that a 50 fs (FWHM) unchirped Gaussian pulse on axis will broaden to about 60
fs. If the pulse has an initial upchirp such that the parameter a defined in Eq. (1.41)
is a = -5, it will broaden on axis to 160 fs. At a wavelength of 800 nm, where the
dispersion is much smaller than in the UV (see Table 2.1), a bandwidth limited 50
fs pulse would only broaden to 50.4 fs.

The example above illustrates the differences between peak intensity reduction
at the focal point of a lens resulting from the difference between group and phase
velocity, and effects of group velocity dispersion in the lens material. The latter is
strongly chirp dependent, while the former is not. The spread of pulse front arrival
time in the focal plane is independent of the pulse duration and is directly related
to the spot size that will be achieved (the effect is larger for optical arrangements
with a large F-number). The relative broadening of the focus, occ AT’ /7, is howe-
ver larger for shorter pulses. The group velocity dispersion effect is pulse width
dependent, and, in typical materials, becomes significant only for pulse durations
well below 100 fs in the VIS and NIR spectral range.
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Figure 2.12: Diffraction geometry for focusing.

2.4.2 Space-time distribution of the pulse intensity at the focus of a
lens

The geometrical optical discussion of the focusing of ultrashort light pulses pre-
sented above gives a satisfactory order of magnitude estimate for the temporal bro-
adening effects in the focal plane of a lens. We showed this type of broadening
to be associated with chromatic aberration. Frequently the experimental situation
requires an optimization not only with respect to the temporal characteristics of
the focused pulse, but also with respect to the achievable spot size. To this aim
we need to analyze the space-time distribution of the pulse intensity in the focal
region of a lens in more detail. The general procedure is to solve either the wave
equation (1.78), or better the corresponding diffraction integral’, which in Fre-
snel approximation was given in Eq. (1.192). However, we cannot simply separate
space and time dependence of the field with a product ansatz (1.188) since we ex-
pect the chromaticity of the lens to induce an interplay of both. Instead we will
solve the diffraction integral for each “monochromatic” Fourier component of the
input field E(Q) which will result in the field distribution in a plane (x,y,z) behind
the lens, E(x,y,z,Q). The time-dependent field E(x,y,z,?) then is obtained through
the inverse Fourier transform of E(x, v,z,€) so that we have for the intensity distri-
bution:

I(x,y,2,0) o« |F " HE(x,y,z, O} (2.44)

The geometry of this diffraction problem is sketched in Fig. 2.12. Assuming
plane waves of amplitude Ey(2) = Eo(x’,y’,7’ = 0,€Q) at the lens input, the dif-

7For large F numbers the Fresnel approximation may no longer be valid, and the exact diffraction
integral including the vector properties of the field should be applied.
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fraction integral to be solved reads, apart from normalization constants:

Q . J ’
E(oy0 Qe f f By @)T1( )Ty e B0+ gyay  (2.45)

where T, and T, are the transmission function of the lens and the aperture stop,
respectively. The latter can be understood as the lens rim in the absence of ot-
her beam limiting elements. The lens transmission function describes a radially
dependent phase delay which in case of a thin, spherical lens can be written:

Q
Tr(xX',y") =exp {—i? [nL(r")+dy— L(r')]} (2.46)
with 7> = x> +y"? and

re(1 1 r'?
Lir)y=dy—-—|=—-—=— =dy————, 247
(r) =do ( ) 0 3 f (2.47)
where dj is the thickness in the lens center. Note that because of the dispersion
of the refractive index n, the focal length f becomes frequency dependent. For a
spherical opening of radius r, the aperture function T is simply:

, 1 for X2 4y?=r2< r(’)2
Ta(r) = { 0 otherwise (2.48)
If we insert Eq. (2.47) into Eq. (2.46) we can rewrite the lens transmission function
as: )
’ . Q\r 1 1
T.(x',y") =exp {—z [kg(Q)do - (kg(Q) - ?) > (R_l - R_z)]} (2.49)
where o
ko(Q) = ?n(Q) (2.50)

is the wave vector in the glass material. Substituting this transmission function in
the diffraction integral Eq.(2.45) we find for the field distribution in the focal plane:

72
EQ) « %e—ikg(ﬂ)do ffTAEO(Q) exp [i (kg(Q) — %)%(Ril — Riz)]

xe 2[00+ 0 gy gy 2.51)

The exponent of the second exponential function is radially dependent and is re-
sponsible for the focusing, while the first one describes propagation through a dis-
persive material of length dy. For a closer inspection let us assume that the glass
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Figure 2.13: Space-time distribution of the pulse intensity in the focal plane of a lens:
(a) Focusing without chromatic or spherical aberration, (b) Focusing with chromatic aber-

ration 7/T = 20. The input pulse was chosen to vary as e™*/ T yis the optical coordinate
72

2 . .
defined as v = rjk, /x> +y?/f; and T = T"(rp) = ‘%n’(ﬁ)‘ is a measure for the dis-

persion (from [27]). (c) Focusing with chromatic and spherical aberration. The intensity
distribution in the plane of the marginal focus is shown (from [28]).
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material is only weakly dispersive so that we may expand k,(€2) and [kg(£2) —Q/c]
up to second order. In both exponential functions this will result in a sum of
terms proportional to (Q —wy)™ (m =0,1,2). According to our discussion in the
section about linear elements, optical transfer functions which have the structure
exp[—ib1 (Q — wy)] give rise to a certain pulse delay. Because b, is a function of
r’ this delay becomes radius dependent, a result which has already been expected
from our previous ray-optical discussion. The next term of the expansion (m = 2)
is responsible for pulse broadening in the lens material.

A numerical evaluation of Eq. (2.51) and subsequent inverse Fourier transform
[Eqg. (2.44)] allows one to study the complex space-time distribution of the pulse
intensity behind a lens. An example is shown in Fig. 2.13. In the aberration-
free case we recognize a spatial distribution corresponding to the Airy disc and no
temporal distortion. The situation becomes more complex if chromaticity plays a
part. We see spatial as well as temporal changes in the intensity distribution. At
earlier times the spatial distribution is narrower. This can easily be understood if
we remember that pulses from the lens rim (or aperture edge) arrive first in the
focal plane and are responsible for the field distribution. At later times pulses from
inner parts of the lens arrive. The produced spot becomes larger since the effective
aperture size is smaller. If we use achromatic doublets (cf. next Section 2.4.3) the
exponential proportional to (€2 —wy) in the corresponding diffraction integral does
not appear. The only broadening then is due to GVD in the glass material.

Interesting effects occur if spherical aberration is additionally taken into ac-
count [28] which is essential to correctly model strong focusing with singlet len-
ses. As known from classical optics, spherical aberration results in different focal
planes for beams passing through the lens at different ». Since ultrashort pulses pas-
sing through different lens annuli experience the same delay, almost no temporal
broadening occurs for the light which is in focus, as illustrated in Fig. 2.13(c). The
space-time distribution in the focal area can differ substantially from that obtained
with a purely chromatic lens.

To measure the interplay of chromatic and spherical aberration in focusing ul-
trashort light pulses, one can use an experimental setup as shown in Fig. 2.14(a).
The beam is expanded and sent into a Michelson interferometer. One arm contains
the lens to be characterized, which can be translated so as to focus light passing
through certain lens annuli onto mirror M. Provided the second arm has the pro-
per length, an annular interference pattern can be observed at the output of the
interferometer. The radius of this annulus is determined by the setting of Af. If
no spherical aberration is present, an interference pattern is observable only for
Af ~ 0 and a change of the time delay by translating M, would change the radius
of the interference pattern. With spherical aberration present, at a certain Af, an
interference pattern occurs only over a delay corresponding to the pulse duration
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while the radius of the annulus remains constant. This can be proved by measuring
the cross-correlation, i.e., by measuring the second harmonic signal as function of
the time delay. The width of the cross-correlation does not differ from the width of
the autocorrelation which is measured without the lens in the interferometer arm.
Figure 2.14(b) shows the position of the peak of the cross-correlation as function
of Af and the corresponding r, respectively. For comparison, the delay associated
with chromatic aberration alone is also shown (dashed curve).

UV filter
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Figure 2.14: (a) Correlator for measuring the effect of chromatic and spherical aberration
on the focusing of fs pulses. (b) Measured pulse delay (data points) as a function of the lens
position (A f — deviation from the paraxial focus) and the corresponding radial coordinate
r of light in focus. The solid line is obtained with ray—pulse tracing; the dashed curve
shows the effect of chromatic aberration only. Lens parameters: fy = 12.7 mm, BK7 glass
(from [29]).

2.4.3 Achromatic doublets

The chromaticity of a lens was found to be the cause for a radial dependence of the
time of arrival of the pulse at the focal plane, as was shown by Eq.(2.40). Therefore
one should expect achromatic optics to be free of this undesired pulse lengthening.
To verify that this is indeed the case, let us consider the doublet shown in Fig. 2.15.
The thicknesses of glass traversed by the rays in the media of index n; and n; are
L; and L, and are given by:

2
L =d —r—(i—i) (2.52)
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Figure 2.15: Ray tracing in an achromat (from [25]).
and
2
rf1 1
Ly=dy—-—|—-— 2.53
2=dy= 7 ( R R3) (2.53)

where d| » is the center thickness of lens 1,2. The inverse of the focal length of the
doublet lens is:

1 1 1 1 1
? :(nl—l)(R—l—R—z)-F(nz—l)(Ie—z—Iz). (254)

The condition of achromaticity %(1/ f) =0 gives an additional relation between
the radii of curvature R; and the indices n;. The expression for the transit time in
glass [25] in which we have inserted the chromaticity of the doublet is:

di dn; d> dn, At d (1
Ty =L a2 20, 2220 20 (), 2.
" C{nl /ld/l}+c{n2 2 }+2C dﬂ(f) (2.55)

Equation (2.55) indicates that, for an achromatic doublet for which the third term
on the right hand side vanishes, the transit time has no more radial dependence. The
phase front and wave front are thus parallel, as sketched in Fig. 2.15. In this case,
the only mechanism broadening the pulse at the focus is group velocity dispersion.
The latter can be larger than with singlet lenses since achromatic doublets usually
contain more glass.
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2.4.4 Focusing mirrors

Another way to avoid the chromatic aberration and thus pulse broadening is to use
mirrors for focusing. With spherical mirrors and on-axis focusing the first aberra-
tion to be considered is the spherical one. The analysis of spherical aberration of
mirrors serves also as a basis to the study of spherical aberration applied to lenses.

Let us consider the situation of Fig. 2.16, where a plane pulse- and wavefront
impinge upon a spherical mirror of radius of curvature R. The reflected rays are
the tangents of a caustic — the curve commonly seen as light reflects off a coffee
cup. Rays that are a distance r off-axis intersect the optical axis at point 7" which
differs from the paraxial focus F in the paraxial focal plane ¥’. The difference in
arrival time between pulses travelling along off-axis rays and on-axis pulses in the
paraxial focal plane is:

AT = %[V_Q— (ﬁ+ 15)] (2.56)

Through simple geometrical considerations on can find an expression for AT in the
form of an expansion in powers of (#/R). The first non-zero term of that expansion
is:

3R (r\*
AT ==——[=] . 2.57
4C(R) ( )

Likewise, one obtains for the geometrical deviation from the paraxial focus in ¥’:

(—)3. (2.58)

For a beam diameter D = 3 mm and a focal length f =25 mm the arrival time
difference amounts to only 0.1 fs and the deviation from the paraxial focus x ~ 1
pum. The numbers increase rapidly with beam size; AT =~ 13 fs, x = 25 um for
D =10 mm, for example.

In experimental situations where even a small aberration should be avoided,
parabolic mirrors can advantageously be used to focus collimated input beams.
An example requiring such optics is upconversion experiments where fluorescence
with fs rise time from a large solid angle has to be focused tightly, without modi-
fying its temporal behavior. Elliptical mirrors should be used to focus light emer-
ging from a point source. However, since parabolic mirrors are more readily avai-
lable, a combination of parabolic mirrors may be used in lieu of an ellipsoid.
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Figure 2.16: Focusing of light pulses by a spherical mirror.

2.5 Elements with angular dispersion

2.5.1 Introduction

Besides focusing elements there are various other optical components which mo-
dify the temporal characteristics of ultrashort light pulses through a change of their
spatial propagation characteristics.

Figure 2.17: Pulse front tilt introduced by a prism. The position of the (plane) wavefronts
is indicated by the dashed lines AB and A’B’.

Even a simple prism can provide food for thought in fs experiments. Let us
consider an expanded parallel beam of short light pulses incident on a prism, and
diffracted by the angle 8 = B(Q), as sketched in Fig. 2.17. As discussed in Chap-
ter 1, a Gaussian beam with beam waist wy self diffracts by an angle of approx-
imately 6 = A/nwq. In the case of a short pulse (or white light), this diffraction
has to be combined with a spectral diffraction, since the light is no longer mono-
chromatic, and different spectral components will be deflected by the prism with
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Figure 2.18: Pulse broadening in a four prism sequence.
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a different angle 8 = 5(Q2). If the pulse is sufficiently short, both effects are of the
same order of magnitude, resulting in a complex space-time problem that can no
longer be separated. Throughout this section, whether considering group delays
or group velocity dispersion, we will consider sufficiently broad beams, and suf-
ficiently short propagation distances L, behind the prism. This will allow us to
neglect the change in beam diameter due to propagation and spectral diffraction af-
ter the prism. In most cases we will also approximate the beam with a flat profile.
At the end of this chapter the interplay of of propagation and spectral diffraction
effects will be discussed for Gaussian beams.

As discussed by Bor et al. [26], the prism introduces a tilt of the pulse front
with respect to the phase front. As in lenses, the physical origin of this tilt is the
difference between group and phase velocity. According to Fermat’s principle the
prism transforms a phase front AB into a phase front A’B’. The transit times for
the phase and pulse fronts along the marginal ray BOB’ are equal (vp ~ vy in air).
In contrast the pulse is delayed with respect to the phase in any part of the ray
that travels through a certain amount of glass. This leads to an increasing delay
across the beam characterized by a certain tilt angle @. The maximum arrival time
difference in a plane perpendicular to the propagation direction is (D’/c)tana.

Before discussing pulse front tilt more thoroughly, let us briefly mention anot-
her possible prism arrangement where the above condition for L, is not necessary.
Let us consider for example the symmetrical arrangement of four prisms sketched
in Fig. 2.18. During their path through the prism sequence, different spectral com-
ponents travel through different optical distances. At the output of the fourth prism
all these components are again equally distributed in one beam. The net effect of
the four prisms is to introduce a certain amount of GVD leading to broadening of
an unchirped input pulse. We will see later in this chapter that this particular GVD
can be interpreted as a result of angular dispersion and can have a sign opposite to
that of the GVD introduced by the glass material constituting the prisms.
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Figure 2.19: Delay of the pulse front with respect to the phase front.

2.5.2 Tilting tilt of pulse fronts of pulse fronts

In an isotropic material the direction of energy flow — usually identified as ray
direction — is always orthogonal to the surfaces of constant phase (wave fronts)
of the corresponding propagating wave. In the case of a beam consisting of ultras-
hort light pulses, one has to consider in addition planes of constant intensity (pulse
fronts). For most applications it is desirable that these pulse fronts be parallel to
the phase fronts and thus orthogonal to the propagation direction. In the section
on focusing elements we have already seen how lenses cause a radially dependent
difference between pulse and phase fronts. This leads to a temporal broadening of
the intensity distribution in the focal plane. There are a number of other optical
components which introduce a tilt of the pulse front with respect to the phase front
and to the normal of the propagation direction, respectively. One example was the
prism discussed in the introduction of this section. As a general rule, the pulse front
tilting should be avoided whenever an optimum focalization of the pulse energy is
sought. There are situations where the pulse front tilt is desirable to transfer a tem-
poral delay to a transverse coordinate. Applications exploiting this property of the
pulsefront tilt are pulse diagnostics (Chapter 10) and travelling wave amplification
(Chapter 8.1).

The general approach for tilting pulse fronts is to introduce an optical element
in the beam path which retards the pulse fronts as a function of a coordinate trans-
verse to the beam direction. This is schematically shown in Fig. 2.19 for an element
that changes only the propagat ion direction of a (plane) wave. Let us assume that
a wavefront AB is transformed into a wavefront A’B’. From Fermat’s principle it
follows that the optical pathlength Po; between corresponding points at the wa-
vefronts AB and A’ B’ must be equal:

PoL(BB') = PoL(PP") = Po(AA"). (2.59)
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Since the optical pathlength corresponds to a phase change A® = 27Pp; /A, the
propagation time of the wavefronts can be written as

AD
T phase = — (2.60)
we
where we referred to the center frequency of the pulse. This phase change is given
by
Pl P/ PI
d
AD = f k(s)ds = ¢ f n(s)ds = wy f > 2.61)
P c Jp p Up(s)
where s is the coordinate along the beam direction. In terms of the phase velocity
the propagation time is
T ohase = f " ds (2.62)
phase = » UP(S) . .

The propagation time of the pulse fronts however, T, is determined by the

group velocity
r _ fP' ds ~ fP'
S SERO R

From Egs. (2.62) and (2.63) the difference in propagation time between phase front
and pulse front becomes

P’ P’
1 1 ke dk
AT(P,P)=T -T = — — —|ds= ot =
( ) phase pulse j]: (Up g ) N j]: [ ; p

which can be regarded as a generalization of Eq. (2.37).

A simple optical arrangement to produce pulse front tilting is an interface
separating two different optical materials — for instance air (vacuum) and glass
(Fig. 2.20). At the interface F the initial beam direction is changed by an angle
B =vy—v" where y and 7y’ obey Snell’s law siny = n(w¢)siny’. The point A of an
incident wavefront AB is refracted at time ¢ = #o. It takes the time interval T phase
to recreate the wavefront A’B’ in medium 2, which propagates without distortion
with a phase velocity v, = ¢/n(w¢). The time interval T g is given by

dk
dQ

ds. (2.63)

we

]ds, (2.64)

nAA’ BB PF+nFP' D tany
Tphase:Tz c c T

(2.65)

The beam path from B to B’ is through a nondispersive material and thus pulse front
and wavefront coincide at B’. In contrast the phase front and pulse front propagate
different distances during the time interval 7'pjq5 in medium 2 and thus become
separated. Since in (most) optical materials the group velocity is smaller than the
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Figure 2.20: Pulse front tilt through refraction at an interface.

phase velocity the pulse front is delayed with respect to the phase front. In our
case this delay increases linearly over the beam cross section. The characteristic
tilt angle a between pulse and phase fronts is given by

EA’

t = . 2.66
ana = — (2.66)
From simple geometrical considerations we find for the two distances
_ c c D
EA’ = (Z - vg)T,,,W = (; - ug) —tany 2.67)
and
/ n2 —sin’y
D =p>Y _p (2.68)
cosy ncosy

Inserting Egs. (2.67) and (2.68) in Eq. (2.66) and using the expression for the group
velocity, we obtain for «

tana = — 2 (@O Y (2.69)

wen' (o) +n(we) [ .o y

Following this procedure we can also analyze the pulse front at the output of a
prism, cf. Fig. 2.17. The distance EA’ is the additional pathlength over which the
phase has travelled as compared to the pulse path. Thus, we have

EA" =0, [vﬁ - Ui] = awen’ (w7) (2.70)
8 p
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Figure 2.21: Pulse front tilt produced by diffraction at a grating in Littrow configuration.

which results in a tilt angle

d
tana = %wgn’(wg) =——A ald

2.71
b da @71

A
where b = D’ is the beam width.

As pointed out by Bor [26], there is a general relation between pulse front tilt
and the angular dispersion d/dA of a dispersive device which reads

d
tana = /l‘—ﬂ (2.72)

dal’

The latter equation can be proven easily for a prism, by using the equation for the
beam deviation, dB/dA = (a/b)(dn/dA), in Eq. (2.71). Similarly to prisms, gratings
produce a pulse front tilt, as can be verified easily from the sketch of Fig. 2.21. To
determine the tilt angle we just need to specify the angular dispersion in Eq. (2.72)
using the grating equation.

2.5.3 GYVD through angular dispersion!angular dispersion — Gene-
ral

Angular dispersion has been advantageously used for a long time to resolve spectra
or for spectral filtering, utilizing the spatial distribution of the frequency compo-
nents behind the dispersive element (e.g., prism, grating). In connection with fs
optics, angular dispersion has the interesting property of introducing GVD. At first
glance this seems to be an undesired effect. However, optical devices based on
angular dispersion, which allow for a continuous tuning of the GVD can be de-
signed. This idea was first implemented in [30] for the compression of chirped
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pulses with diffraction gratings. The concept was later generalized to prisms and
prism sequences [31]. Simple expressions for two and four prism sequences are
given in [32,33]. From a general point of view, the diffraction problem can be
treated by solving the corresponding Fresnel integrals [30,34,35]. We will sketch
this procedure at the end of this chapter. Another successful approach is to analyze
the sequence of optical elements by ray-optical techniques and calculate the optical
beam path P as a function of Q. From our earlier discussion we expect the response
of any linear element to be of the form:

R(Q)e ™ (2.73)

where the phase delay ¥ is related to the optical pathlength Pg;, through
Q
Y(Q) = ?POL(Q). (2.74)

R(Q) is assumed to be constant over the spectral range of interest and thus will be
neglected.

We know that non-zero terms [(d"/dQ")¥ # 0] of order n > 2 are responsible
for changes in the complex pulse envelope. In particular

—¥Y(Q)=-1(2 Q = 2.75
dQ? @) c\ dQ " dQ? 2nc? dA? 275)

d? 1{.dPor dQPOL) 2B d*Pyr

is related to the GVD parameter. We recall that, with the sign convention chosen in
Eq. (2.73), the phase factor ¥ has the same sign as the phase factor k¢L. Consistent

with the definition given in Eq. (1.128) a positive GVD corresponds to % >0.In
; : Y 2
this chapter, we will generally express 9= in fs=.

The relation between angular dispersion and GVD can be derived through the
following intuitive approach. Let us consider a light ray which is incident onto an
optical element at point Q, as in Fig. 2.22. At this point we do not specify the
element, but just assume that it causes angular dispersion. Thus, different spectral
components originate at Q under different angles, within a cone represented by the
patterned area in the figure. Two rays corresponding to the center frequency w;, of
the spectrum, 7, and to an arbitrary frequency Q, 7, are shown in Fig. 2.22. The
respective wavefronts S are labelled with subscript “0” (for the central frequency
wy) and “Q” (for the arbitrary frequency Q). The planes Sq, So and S¢,, S( are
perpendicular to the ray direction and represent (plane) wave fronts of the incident
light and diffracted light, respectively. Let Py be our point of reference and be
located on 7y where m = L. A wavefront § 22 of 7o at Pq is assumed to intersect

7o at Py. The optical pathlength QPg, is thus

OPq = Por(Q) = Por(we)cosa = Lcosa (2.76)
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Figure 2.22: Angular dispersion causes GVD. The solid line in the middle of the figure
represents the angular dispersive element, providing a frequency dependent deflection of
the beam at the point of incidence Q. The different frequency components of the pulse
spread out in the patterned area.

which gives for the phase delay
Q Q
Y(Q)=—Por(QQ) = —Lcosa Q.77
c c

The dispersion constant responsible for GVD is obtained by twofold derivation
with respect to Q:

Py L. [.de _d* da\*
@w = - Z{sma[ZE+Q@ +QCOSO{(E) }
¢ wy
Lwy [ da 2
x —— — 2.78
¢ (dQ wf) 278)

where sina@ = 0 and cosa = 1 if we take the derivatives at the center frequency of
the pulse, Q = w,. The quantity (da/dQ)|,,, responsible for angular dispersion,
is a characteristic of the actual optical device to be considered. It is interesting
to note that the dispersion parameter is always negative independently of the sign
of da/dQ and that the dispersion increases with increasing distance L from the
diffraction point. Therefore angular dispersion always results in negative GVD.
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Differentiation of Eq. (2.78) results in the next higher dispersion order
L da\? da d*a
_= = o—=—==
C{cosa{ﬁ%(dg) +3 deQzl
2 3 3
Pa o da_ o (de
dQ? do’ dQ

) (2.79)

Y
do3

we

+
Z.
=
|
T

we

where the last expression is a result of a(w¢) = 0.

The most widely used optical device for angular dispersion are prisms and gra-
tings. To determine the dispersion introduced by them we need to specify not only
the quantity a(£2) in the expressions derived above, but also the optical surfaces be-
tween which the path is being calculated. Indeed, we have assumed in the previous
calculation that the beam started as a plane wave (plane reference surface normal
to the initial beam) and terminates in a plane normal to the ray at a reference op-
tical frequency w¢. The choice of that terminal plane is as arbitrary as that of the
reference frequency wy (cf. Chapter 1, Section 1.1.1). After some propagation dis-
tance, the various spectral component of the pulse will have separated, and a finite
size detector will only record a portion of the pulse spectrum.

Therefore, the “dispersion” of an element has only meaning in the context of
a particular application, that will associate reference surfaces to that element. This
is the case when an element is associated with a cavity, as will be considered in the
next section. In the following sections, we will consider combinations of elements
of which the angular dispersion is compensated. In that case, a natural reference
surface is the normal to the beam.

2.54 GVD of a cavity containing a single prism dispersion!prism

Dispersion control is an important aspect in the development of fs sources. The
most elementary laser cavity as sketched in Fig. 2.23 has an element with angular
dispersion. The dispersive element could be the Brewster angle laser rod itself.
The cavity will be typically terminated by a curved mirror. The two reference sur-
faces to consider are the two end-mirror of the cavity. We have seen that negative
GVD is typically associated with angular dispersion, and positive GVD with the
propagation through a glass prism or laser rod ®. One might therefore expect to be

81t is generally the case — but not always — that optical elements in the visible have positive
GVD.
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able to tune the GVD in the arrangement of Fig. 2.23 from a negative to a positive
value.
A Gaussian beam approach of such a cavity is presented below.

Figure 2.23: Example of a cavity with a single right angle prism. The side of the right
angle is an end mirror of the cavity. The cavity is terminated by a curved mirror of radius
of curvature R, at a distance L from the Brewster angle exit face of the prism. Stability of
the cavity requires that L+ AB/n < R. Translation of the prism allows for an adjustment
of the pathlength in glass L,. The inset shows that this calculation applies to a symmetric
cavity with a Brewster-angle laser rod and two spherical mirrors.

The cavity is terminated on one end by the plane face of the prism, on the other
end by a spherical mirror of curvature R. The prism—mirror distance measured at
the central frequency w, is L. The beam originates from a distance 4 from the
apex of the prism (angle @), such that the pathlength in glass can be written as
a = htana. For the sake of notation simplification, we define b = %(1 - %) The
Gaussian parameters for this cavity are the beam waist wyp, the Rayleigh range
Po = ﬂnw(z)/ A, related to the mirror curvature by

02
R=(L+a)+—2. 2.80
(L+a) T+a (2.80)

The total phase shift for one half cavity round-trip is W(Q) = W4p(Q2) + Ypc ().
The phase shift through the glass here is —k(Q)L, = =¥ 4p(2), with ¥ 4(Q2) given
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by:

W4p(Q) = arctan 4._ arctan (2.81)

u
Po nQQ’
where we have defined u = 2ac/w(2) =2hctana/ w%. Expanding in a Taylor series:
2
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(2.82)
where AQ = Q — wy.

For the path in air, we assume the cavity close enough to concentric, so that
po < a and the geometric approximation applies to the path BC. We have thus a
phase shift —kBC = —Wp(L2), with
Q L L Q
Wpe(Q) = = [L+ - (1 - —)AHZ] = Z[L+bae?], (2.83)
c 2 R c

where A is the departure of dispersion angle from the diffraction angle at w,.
Within the small angle approximation, we have for A6:
sina dn(Q) _A an(Q).
cosO; dQ 1749)

The last equality (sina = cos#s) applies to the case where 63 equals the Brewster
angle. The GVD dispersion of this cavity is thus:

d*Y|  _ d*¥ap| | d*Wse
do2| 4oz do?

AG ~ AQ (2.84)

we we we

u dn d? 2un’wy [ dn } 2bw; ( @(‘ %2

=—F(2—=+Q - Q— +n(QQ)| +—— 2.95

n2ws +u? ( aQ —dQ? )w[ nw;+u? | dQ ) v € \dQly, )

or, using the wavelength dependence of the index of refraction, and taking into
account that, for the Brewster prism, tana = 1/n(w¢):

>y
dQ?

we

u (L) /12@ 2un’wy
n2w§+u2 2nc d/12

(2.86)
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The stability of the cavity requires that R > L, and that the coefficients a and
b be positive. In the visible range, most glasses have a positive GVD dispersion
(k” >0 or d*n/dA* > 0).

The purpose of this exercise is to caution against applying blindly the angular
dispersion formula of Eq. (2.86), derived for propagation from one plane wavefront
to another plane waveront. In this case, propagating from a beam waist to a curved
wavefront, the angular dispersion contribution has a positive sign.

Femtosecond pulses have been obtained through adjustable GVD compensa-
tion with a single prism in a dye ring laser cavity [36]. As in the case of Fig. 2.23,
the spectral narrowing that would normally take place because of the angular dis-
persion of the prism was neutralized by having the apex of the prism at a waist of
the resonator. In that particular case, the adjustable positive dispersion of the prism
provided pulse compression because of the negative chirp introduced by saturable
absorption below resonance, as detailed in Chapter 6.

2.5.5 Group velocity control with pairs of prisms ixdispersion !prism

Pairs of elements

2nd Element

(reversed) Reference

plane B

Reference

plane A 1¢ Element

Figure 2.24: Pair of elements with angular dispersion arranged for zero net angular dis-
persion. The elements are most often prisms or gratings.

In most applications, a second element will be associated to the first one, such
that the angular dispersion introduced by the first element is compensated, and all
frequency components of the beam are parallel again, as sketched in Fig. 2.24. The
elements will generally be prisms or gratings.

As before, we start from a first reference surface A normal to the beam. It
seems then meaningful to chose the second reference surface B at the exit of the



2.5. ELEMENTS WITH ANGULAR DISPERSION 113

system that is normal to the beam. There is no longer an ambiguity in the choice of
a reference surface, as in the previous section with a single dispersive element. At
any particular frequency, Fermat’s principle states that the optical pathes are equal
from a point of the wavefront A to the corresponding point on the wavefront B.
This is not to say that these distances are not frequency dependent. The spectral
components of the beam are still separated in the transverse direction. For that rea-
son, a pair of prisms or gratings provides a way to “manipulate” the pulse spectrum
by spatially filtering (amplitude or phase filter) the various Fourier components.

Calculation for matched isosceles prisms.

One of the most commonly encountered case of Fig. 2.24, is that where the two
angular dispersive elements are isosceles prisms. Prisms have the advantage of
smaller insertion losses, which is particularly important with the low gain solid
state lasers used for fs applications.

There are numerous contributions to the group velocity dispersion that makes
this problem rather complex:

a) Group velocity dispersion due to propagation in glass for a distance L.

b) Group velocity dispersion introduced by the changes in optical path L in each
prism, due to angular dispersion.

¢) Group velocity dispersion due to the angular dispersion after one prism, pro-
pagation of the beam over a distance ¢, and as a result propagation through
different thicknesses of glass at the next prism.

These considerations by themselves are sufficient to write an expression for the
second order dispersion of a pair of prism, using the properties established ear-
lier in this chapter for the relation between angular dispersion and second order
dispersion. This expression differs from the most commonly used expression for
calculation the dispersion of a pair of prisms [32]. The shortcomings of the latter
expressions are:

e The expression of Fork and Gordon [32] implies that the separation between
the prisms has both a positive and negative effect, which is not correct.

o The only optical path considered is that between the two prisms; the beam
displacement after the second prism is not calculated.

e The expression applies only for the case of tip to tip propagation in the prisms
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Figure 2.25: Typical two prisms sequence as used in fs laser cavities. The relative posi-
tion of the prisms is defined by the distance ¢ and the spacing s between the parallel faces
OB and O’B’. The initial beam enters the prism at a distance OA = a from the apex. The
distance t, between the parallel faces OA and O’A’ is t, = tsina + scosa@. The solid line
ABB'A’D traces the beam path at an arbitrary frequency Q. The beam at the frequency ups-
hifted by dQ is represented by the dashed line. The dotted line indicates what the optical
path would be in the second prism, if the distance BB’ were reduced to zero (this situation
is detailed in Fig. C.1). “D” is a point on the phase front a distance u from the apex O’ of
the second prism. In most cases we will associate the beam path for a ray at Q with the
path of a ray at the center frequency w,.
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In addition to the simple derivation based on the properties of angular dis-
persion, a rigorous derivation has been made by calculating exactly the optical
pathways between parallel wavefronts before and after the pair of prisms [37]. The
details of this calculation are reproduced in Appendix C. The result is in agreement
with the easily derivable equation based on the properties (a), (b) and (c) cited
above:

4>y dn d*n
do?| del, dQ?|
des| \* nwe. (doy] )
- = - L= 2.87
()(dQ ) g(de 2.87)

This equation applies to any pair of identical isosceles prisms in the parallel
face configuration represented in Fig. 2.25, for an arbitrary angle of incidence. L
is the distance between prisms along the beam at wy, and Ly is the total distance of
glass traversed. The group velocity dispersion is simply the sum of three contribu-
tions:

1. The (positive) GVD due to the propagation of the pulse through a thickness
of glass L,.

2. The negative GVD contribution due to the angular dispersion d63/d<Q app-
lied to Eq. (2.78) over a distance BB’ = s/ cos6s.

3. The negative GVD contribution due to the angular dispersion df;/dQ (de-
flection of the beam at the first interface) applied to Eq. (2.78) over a distance
Lg in the glass of index n.

In most practical situations it is desirable to write Eq. (C.18) in terms of the
input angle of incidence 6y and the prism apex angle @. The necessary equations
can be derived from Snell’s law and Eq. (C.16):

d R Y -1 doy dn

Eel = ;[n —sin (90)] [ncos@oﬁ—smeodg}

d _ 2.2 -3 de, . dn

d_993 = [l—n sin (a—Ql)] ncos(oz—@l)d—Q+sm(a—91)d—Q ,
(2.88)

where 6 = arcsin(n‘1 sin 90) and dfy/dQ = 0.
For the particular case of Brewster angle prisms and minimum deviation (sym-
metric beam path through the prism for Q = wy), we can make the substitutions
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de, /dn = —1/n?, and d6s/dn = 2. Using 0y = 63 = 64 = 67, the various angles are
related by:

tanfgp=n
ing 0 L
sinfp = cos 6 =
V1 +n?
1
cosfy =sinf| =
V1 +n?
2n
ina = 2.89
sina a1 ( )
The total second order dispersion in this case becomes:
2| L. dn d’n we Le\(dn| \
—| =—=2—=| twr—-——=| |-—|4L+—=]||== , 2.90
a?|, "¢ | aal, " a2, c( n3) dQW) (2.90)
In terms of wavelength:
Y 4l & L\(dn| \
o = 0, 28 —(an+ =222 ) | (2.91)
d?|,, 2nc*| 7 dA?|, n3 )\ dal,,

In many practical devices, L >> L, and the second term of Eq. (2.91) reduces to
L(dn/dA)*.

It is left as a problem at the end of this chapter to calculate the exact third
order dispersion for a pair of prisms. If the angular dispersion in the glass can be
neglected (L >> L), the third order dispersion for a Brewster angle prism is:

Yigi(we) ~
4

(2:5% [12L (2|1 = 2n’ (17 = 2m) |+ An'n") = Le(Bn” + An’™)].

(2.92)

To simplify the notation, we have introduced »n’, n”” and n””’ for the derivatives of n
with respect to A taken at A,.

The presence of a negative contribution to the group velocity dispersion due
to angular dispersion offers the possibility of tuning the GVD by changing L, =
g/sinfy (g is the thickness of the glass slab formed by bringing the two prisms
together, as shown in Fig. C.1) in Appendix C. A convenient method is to simply
translate one of the prisms perpendicularly to its base, which alters the glass path
while keeping the beam deflection constant. It will generally be desirable to avoid
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Figure 2.26: Set-ups for adjustable GVD without transverse displacement of spectral
components. (a) two prisms followed by end mirror (configuration used mostly in linear
cavities). (b) 4 prisms (used in ring cavities). The GVD is tuned by translating one or more
prisms into the beam.

a transverse displacement of spectral components at the output of the dispersive
device. Two popular prism arrangements which do not separate the spectral com-
ponents of the pulse are sketched in Fig. 2.26. The beam is either sent through two
prism, and retro-reflected by a plane mirror, or sent directly through a sequence of
four prisms. In these cases the dispersion as described by Eq. (C.18) doubles. The
values of ¥, ¥"”, etc. that are best suited to a particular experimental situation can
be predetermined through a selection of the optimum prism separation s/ cos 63, the
glass pathlength L,, and the material (cf. Table 2.1). Such optimization methods
are particularly important for the generation of sub-20 fs pulses in lasers [38, 39]
that use prisms for GVD control.

In this section we have derived analytical expressions for dispersion terms of
increasing order, in the case of identical isoceles prism pairs, in exactly antiparallel
configuration. It is also possible by methods of pulse tracing through the prisms
to determine the phase factor at any frequency and angle of incidence [32,33,40—
42]. The more complex studies revealed that the GVD and the transmission factor
R [as defined in Eq. (2.73)] depend on the angle of incidence and apex angle of
the prism. In addition, any deviation from the Brewster condition increases the
reflection losses. An example is shown in Fig. 2.27.
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Figure 2.27: Dispersion (solid lines) and reflection losses (dash-dotted lines) of a two-
prism sequence (SQ1 - fused silica) as a function of the angle of incidence on the first prism
surface. Symmetric beam path through the prism at the central wavelength is assumed.
Curves for three different apex angles (—4°, 0°, 4°) relative to @ = 68.9° (apex angle for a
Brewster prism at 620 nm) are shown. The tic marks on the dashed lines indicate the angle
of incidence and the dispersion where the reflection loss is 4.5%. (from [33]).
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Figure 2.28: Two parallel gratings produce GVD without net angular dispersion. For
convenience a reference wavefront is assumed so that the extension of PPy intersects G
atA.

2.5.6 GVD introduced by gratings gratings

Gratings can produce larger angular dispersion than prisms. The resulting negative
GVD was first utilized by Treacy to compress pulses of a Nd:glass laser [30]. In
complete analogy with prisms, the simplest practical device consists of two iden-
tical elements arranged as in Fig. 2.28 for zero net angular dispersion. The dis-
persion introduced by a pair of parallel gratings can be determined by tracing the
frequency dependent ray path. The optical path length ACP between A and an
output wavefront PP, is frequency dependent and can be determined with help of
Fig. (2.28) to be:

ACP =

cosZZ,B’) [1+cos(B"+p)] (2.93)
where 8 is the angle of incidence, 8’ is the diffraction angle for the frequency
component Q and b is the normal separation between G| and G,. If m is the order
of diffraction, the angle of incidence and the diffraction angle are related through
the grating equation

2mmnc
Qd
where d is the grating constant. The situation with gratings is however different
than with prisms, in the sense that the optical path of two parallel rays out of
grating G| impinging on adjacent grooves of grating G, will see an optical path

sinB’ —sinfB = (2.94)
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difference CP — CyPy of mA, m being the diffraction order. Thus, as the angle
changes with wavelength, the phase factor QACP/c increments by 2mr each time
the ray AC passes a period of the ruling of G» [30]. Because only the relative
phase shift across PP, matters, we may simply count the rulings from the (virtual)
intersection of the normal in A with G,. Thus, for the m” order diffraction we find
for ¥(Q):

[o
Y(Q)=—ACP(Q)- 2m7r§ tan(B’). (2.95)
c
The group delay is given by:

ay é 1+cos(B+5) . ’
a - (c) cosf +ccosz,8’{smﬁ [1+cos(B+8)]

d_/3’+2m7r b dp

~cos'sin(B+f)) dQ " d cos?p dQ
(13)1+cos(ﬁ+ﬁ') _ACP(Q) (2.96)
c cosf’ e ’

In deriving the last equation, we have made use of the grating equation sing’ —
sinf3 = 2nc/(Qd). Equation (2.96) shows remarkable properties of gratings. The
group delay is simply equal to the phase delay, and not explicitly dependent on the
grating order. The carrier to envelope delay is zero. The second order derivative,
obtained by differentiation of Eq. (2.96), is:

e b o1 ap’
W T caong B 11 +cos(B+B)] —cos Lsin(5 +4)) 0
_ () _2mr_ dp :ﬂA’ (2.97)
d] wecosp’ dQlw,  w?cos?p d?

where we have again made use of the grating equation, and used the distance L =
b/ cosf’ between the gratings along the ray at Q = w,. Using wavelengths instead
of frequencies:
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(2.98)
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where cos? 8 (w¢) = 1 — [27¢/(w¢d) + sinB]?. The third derivative can be written as
&Syl 3 Y [ |4 2mAe sinp ]
3|, we dQ?|, 3 d cos?p|
To decide when the third term in the expansion [as defined in Eq. (1.179)] of the
phase response of the grating needs to be considered we evaluate the ratio
b Q—-we)?| | (we) 2ml; sinf’
bry(Q—we)?| 139 (wy) 3 d cos’p

(2.99)

RG =

Aw,
Q—-—we = — |1+ (2.100)
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where the spectral width of the pulse Aw,, was used as an average value for [Q2 —w¢].
Obviously it is possible to minimize (or tune) the ratio of second- and third- order
dispersion by changing the grating constant and the angle of incidence. The second
order dispersion increases with the square of the ratio mA,/d cos/3’, thus faster than
the ratio R that is proportional to that quantity. Grazing incidence, multiple order
may be considered when very large dispersion needs to be achieved on a relatively
narrow bandwidth.

The derivation of Eq. (2.98) could have been shortened considerably by using
the general relation between angular dispersion and GVD, Eq. (2.78). Indeed,
deriving from Eq. (2.94) the angular dispersion of a grating

dap’ 2nc

= 2.101
dQly,  widcosp ( )

and inserting in Eq. (2.78), we also obtain Eq. (2.98).

2.5.7 Grating pairs for pulse compressors

For all practical purpose, a pulse propagating from grating G to G, can be consi-
dered as having traversed a linear medium of length L characterized by a negative
dispersion. We can write Eq. (2.98) in the form of:

A Ar\2 1
KL= — _( _) LI 2.102
¢ {27r02 " coszﬂ’(a)g)} ( )

d*v

dQ?

we

Referring to Table 1.4 of Chapter 1, a bandwidth limited Gaussian pulse of duration
TG0, propagating through a dispersive medium characterized by the parameter &/,
broadens to a Gaussian pulse of duration 7¢

1\2
76 =Tgo|1+ (—) , (2.103)
Lq
with a linear chirp of slope:
" 2L/Lg; 1
=1 o (2.104)
+(L/La)* 1g,

where the parameter L, relates both to the parameters of the grating and to the
minimum (bandwidth limited) pulse duration:

Ly= Too el 2icosz/s'(w) (2.105)
Tk N\ mag) A o ‘
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Conversely, a pulse with a positive chirp of magnitude given by Eq. (2.104) and
duration corresponding to Eq. (2.103) will be compressed by the pair of gratings
to a duration 7gg. A pulse compressor following a pulse stretcher is used in nu-
merous amplifications systems and will be dealt with in Chapter 8.1. The “com-
pressor” is a pair of gratings with optical path L, designed for a compression ratio
16/7c0 = L/Lg °. The ideal compressor of length L will restore the initial (be-
fore the stretcher) unchirped pulse of duration 7. To a departure x from the ideal
compressor length L, corresponds a departure from the ideal unchirped pulse of
duration T:

TG =TG4 1 +—. (2.106)

This pulse is also given a chirp coefficient (cf. Table 1.4) a = x/L,.

In most compressors, the transverse displacement of the spectral components at
the output of the second grating can be compensated by using two pairs of gratings
in sequence or by sending the beam once more through the first grating pair. As
with prisms, the overall dispersion then doubles. Tunability is achieved by chan-
ging the grating separation b. Unlike with prisms, however, the GVD is always
negative. The order of magnitude of the dispersion parameters of some typical
devices is compiled in Table 2.2.

The choice between gratings and prism for controllable dispersion is not always
a simple one. Prisms pairs have lower losses than gratings (the total transmission
through a grating pair usually does not exceed 80%), and are therefore the prefer-
red intracavity dispersive element. Gratings are often used in amplifier chain where
extremely high compression and stretching ratio are desired, which implies a small
Lg. It should be noted however that L; is not only determined by the properties of
the prism or grating, but is also proportional to Téo as shown by Eq. (2.105). The-
refore, prisms stretcher-compressors are also used in medium power amplifiers for
sub-20 fs pulses. The disadvantage of prisms is that the beam has to be transmitted
through glass, which, for high power pulses, is a nonlinear medium.

2.5.8 Combination of focusing and angular dispersive elements

A disadvantage of prism and grating sequences is that for achieving large GVD the
length L between two diffraction elements becomes rather large, cf. Eq.(2.78). As
proposed by Martinez et al. [43] the GVD of such devices can be considerably in-
creased (or decreased) by using them in connection with focusing elements such as
telescopes. Let us consider the optical arrangement of Fig. 2.29, where a telescope
is placed between two gratings.

In all practical cases with a pair of gratings, (L/ Ly)? > 1.
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Figure 2.29: Combination of a grating pair and a telescope. (a) Comparison of a standard
two grating combination of negative dispersion, and a zero-dispersion arrangement. The
solid lines show the beam paths in the standard configuration, as discussed in the previous
section and in Fig. 2.28. The total phase shift is largest for the red beam and smallest for
the blue beam. The dashed line corresponds to the zero-dispersion configuration, where
the gratings are both at a focal point of each lens, and the lens are spaced by two focal
distances. It is easily seen that all the optical paths are equal length. (b) Positive dispersion
configuration. The spacing between the gratings is smaller than 4 f, while the lens spacing
remains 2f. The green beam has a longer optical path than the red beam. (c) The grating
spacing is larger than 4f (the lenses being still 2 f apart). This is still a negative dispersion
configuration: the blue beam has a shorter optical path than the green beam.
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Device Ao [nm] | we [fs71] [ P [fs?]

fused silica (L, = 1 cm) 620 3.04 535

800 2.36 356

Brewster prism 620 3.04 -760
pair, fused silica

L=50cm 800 2.36 -523

grating pair 620 3.04 9.3 10*
b=20cm; B=0°

d=12um 800 2.36 3100

Table 2.2: Values of second-order dispersion for typical devices.

The solid lines in Fig. 2.29(a) show the optical path through a pair of parallel
gratings, for beam of decreasing wavelength from red (top) to blue (bottom). With
two lenses inserted between the gratings, such that the distance between gratings
L=4f, all optical paths are rigourously equal (zero dispersion configuration). The-
refore, Eq. (2.98) is still valid, provided the distance L between gratings is replaced
by L—4f. Since the telescope implies an image inversion, the orientation of the
second grating should be reversed, as in Fig. 2.29(b), in which the distance L is
smaller than 4f. The sign of L—4f is negative, making the second order disper-
sion Eq. (2.98) positive. The green optical path experiences several additional 27
phase shifts on the grating as compared to the red one. Such an arrangement is
used in amplifier systems to stretch pulses (chirped pulse amplification [44, 45].
When the distance between gratings is increased beyond L = 4 f [Fig. 2.29(c)] the
blue beam experiences a larger phase shift than the green beam, indicating negative
dispersion.

More generally, as shown in Fig. 2.30, the grating-lens configuration does no
need to be symmetrical, neither do the lenses need to have the same focal distance.
Let A be the distance from the left grating to the left lens of focal distance f, and A’
the distance from the right grating to the right lens of focal distance f’, the overall
dispersion is given by:

d*¥

2
e ) (A+Mm2A) (2.107)

__wi(da
dQ

c we

we

where a magnification factor M = f’/f has been introduced. Indeed, the angu-
lar dispersion of G is magnified by M to M(da/d<)). For the second grating to
produce a parallel output beam its dispersion must be M times larger than that of
Gi.



2.5. ELEMENTS WITH ANGULAR DISPERSION 125

Figure 2.30: Most general configuration of grating-lens combination.

Matrix tools have been developed to compute the propagation of Gaussian be-
ams through a system of gratings. The matrices used are 3 X 3, an extension of
the conventional ABCD matrices for Gaussian beams, with an additional column
containing two additional terms to account for angular dispersion. Details can be
found in references [46—48].

In summary, the use of telescopes in connection with grating or prism pairs
allows us to increase or decrease the amount of GVD as well as to change the sign
of the GVD. Interesting applications of such devices include the recompression of
pulses after very long optical fibers [43] and extreme pulse broadening (> 1000)
before amplification [44]. A more detailed discussion of this type of dispersers,
including the effects of finite beam size, can be found in [35].



126 CHAPTER 2. FEMTOSECOND OPTICS

Figure 2.31: Interaction of a Gaussian beam with a disperser.

2.6 Wave-optical description of angular
dispersive elements

Because our previous discussion of pulse propagation through prisms, gratings,
and other elements was based on ray-optical considerations, it failed to give details
about the influence of a finite beam size. These effects can be included by a wave-
optical description which is also expected to provide new insights into the spectral,
temporal, and spatial field distribution behind the optical elements. We will follow
the procedure developed by Martinez [35], and use the characteristics of Gaussian
beam propagation, i.e., remain in the frame of paraxial optics.

First, let us analyze the effect of a single element with angular dispersion as
sketched in Fig. 2.31. The electric field at the disperser can be described by a com-
plex amplitude U(x,y,z,t) varying slowly with respect to the spatial and temporal
coordinate:

1 - .
E(xy.z.0=500y.2 e @ik 4 ¢ c. (2.108)

Using Eq. (1.210) the amplitude at the disperser can be written as

—ikey? ]
2q(d)

ke
2q(d)

U(x,y,1) = Eo(t) exp[ (% + yz)} = U(x,1) exp[ (2.109)
where g is the complex beam parameter, d is the distance between beam waist
and disperser, and & is the amplitude at the disperser. Our convention shall be
that x and y refer to coordinates transverse to the respective propagation direction
z. Further, we assume the disperser to act only on the field distribution in the x
direction, so that the field variation with respect to y is the same as for free space
propagation of a Gaussian beam. Hence, propagation along a distance z changes the
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last term in Eq. (2.109) simply through a change of the complex beam parameter
G. According to Eq. (1.216) this change is given by

q(d+z)=g(d)+z. (2.110)

To discuss the variation of U(x,?) it is convenient to transfer to frequencies Q and
spatial frequencies p applying the corresponding Fourier transforms

U(x,Q) = f U(x, e dy 2.111)
and -
Up,Q) = f U(x,Q)e P dx. (2.112)

A certain spatial frequency spectrum of the incident beam means that it contains
components having different angles of incidence. Note that Q is the variable des-
cribing the spectrum of the envelope (centered at Q = 0), while Q = Q + wy, is the
actual frequency of the field. In terms of Fig. 2.31 this is equivalent to a certain
angular distribution Ay. The spatial frequency p is related to Ay through

0

Ay=LE.
s

(2.113)
For a plane wave, U(p, Q) exhibits only one non-zero spatial frequency component
which is at p = 0. The disperser not only changes the propagation direction (yp —
fp) but also introduces a new angular distribution Af of beam components which
is a function of the angle of incidence y and the frequency Q

AO = AB(y,Q)
06 00| -
= — v+ —| Q
ayly, 0Q 1y,
= aAy+pBQ. (2.114)

The quantities a and 8 are characteristics of the disperser and can easily be determi-
ned, for example, from the prism and grating equations.'® By means of Eq. (2.113)
the change of the angular distribution Ay — A6 can also be interpreted as a trans-
formation of spatial frequencies p into spatial frequencies p’ = A6k, where

o = ake Ny +keBQ = ap + kBQ. (2.115)

10For a Brewster prism adjusted for minimum deviation we find @ = 1 and 8 = —(/l2 [rc)(dn/dA).
The corresponding relations for a grating used in diffraction order m are @ = cosyg/coséy and 8 =
—mA%/(2ned cosfp).
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Just behind the disperser we have an amplitude spectrum Uz (p’,Q) given by
7 /O ~1 ’ kf N O
Ur(p',Q)=CU|l—p" — —=BQ,Q (2.116)
a a
where C and further constants C; to be introduced are factors necessary for energy

conservation that shall not be specified explicitly. In spatial coordinates the field
distribution reads

Ur(x,Q) = f Ur(p’, e *dp’

© (1 ke~ <\ o
C f U(—p’——"ﬂg, Q)e”" *dp’
_ a a

(o)

C1 [ O aap)

(o)

= G P (ax, Q). (2.117)

The disperser introduces a phase factor exp(ikgﬁﬂx) and a magnification factor «.
For the overall field distribution we obtain with Egs. (2.109), (2.110), and (2.117)

- - X~ o k
UT(x,y,Q)=c380(9)e"‘f/39xexp[— : a/2x2+y2). (2.118)

ke
7@

The field a certain distance L away from the disperser is connected to the field
distribution Eq. (2.118) through a Fresnel transformation which describes the free
space propagation. Thus, it can be written as

—ikey? f 5 &y kB
Q 0
[2q<d+L>] Fue

j .
exp [—izq ("d) a/zx’z} exp [—%(x - x’)z] dx'.  (2.119)

Solving this integral yields an analytical expression for the spectral amplitude

0T(x,y, L, Q)

Il
IS
¢
>
=)

X

2
Ur(x,y,L,Q) = Cs&E(Q)exp [—ikz);—L]

2 : ~ 2
—ikg—}exp{lka _ad [x +2’BXQ +B2Q2]}.

y
X —_— —_— —_—
P\ I 2 gd+a*D) |27 L

(2.120)

The phase term proportional to Q is responsible for GVD according to our discus-
sion in the section on linear elements. As expected from our ray-optical treatment,
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this term increases with increasing distance L and originates from angular disper-
sion 3. The term linear in Q varies with the transverse coordinate x. It describes a
frequency variation across the beam and accounts for different propagation directi-
ons of different spectral components. We know that exponentials proportional to
b1 Q result in a pulse delay, as discussed previously following Eq. (1.181). Since
by oc x the pulse delay changes across the beam — a feature which we have called
tilt of pulse fronts. This proves the general connection between angular dispersion
and pulse front tilting introduced earlier in a more intuitive way.
For a collimated input beam and @ = 1 we can estimate

4(d)

— 7 x 2.121
g(d+a?L) ( )

and the temporal delay becomes b, = k;Sx. Looking at the beam at a certain instant
the corresponding spatial delay is k;Sxc. Thus, we find for the tilt angle «

do

dQ

do

= — 2.122
‘a ( )

:U)[

[tana| = ’i(kgﬂxc)
dx

Q=0 A

which confirms our previous results, cf. Eq. (2.72). With the same approximation
we obtain for the GVD term:

&Y

@ = 2b2 = —k[Lﬁz = -

2
ﬂ( d6 ) (2.123)
we

in agreement with Eq. (2.78).

For compensating the remaining angular dispersion we can use a properly alig-
ned second disperser which has the parameters @’ = 1 /@ and 8’ = 8/@. According
to our general relation for the action of a disperser (2.117) the new field distribution
after this second disperser is given by

Ur

czefkf§Q*UT<§,y,L,Q>

—iky
2

(x+aBQL)? N y?
gd+a*l) g(d+L)

Cﬁéo(Q)e%k‘QzﬁzL exp{

)

which again exhibits the characteristics of a Gaussian beam. Hence, to account
for an additional propagation over a distance L’, we just have to add L’ in the
arguments of §. As discussed by Martinez [35] a # 1 gives rise to astigmatism
(the position of the beam waist is different for the x and y directions) and only for
a well-collimated input beam does the GVD not depend on the travel distance L’

(2.124)



130 CHAPTER 2. FEMTOSECOND OPTICS

after the second disperser. For @ =1 and g(d + L+ L") = g(0) (collimated input
beam) the field distribution becomes

- (2.125)
"o

2 = ~ o= i ~ Q)2 2
Op(x.y.L,Q) = CeEo()e 1% exp {_M} _

The first phase function is the expected GVD term. The Q dependence of the se-
cond exponential indicates the action of a frequency filter. At constant position x,
its influence increases with increasing (ﬁQL/wo)z, i.e., with the ratio of the late-
ral displacement of a frequency component 2 and the original beam waist. The
physics behind is that after the second disperser, not all frequency components
can interfere over the entire beam cross-section, leading to an effective bandwidth
reduction and thus to pulse broadening. If the experimental situation requires
even this to be compensated, the beam can be sent through an identical second
pair of dispersers (e.g., prisms). Within the approximations introduced above we
just have to replace L by 2L in Eqgs. (2.124),(2.125). For a well collimated beam
(BQL/wq < 1) this results in

Upa(x,y, L, Q) = C1Eq(Q)ekB LY o= (2 +3h)/wi (2.126)

In this (ideal) case the only modification introduced by the dispersive element is
the phase factor leaving the beam characteristics unchanged.

It is quite instructive to perform the preceding calculation with a temporally
chirped input pulse as in Eq. (1.41) having a Gaussian spatial as well as temporal
profile [35]:

Eo(t) = Ee1HDU/T0) o= (2D (2.127)

The (temporal) Fourier transform yields

o 027 0272 2,2
Ep(Q) = Cgexpli d exp|— ‘ exp _EEY (2.128)
4 4 W%

with 72 = ‘ré /(1 +a?), where according to our discussion following Eq. (1.47) 76 /%
is the maximum possible shortening factor after chirp compensation. This pulse is
to travel through an ideal two-prism sequence described by Eq. (2.125) where SL
has to be chosen so as to compensate exactly the quadratic phase term of the input
pulse Eq. (2.128). Under this condition the insertion of Eq. (2.128) into Eq. (2.125)
yields

(x+BQL)? +y?

2
o

Or(x,y,Q,L) = Coe ¥ T exp . (2.129)
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The time dependent amplitude obtained from Eq. (2.129) after inverse Fourier
transform is

£

— —iu®xt
ex
2(1 +u?)

(1+u2)L

&) =Co exp(

2 y?

p ((1+u2)w(2) W%)lexp } (2.130)
where u = 2BL/(Twg). The last exponential function accounts for a frequency
sweep across the beam which prevents the different frequency components from
interfering completely. As a result, the actual shortening factor is V1 +u? times
smaller than the theoretical one, as can be seen from the first exponential function.
The influence of such a filter can be decreased by using a large beam size. A me-
asure of this frequency filter, i.e., the magnitude of the quantity (1 +u?), can be
derived from the second exponent. Obviously the quantity (1 + ?) is responsible
for a certain ellipticity of the output beam which can be measured.

2.7 Optical matrices optical matrix for dispersive systems

In Chapter 1 we pointed out the similarities between Gaussian beam propagation
and pulse propagation. Even though this fact has been known for many years [30,
49], it was only recently that optical matrices have been introduced to describe
pulse propagation through dispersive systems [46,50-53] in analogy to optical ray
matrices. The advantage of such an approach is that the propagation through a
sequence of optical elements can be described using matrix algebra. Dijaili et
al. [52] defined a 2 X 2 matrix for dispersive elements which relates the complex
pulse parameters (cf. Table 1.4) of input and output pulse, p and p’, to each other.
Dopel [50] and Martinez [51] used 3 X 3 matrices to describe the interplay between
spatial (diffraction) and temporal (dispersion) mechanisms in a variety of optical
elements, such as prisms, gratings and lenses, and in combinations of them. The
advantage of this method is the possibility to analyze complicated optical systems
such as femtosecond laser cavities with respect to their dispersion — a task of
increasing importance, as attempts are being made to propagate ultrashort pulses
near the bandwidth limit through complex optical systems. The analysis is difficult
since the matrix elements contain information pertaining to both the optical system
and of pulse.

One of the most comprehensive approaches to describe ray and pulse charac-
teristics in optical elements by means of matrices is that of Kostenbauder [53]. He
defined 4 x 4 matrices which connect the input and output ray and pulse coordi-
nates to each other. As in ray optics, all information about the optical system is
carried in the matrix while the spatial and temporal characteristics of the pulse are
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represented in a ray-pulse vector (x,®,At,Av). Its components are defined by po-
sition x, slope 0, time ¢ and frequency v. These coordinates have to be understood
as difference quantities with respect to the coordinates of a reference pulse. The

. . . . A B
spatial coordinates are similar to those known from the ordinary ( c p |reyma

trices. However, the origin of the coordinate system is defined now by the path of
a diffraction limited reference beam at the average pulse frequency. This reference
pulse has a well-defined arrival time at any reference plane; the coordinate At, for
example, is the difference in arrival time of the pulse under investigation. In terms
of such coordinates and using a 4 X 4 matrix, the action of an optical element can
be written as

by A B 0 E X
® C DO F ®
At |G H 1 1 At (2.131)
Av 0 0 0 1 Av ).
out mn

where A, B,C, D are the components of the ray matrix and the additional elements
are
E= O0Xour . F= 00,1 . G= OAt . H= O0At CI= aAl‘out.
aAvin aAVm ax,-n a@,’n 8Avm

(2.132)

The physical meaning of these matrix elements is illustrated by a few examples of
elementary elements in Fig. 2.32. The occurrence of the zero-elements can easily
be explained using simple physical arguments, namely (i) the center frequency
must not change in a linear (time invariant) element and (ii) the ray properties must
not depend on t;,. It can be shown that only six elements are independent of each
other [53] and therefore three additional relations between the nine nonzero matrix
elements exists. They can be written as

AD-BC =1
BF-ED=A/H (2.133)
AF -EC = 4,G.

Using the known ray matrices [54] and Eq. (2.132), the ray-pulse matrices for a
variety of optical systems can be calculated. Let us construct as an example the
matrix for an air-glass interface. The various elements can be calculated directly
from Snell’s law. Let ®;, be the angle of incidence, and ®,,,, the angle of refraction.

A system matrix can be constructed as the ordered product of matrices corre-
sponding to the elementary operations (as in the example of the prism constructed
from the product of two interfaces and a propagation in glass). An important fe-
ature of a system of dispersive elements is the frequency dependent optical beam
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matrix

element function example

Av:.

» .
E position dispersion .i A

F angular dispersion O,
5,
. x‘ ".'0/........3/.?...
G tilt of pulse front "’ .
/ /. § ; CAtaut
H delay due to angular disp.
I delay due to spectrum

Figure 2.32: Tllustration of the function performed by the matric elements E, F, G, H,
and I. The path of the reference beam at the central wavelength is represented by the
solid line, while the dotted line indicates the displaced path caused by ®;,, x;, or Av;,. A
dispersive prism introduces a transverse wavelength dependent displacement of the beam,
Xowr- To a change in optical frequency Av;, from the central frequency v, corresponds
an angular deviation @, at a dispersive interface. At the same dispersive interface, to a
transverse displacement x;, left of the interface corresponds an energy front tilt At,,; = Gx;,
right of the interface. There is also a contribution to the energy front tilt associated with the
angular dispersion, which is Az,,, = H®;,. Finally, on axis of a lens which has chromatic
aberration, the displaced wavelength suffers a delay At,,; = IAv;,.

path P, and the corresponding phase delay ¥. This information is sufficient for ge-
ometries that do not introduce a change in the beam parameters. Examples which
have been discussed in this respect are four-prism and four-grating sequences illu-
minated by a well-collimated beam.

As shown in Ref. [53], W can be expressed in terms of the coordinates of the
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Lens or Mirror (M) Brewster Prism (Mgpgp)
1 000 .
-1/f 1 0 0 1 Lgn® 0 -
0 010 0 1 0 =28
L,S L,S? ,
0 001 “E L 1 2Lk
0 0 0 1
— focal lengt =2r 9&| , L, — mean glass pat
focal length S =2 ggw[Lg glass path
Dispersive Slab (Mpg) Grating (Mg)
1 Lin 0 0 ~E 00 0
0 1 0 0 0‘ __cosB 0 c(sinB"—sin,B)
0 0 1 27TLk2,’ sinf—sing’ cosf3 Agsing
0 0 0 1 csinf 0 1 0
0 0 0 1
ky = % , Ly — thickness of | 8 — angle of incidence, 8’ — diffraction angle
we
slab
Table 2.3: Examples of Ray-Pulse Matrices
system matrix as
A 2
¥ = ”BV (EH - BI) - BL/QQ(AV) (2.134)
where
o) = ( xi x )( A -l )(xi”)+2( E 10H )(x) (2.135)
= ; .
" o -1 D Xout Xout

and x;,, X, are the position coordinates of the input and output vectors, respecti-
vely. The argument Av of Q and W is the cyclic frequency coordinate relative
to the pulse central frequency Av = (Q — w¢)/2n. The calculations according to
Eq. (2.134) have to be repeated for a set of frequencies to obtain ¥(v). From ‘Y (v)
we can then determine chirp and temporal behavior of the output pulses using the
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relation (1.177) for linear elements without losses. For pulses incident on-axis
(xin = 0), Eq. (2.135) yields for the phase response

1 1
¥(Ay) = Y [(EH —-BI- /l—gDEZ)sz - 47rEHAv] , (2.136)

where the index M is to express the derivation of the phase response from the
ray-pulse matrix. Information about the temporal broadening can also be gained
directly from the matrix element / since At,,, = At;, + AvIl. Wave packets centered
at different frequencies need different times to travel from the input to the exit plane
which gives an approximate broadening of /Av for a bandwidth limited input pulse
with a spectral width Aw, = 27Av,. For on-axis propagation (x;, = Xy, = 0) we
find Q(Av) = 0 and the dispersion is given by the first term in Eq. (2.134). For a
dispersive slab, for example, we find from Table 2.3:

1 74
Wi = 5 Lek] (Q- we)? (2.137)
which agrees with Eq. (1.184) and the accompanying discussion.
As another example let us discuss the action of a Brewster prism at minimum
deviation and analyze the ray-pulse at a distance L, behind it. The system matrix
is the product of (Mpp) and (Mpy) for free space, which is given by

1 B+L, 0 E+FL,

0 1 0 F

G o ) I (2.138)
0 0 0 1

For the sake of simplicity the elements of the prism matrix have been noted A,B,. .. ,H.
For the new position and time coordinate we obtain

Xout = Xin+(B+ L,)0®;, + (E+ FL,)Av (2.139)
and
Atoys = Gxi + HOyp, + Aty + IAV. (2.140)

Let us next verify the tilt of the pulse fronts derived earlier. The pulse front tilt can
be understood as an arrival time difference Az,,, which depends on the transverse
beam coordinate x,,;. The corresponding tilt angle @’ is then

’_ O(cAtyyr) _ OAtoy Oxin
tana’ = c

- - ¢G. (2.141)
OXour Oxin OXour
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After we insert G for the Brewster prism, the tilt angle becomes (cf. Table 2.3):

on
tana’ = —2wp —

2.142
70 (2.142)

wp 04 A¢p )
This result is equivalent to Eq. (2.71) if we use a/b = 2, which is valid for Brewster
prisms. The different signs result from the direction of the x-axis chosen here.

As a final example we want to apply the matrix formalism to discuss the field
distribution behind a two-prism sequence used for pulse compression, such as the
one sketched in Fig. 2.25. We assume that one prism is traversed at the apex while
the second is responsible for a mean glass path L,. The corresponding system
matrix is obtained by multiplying matrix (2.138) from the left with the transposed!!
matrix of a Brewster prism. The result is

1 ZE+L, 0 -5 [ +2L,|

0 S Lgl 0 52 (L 0 ; (2.143)
0 $[F+2L 1 -5 [%+4L]-2mk/L,

0 0 1

To get a simplified expression, we make the assumption that L, < L, which allows

us to neglect terms linear in L, in favor of those linear in L,, whenever they appear
in a summation. For the second derivative of the phase response (2.136) we find

. , o dn

P (a)g) = Lgk[ - —LQ(E

2
(2.144)
Ae wz)

which is consistent with the exact solution Eq. (C.18), within the approximation of
L, < L,, implying negligible angular dispersion inside the prisms.

It is well known that ray matrices can be used to describe Gaussian beam pro-
pagation, e.g., [54]. The beam parameter of the output beam is connected to the
input parameter by
AZ]l‘n +B
Cqm +D
Kostenbauder [53] showed that, in a similar manner, the ray-pulse matrices contain
all information which is necessary to trace a generalized Gaussian beam through
the optical system. Using a 2 X2 complex “beam” matrix (Q;,), the amplitude of a
generalized Gaussian beam is of the form

exp[—;—’;( s Tou )(Ou) (x)} (2.146)

lin

Qout =

(2.145)

"Note that the second prism has an orientation opposite to the first one.
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which explicitly varies as

A 2 A Ar 2
(Q;xxin + 2Q)rctxintin - fltill):|

in
exXp|— /l_[

T~ - -
X exp [/1_0 (Q;x-xlzn +20 Xintin = ;,112,,)} , (2.147)

where Q;j’ le are the real and imaginary coordinates of the matrix (0i)~! and
O, = —0,.. The first factor in Eq.(2.147) expresses the phase behavior and ac-
counts for the wave front curvature and chirp. The second term describes the spatial
and temporal beam (pulse) profile. Note that unless Q;,’ = 0 the diagonal elements
of (Q;,) do not give directly such quantities as pulse duration, beam width, chirp
parameter, and wave front curvature. One can show that the field at the output of an
optical system is again a generalized Gaussian beam where in analogy to (2.145)
the generalized beam parameter (OQuur) can be written as

A 0/~ B E/A
(G 1 )(Q)+( H I/ )

C 0\, ~ D F/A\
(o o) (5 ")
The evaluation of such matrix equations is quite complex since it generally gi-

ves rather large expressions. However, the use of advanced algebraic formula-
manipulation computer codes makes this approach practicable.

(Oou) =

(2.148)

2.8 Numerical approaches

The analytical and quasi-analytical methods to trace pulses give much physical in-
sight but fail if the optical systems become too demanding and/or many dispersion
orders have to be considered.

There are commercial wave and ray tracing programs available that allow one
to calculate not only the geometrical path through the system but also the associated
phase. Thus complete information on the complex field distribution (amplitude and
phase) in any desired plane is retrievable.

Problems

1. Dispersion affects the bandwidth of wave-plates. Calculate the maximum
pulse duration for which a 10" order quarter wave plate can be made of
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crystalline quartz, at 266 nm, using the parameters given with Eq. (2.2). We
require that the quarter-wave condition still be met with 5% accuracy at +
(1/7,) of the central frequency. What is the thickness of the wave-plate?

We consider here a Fabry-Perot cavity containing a gain medium. To sim-
plify, we assume the gain to be linear and uniform in the frequency range
around a Fabry-Perot resonance of interest. Consider this system to be irra-
diated by a tunable probe laser of frequency v,,.

a Find an expression for the transmission and reflection of this Fabry-
Perot with gain as a function of the frequency of the probe laser.

b Find the gain for which the expression for the transmission tends to
infinity. What does it mean?

¢ Describe how the gain modifies the transmission function of the Fabry-
Perot (linewidth, peak transmission, peak reflection). Sketch the trans-
mission versus frequency for low and high gain.

d With the probe optical frequency tuned to the frequency for which the
empty (no gain) Fabry-Perot has a transmission of 50%, find its trans-
mission factor for the value of the gain corresponding to lasing thres-

hold.
. Calculate the transmission of pulse propagating through a Fabry-Perot inter-
ferometer. The electric field of the pulse is given by E(f) = &(f)e'!’, where

&E(t) = exp(—|t|/7) and T = 10 ns. The Fabry Perot cavity is 1 mm long, fil-
led with a material of index ny = 1.5, and both mirrors have a reflectance
of 99.9%. The wavelength is 1 um. What is the transmission linewidth
(FWHM) of this Fabry-Perot? Find analytically the shape (and duration) of
the pulse transmitted by this Fabry Perot, assuming exact resonance.

. Consider the same Fabry-Perot as in the previous problem, on which a Gaus-

sian pulse (plane wave) is incident. The frequency of the Gaussian pulse is
0.1 ns~! below resonance. Calculate (numerically) the shape of the pulse
transmitted by this Fabry Perot, for various values of the pulse chirp a. The
pulse envelope is:

&) = e—(l+ia)(%)2‘

Is there a value of a for which the pulse transmitted has a minimum duration?

. Consider the Gires—Tournois interferometer. (a) As explained in the text, the

reflectivity is R = constant = 1, while the phase shows a strong variation with
frequency. Does this violate the Kramers—Kronig relation? Explain your
answer. (b) Derive the transfer function (27?).
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10.

11.

. Derive an expression for the space-time intensity distribution of a pulse in

the focal plane of a chromatic lens of focal length f(1). To obtain an analyti-
cal formula make the following assumptions. The input pulse is bandwidth-
limited and exhibits a Gaussian temporal and transverse spatial profile. The
lens has an infinitely large aperture and the GVD can be neglected. [Hint:
You can apply Gaussian beam analysis for each spectral component to obtain
the corresponding field in the focal plane. Summation over spectral contribu-
tions (Fourier back-transform) gives then the space-time field distribution.]

Calculate the third order dispersion for a pair of isosceles prisms, not neces-
sarily used at the minimum deviation angle, using the procedure that led to
Eq. (C.18). Compare with Eq. (2.92).

. Calculate the optimum pair of prisms to be inserted into the cavity of a

femtosecond pulse laser at 620 nm. The criterium is that the prism pair
should provide a 20% GVD tunability around —800 fs?, and the next higher-
order dispersion should be as small as possible. With the help of Table 2.1
choose a suitable prism material, calculate the apex angle of the prisms for
the Brewster condition at symmetric beam path, and determine the prism se-
paration. If needed, assume a beam diameter of 2 mm to estimate a minimum
possible glass path through the prisms.

Derive the ray-pulse matrix (2.143) for a pair of Brewster prisms. Verify the
second-order dispersion given in relation (C.18), without the assumption of
L, <L,

Derive the delay and aberration parameter of a spherical mirror as given in
Egs. (2.56) and (2.57). Explain physically what happens if a parallel input
beam impinges on the mirror with a certain angle a.

A parallel beam with plane pulse fronts impinges on a circular aperture with
radius R centered on the optic axis. The pulse is unchirped and Gaussian.
Estimate the frequency shift that the diffracted pulse experiences if measured
with a detector placed on the optic axis. Give a physical explanation of this
shift. Make a numerical estimate for a 100 fs and a 10 fs pulse. Can this
effect be used to obtain ultrashort pulses in new spectral regions by placing
diffracting apertures in series? [Hint: you can start with Eq. (2.51) and take
out the lens terms. For mathematical ease you can let R — c0).] Note that a
frequency shift (of the same origin) occurs when the on-axis pulse spectrum
of a Gaussian beam is monitored along its propagation path.
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L=20cm

Figure 2.33: Ring resonator. Consider the electro-optic switch (EO, Pockel’s cell) and
the polarizing beam splitter only for part (d). The polarization of the beam circulating in
the cavity gets rotated from the plane of the ring into the orthogonal direction when an
electrical pulse is applied to the Pockel’s cell, and extracted from the cavity by a polarizing
beam splitter. The risetime of the electrical pulse is short compared to the cavity round-trip
time.

12. Consider the 3-mirror ring resonator sketched in Fig. 2.33. Two of the
mirrors are flat and 100% reflecting, while one mirror of field reflectivity
r=0.9999% and 60 cm curvature, serves as input and output of this resona-
tor. We are operating at a wavelength of 800 nm. The perimeter of the ring
is 60 cm. A beam with a train of pulses, of average incident power of Py = 1
mW is sent, properly aligned, into the input path of this resonator.

a Calculate the size and location of the beam waist wg of the fundamental
mode of this resonator, and the size of the beam (w) at the output mirror.
Explain why the output power P, does not depend on the wavelength.

b Derive an expression for the field inside the resonator E; as a function
of the input field Ey.

¢ Consider this passive cavity being irradiated from the outside by a train
of femtosecond pulses, for its use as a photon storage ring. Show that
two conditions need to be fulfilled for this cavity to be exactly resonant,
which may not always be simultaneously met.

d Let us assume next that the train of pulses, with a wavelength near
800 nm, corresponds to exactly a “resonance” of this resonator, both
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in frequency and repetition rate. A fast electro-optic switch is included
in the ring, such that it directs the electromagnetic wave out of the
resonator for a round-trip time of the cavity, every N round-trip times
(cavity dumping). The switch opens in a time short compared to the
round-trip time. Explain how this device can be used to create short
output pulses with a larger single-pulse energy than the incident pulses.
What energy could be obtained in the case of (i) N = 100 and (ii)) N =
5000.
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Chapter 3

Semi-Classical Light—Matter
Interaction

Introduction

Most fields of science are taught following historical developments. For instance,
geometry started with cartesian coordinates, in which circles, ellipses hyperbo-
lae are totally different and unrelated objects. Going from cartesian to slanted
coordinates, one realizes that circles are just a particular case of ellipses. It took
projective coordinates to realize that circles, ellipses and hyperbolae are just one
object. Teaching analytical geometry in particularizing from the general projective
coordinates towards the more narrow minded cartesian one, gives a much richer
and elegant understanding of geometry.

The same can be said of light-matter interaction, in particular nonlinear optics.
We have taken the conventional approach in the preceding chapters, by describing
matter as an ensemble of electric dipoles, which respond linearly to the electric
field. The next step, if we follow the “historical” approach, would be to expand
the polarization in a power series of the applied field, to describe nonlinear optics.
Another aspect of the same “weak field” nonlinearities is typically presented by a
quantum mechanical perturbation treatment. In most nonlinear optics treatments,
there is a chapter suggesting that it is the index of refraction that should be expan-
ded in a power series of the intensity. Then it is suggested that the power expansion
is sometimes invalid. Finally, there is generally a chapter on “short pulse nonlinear
optics”.

It would be a daunting, but very useful task, to re-organize the field from the
more general view of atom-field interaction, proceeding by successive approxi-
mations, down to the most particular case of classical nonlinear optics. A more
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modest approach will be used here, limited to semi-classical models of electron -
atom - molecule near-resonant interactions, to non-resonant nonlinear optics. Ne-
arly all problems of linear and nonlinear optics are generally treated in a stationary
approximation. Ultrashort pulses are bringing the awareness that not all situation
can be treated as ‘“steady-state”, the latter being an asymptotic limit of a transient
behavior.

3.1 Light-electron interaction

In the description of matter by an “index of refraction” or a “polarization”, one
tends to forget that the nature of light-matter interaction is simply re-radiation of
electrons driven by the optical field. Electrons are accelerated by a combination of
the applied electromagnetic field of the light and the field of other particles, and fol-
low trajectories dependent on the light polarization. The moving electrons radiate
a field that adds to that of the light, resulting in phase and amplitude changes of the
optical field. This situation is traditionally described by an isotropic, polarization
independent, polarizability, or index of refraction of a plasma. It is shown in the
next subsection that this description does not match the response of free electrons
created by tunnel ionization. It will be shown next how this case of free electrons
connect to the conventional steady state response of a plasma.

3.1.1 Free electrons after tunnel ionization

Free electrons can be produced by ionization of a molecule under a high optical
field. There are two channels of strong field ionization: multiphoton or tunneling.
The two regimes are distinguished by the Keldysh parameter y [1]:

Ip
y__ ~ 3.1

where I, is the ionization potential, and U, is the ponderometive energy or the
average kinetic energy of a free electron oscillating in the laser field. If e and m,
are the charge and mass of the electron; w the (angular) frequency of the light field
of amplitude &:

e?&?

dmyw?’

» (3.2)
U, expressed in eV as a function of the light intensity I, in W/cm? and the wave-
length A in microns is:

U,=933-10""7,2% (3.3)
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In the “quasistatic limit” of y < 1 the dressed Coulomb barrier is essentially
static as seen by the electrons and the method of releasing the electrons is domina-
ted by runneling. For v > 1 the electron release is most likely described by photon
absorption, and multiphoton features are more dominant [2]. The difference bet-
ween tunneling and multiphoton is easily recognized in measurements of velocity
mapping imaging (VMI) where the electron momentum distribution following io-
nization is measured [3]. We consider here as an example the case of ionization
by a fs pulse at 800 nm where a tunneled electron leaves its parent atom/molecule
instantaneously along the direction of light polarization, at the moment of ioniza-
tion, with zero velocity [4]. The electrons leave the atom from a Rydberg state
that typically has an orbit radius one order of magnitude larger than the atomic
radius. Formulae can be found in the literature for the tunneling rate and the ratio
of electron production for various polarization [5,6]. We are here just interested in
following the motion of the electron, subjected to the force F' due to a combination
of the optical field E and a Coulomb field F:

F=-qE+F.=ma, (3.4

where a is the acceleration of the electron of mass m and charge ¢. In this classical
approach, we neglect the magnetic force on the electron. The tunneled electron is
released at time fg in the optical field given by:

_ &

1+¢

E [cosw(t—19) X+ esinw(t —ty)Y], (3.5)

where & defines the light polarization (¢ = O for linear polarization) and &(r,?) is
the envelope of the field. At any time ¢ > #, the velocity of the electron is given by:

b= qé&(t,r) S q8(t0,r0)' (3.6)
maw

(sinwt ¥—ecoswt y) +ye
mw

In circular polarization (¢ = 1), the electron acquires a drift velocity vy = ¢&E(ty, r9)/(mw)
along ¥, long after the laser pulse is gone. At the moment of ionization #y = 0, the
electron velocity is zero, hence there must be a drift term to fulfill the initial condi-
tion. Let us consider a pulse of intensity of 2.8-10'* W/cm? as is realized in a light
filament in air (see Section ??). To this circularly polarized pulse corresponds a
field peak amplitude of 4.62 x 10® V/cm, the drift velocity of the electron ionized
by this field is 3.45-10* cm/s or 1.6 atomic units.
The position of the electron is
qEo gEo qEo

r=-—(- coswiX— yesinwt) + ye——1t+rg + —X.
maw maow maw

3.7
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It means that the electron having the negative charge will oscillate in the same
direction and phase of the laser field. Consistently with neglecting the magnetic
forces, we ignore the motion out of the polarization plane “xy plane”. The coordi-
nates of the electron are:
X = ﬂoz(—coscut)+xo+£02 (3.8)
mw mw
gEy = sinwt

y=€e—1(-
maw wt

+1). (3.9)

The initial position is taken to be 10 times the atomic radius of nitrogen which is
65 picometers or 0.65/0.52918 = 1.22 atomic units. The amplitude of the oscilla-
tion is gEo/(mw?) = 1.4 nm corresponding to 27.7 atomic units. Within the 200
femtosecond of a circularly circularly polarized pulse, the electron ionized at the
peak has moved gEy/(mw)t which is 1.23-10% nm or 6.52 -10° atomic units in 100
fs.

The radiation of a non-relativistic moving charge [7] is expressed as

iﬁx(ﬁxﬁ)+ qd

AE = .
€C R € R?

(3.10)

where B =v/c , € is the vacuum permittivity, i = R/R is the unit vector of the
observation point Rand “d” is the displacement of the charge that can be calculated
at time ¢ from the position equations (3.9). Note that there are two terms in the
electron response: the first one is the “radiation term”, and is only relevant at very
high intensities. In our example of 2.8-10'* W/cm? considered here, it is two orders
of magnitude smaller than the second term. Since the latter involves the distance
from the parent ion to the electron, it is called the “dipole term”. The classical
definition of the polarization relates to this dipole term, generally defined as P =
Ngd, where N is the density of electrons. This definition relates to the second
term of Eq. (3.10) in an homogeneous medium where R~ = N, and the field of the
electron cloud reacting to the applied field is AE = P/¢.

The electron trajectories in the first ps after ionization and their emission into
the applied field is a deterministic problem that can only be solved by numerical
calculations. Some calculations of the transient response of the electron cloud in
linear polarization were reported by Romanov and Levis [8]. An example of the
transient response is reproduced in Fig. 3.1.

For mixed gases the contribution of each material (in the absence of interaction)
can be calculated separately. The distance between electrons changes with time and
position. The response of the electrons is a field AE, calculated for each point in
space as a function of time, which modifies the applied field: E(z+Az) = E(z)+AE.
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Figure 3.1: The cumulative polarization response of a medium that is being tenuously
ionized by a laser pulse with rectangular envelope. The laser electric field oscillations are
shown for comparison, not to scale. (from [8])

The radiated field AE is related to the traditional notion of index of refraction n(z, t)
(no longer a constant) by the propagation equation written in the slowly varying
envelope approximation and in retarded time:

AE 2
— = -ikAz = —lﬂAz G.11)

Note that this approach is not restricted to a particular motion. If the medium is
excited by multiple laser frequencies or existing nuclear and electromagnetic fields,
they all contribute in the motion of the electron and therefore its radiation.

The response due to the dipole radiation of the electrons at position r is calcu-
lated by time integration of Eq. (3.6) and inserted in the dipole term of radiation
equation Eq. (3.10).

qd(t,r)  q*&(t,r)
Rt ey 2mw’R(t,r)e’

AE(t,r) = (3.12)
in which E(t,r) is the pulse envelope. Note that the dipole radiation exists only
during the laser pulse. In this particular case the radiation of the moving electron
agrees with the Drude model, which is detailed in Section 3.1.2 that follows. It
leads to an index of refraction

An=-——"L =1 (3.13)
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where wp is a time dependent plasma frequency that depends on the density of
electrons N at each instant. Note that in a general case the motion of an electron is
influenced by existing electromagnetic fields, collisions and Coulomb forces, and
therefore the refractive index of electrons can not be defined solely by the den-
sity. Tunneled electrons with circularly polarized light withhold a drift velocity
[Eq. (3.6)] that is determined by the field value at the moment of ionization. The
spiral motion of the tunneled electrons results in generating an expanding sphere
in time. The electromagnetic fields in the presence of moving matter are related
through Maxwell’s equations, suitably modified to include the effects of motion
upon the electric and magnetic properties of matter [9]. We assume that the expan-
ding electron sphere in time has the constituent parameters of free space (u = yo
and € = ). Let us assume that the expanding electron sphere is a perfect conductor
with the field zero for r < b, where b is the radius of the sphere. One relation is
necessary to complete the set of basic equations, which is Ohm’s law for a perfect
moving conductor

E+vxugH =0. (3.14)

Here v is the velocity of a macroscopic element of volume of the moving conductor.
The solutions of Maxwell’s equations inside and outside the expanding sphere have
to be matched across a moving surface. Due to the requirement of regularity at
infinity, the problem is defined only by the magnetic vector potential * A .

H = —iVxA (3.15)
Ho
0A
= o (3.16)
and is the solution of )
1 VA
VA - SvE T —uoJ, (3.17)

where J is the electric current density. Using the Green’s function, the field at
distance r from the center of a sphere moving with constant velocity [10] is

Ho 3HY T N 7?2
2 (1-v/c)*(1+2v/c)|rc  2r%|

(3.18)

where T = t—r/c . In the case of tunneled electrons with circularly polarized light
r = R is the distance between the electrons , v is the expansion velocity of the sphere
(the drift velocity gE(ty,rp)/(mw) in Eq. (3.6) and T = a/v— R/c where “a* is the
radius of the sphere at a given time.

The total response at each point in the beam cross section at a given time “¢'* is
calculated by adding all the responses of expanding spheres from the initial ioniza-
tion time #; = —oo to the final observation time ¢y = ¢’ , weighted by the probability
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The refractive index due to the expansion of electron spheres [Fig. 3.2(a)] is com-
pared to the dipole radiation [Fig. 3.2(b)] with circularly polarized light. The dif-
ference between the two is presented in Fig. 3.2(c). The dipole index is stronger
in the first half of the pulse. The index due to the drift is stronger in the central
portion of the beam profile and in later times of the laser pulse. Note that the two
responses have a 90° degree phase difference; the dipole index is a real index, and
the drift index is an imaginary one (absorption index). The drift index (imaginary)
of tunneled electrons with linear polarization is neglected because of their low drift
velocity and the index is mostly due to dipole radiation (real index).

Another point of view in connecting microscopic effects such as light polari-

T T?
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zation to macroscopic effects in high fields can be seen through conservation of
energy. In the strong field ionization [11] conservation of energy imposes that

Nphotonhw = Ip + Up +K, (3.20)

where K is the kinetic energy of the electrons and Nphoton 18 the number of absorbed
photons in the ionization process. I, is the energy required to release an electron
and U, is the ponderomotive energy [Eq. (3.2)] due to the oscillation of electrons
with the applied field.

3.1.2 Steady state limit: the Drude model

It is easy to associate a characteristic resonant frequency to an oscillator with a
positive and negative charge. Associating the resonant frequency of Eq. (7.7) with
a homogeneous electron plasma may seem less obvious. If an electron moves in
the plasma from its equilibrium position, there will be a restoring force. The larger
the number of surrounding electrons, the larger the restoring force, which explains
the density dependence of the resonant frequency.

Let us consider a volume of electrons, of density ny. The equation of motion of
electrons under the influence of an electric field, neglecting collisions and magnetic

forces, is:
dv

mea = —eE+e[vX B]l—m,v. (3.21)
Note that in the equation of motion of the electron, the electric field can be the
Coulomb field from the surrounding electrons. Let us consider a perturbation on,
from the equilibrium density of the electrons ng. We will for simplicity neglect
collisions and the magnetic force in the following derivation. Expressing that the
change in the number of electrons per unit time in a infinitesimal volume is equal
to a source term, minus the current of particles out of that volume, leads to the

conservation equation for the electrons:
on
o + Vnv = Source terms |. (3.22)

with n = ng + dn, and on, < ng. In the velocity v = vp + dv, we assume no drift
velocity (6v = 0. The conservation equation (without source term — the plasma is at
equilibrium), neglecting the second order product éndv, leads to:

—-10n
V-ov=——. 3.23
v ng ot ( )

Taking the divergence of Gauss law, and using the equation of motion (3.21):

2 -1
VeeE="" cm L om0 =m i(_@)
ng Ot

e 3.24
€ dt dt dt (3:24)
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which leads to the differential equation for the plasma density:

#n noe? )
i =g =i .

which shows that indeed, density fluctuations in a plasma of electron have a reso-
nant frequency.

The fluctuation of the density (position) of electrons gives rise to an electric
field. Considering that there is no other electric field (no applied field), using Am-
pere law:

D

VxH = J+6—

ot

D = €E

J = -—nqu
gé’a—E_nU
or\Sar ~ M

PE _ nogdv

o g Ot

where we have set the magnetic field to zero. Since dv/dt = —qE/m, from the

equation of motion,
O*E nog?
—=—-|—|FE 3.26

or? mey (3.26)
we see that the density fluctuation themselves give rise to the emission of a field at
the plasma frequency w),.

The classical treatment of electron in plasma is not very different from the
bound electron: it a is stationary solution of a driven oscillator, based on a fun-
damental assumptions that the medium response is isotropic and stationary. In
particular, the density term that defines the plasma frequency is never a constant
when dealing with fs pulses.

3.2 Transitions with bound electrons

3.2.1 Introduction: the classical oscillator and Maxwells equations

The classical approach is to calculate the motion of the bound electron, modeled as
a dipole. The electron is at a (small) distance d from the positive ion. It oscillates
with the applied electric field. This is the classical oscillator model. The Coulomb
field produces a restoring force, which leads to a resonance frequency. One intro-
duces a damping term. A similar model is used for the plasma. The result is that,
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away from resonance, under the influence of an optical oscillating field at w, the
motion of the electron follows the frequency of the applied field, in phase, and is
thus d = dycoswt. At a point of observation at a distance R from the dipole, the
field due to the dipole is:

2 R? 2¢°d
AE=-4_|1- ~ (3.27)
47R? (R+d)?| 4nR3
Putting that in Maxwell’s propagation equation:
O*E 1 O*(E+AE)
—--—————>—=0 3.28
02 ¢ o (3:28)
of 2 2 2 2
0°E 1 0°E 1 0°AE
oL 1oL _ 1 =< (3.29)
072 2 o2 2 or c?
Using:
E = lgei(wl‘—kz)
2
AE = Lage@)
2
we find: )
& wiE w
—2ik— —2i—— = —<AE, 3.30
Yoo w2 (3.30)
and

06 106 _ .o

0z ¢ Ot 2c

Even though we started from a A& in phase with the applied field, after insertion

in the propagation equation it appears that its envelope is adding 90 degrees out of
phase with the applied field, as is the case of an index of refraction.

It appears as if, by the time the electron re-radiates, the wave has already moved

by a distance of 1/4.

A&, (3.31)

3.3 Semi-classical approach to light matter interaction

In a semi-classical approach, the field is treated classically, and the atom quan-
tum mechanically. The basic physics is essentially the same as discussed in the
previous classical section: the electromagnetic field of light excites the motion of
electrons bound to the atom. The electrons being bound to the atom/molecule, the
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re-radiation into the field is that of the dipole term in Eq. (3.10). In that dipole radi-
ation term, the only varying parameter is the distance d between charges, which is
found by solving the time dependent Schrodinger equation for the atomic system,

o
or’
where the Hamiltonian H is the atomic system Hamiltonian Hy perturbed by the
dipolar term:

Hy = i (3.32)

H = Hy+ (qd)E. (3.33)

The atomic system is characterized by a set of energy levels 7wy, eigenvalues of
the equation:

H()lﬁk = ha)klﬁk. (3.34)
The wave function solution ¢ is found by inserting in Eq. (3.32) the expansion:
w0 = > awr, (3.35)

and solving for the coefficients ai(¢). The reaction field per electron (gd(#)/€p) that
radiates back into the applied field is calculated by taking the expectation value of
the position r:

AE = Ylqriv)/ €. (3.36)

The polarization P = AE is in general defined by a differential equation, where
the driving term is the total electric field applied to the atomic system, which can
have components at different frequencies. The initial conditions are given by the
state of the system prior to the application of the field. In practical situation, the
total field may be given by a combination of m pulses a various frequencies:

1V (o
E(@t) =3 {aj(r)e‘%—"f”} (3.37)
=1

where some of the fields & ; may be generated from the time dependent polari-
zation. One should not forget that the interaction will always have a particular
aim, which is either to create a particular state of matter characterized by the wave
function ¢ [or equivalently the set of time dependent coefficients ai(#)], or create
a particular reaction field AE(#) or polarization P(¢). In the latter case, one will
want to compress or modulate the applied field, or create new frequency compo-
nents. One will generally seek a particular combination of atomic system (levels)
and fields depending on the goal that one seeks to achieve, most often seeking near
resonance or proximity of certain transition frequencies between levels and light
frequencies.
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Figure 3.3: (a) The main approximation in this approach is to consider the interaction
of the light only with n levels connected by a combination of photons of frequency we,;.
The important parameters are the dipole moments of the transitions, and the detunings
Awr e = wre— ij we,j. (b) A typical problem will be to create an inversion with a stack
of unequally spaced levels, or for a “Romeo” to reach the balcony of his “Juliet” with a
lousy ladder. The solution (c) is the multiphoton approach.

We will first investigate the situation of cascade transitions, applicable when
each photon of frequency w¢ finds a near resonance with a pair of levels, as ske-
tched in Fig. 3.3(a). An example of related physical situation is to excite a stack
of rotational levels. These levels are in general an anharmonic ladder. A single
pulse excitation may only reach to the first step, as illustrated by the “Romeo” of
Fig. 3.3(b) trying to reach his “Juliet” with an anharmonic ladder. The smart appro-
ach that can be taken is to create a properly timed and phased sequence of pulses
or “Romeos” to reach the top of the ladder, as in Fig. 3.3(c). Rotational level inver-
sion can be engineered with ultrashort IR pulses [12]. They are also taking place
in the propagation of ultrashort intense pulses in air [13]. Cascade excitation can
be exploited to create a complete population inversion in atomic vapors [14].

Situations can be created where most detuning — except one — can be neg-
lected. The interaction with the off-resonant levels can be considered nearly in-
stantaneous: the response time is of the order of the inverse of the detuning. One
can find a stationary (‘“‘adiabatic’) solution for the coefficients a; associated with
the off-resonant levels. The interaction reduces to a set of differential equations in-
volving the near resonant levels, which, for times sufficiently short that relaxation
effects (radiative and non-radiative decays, collisional relaxation) are negligible,
can often be represented by a “Bloch vector” model. We will see under which
condition these equations reduce first to rate equations, next to the classical non-
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resonant instantaneous linear and nonlinear polarization.
Semi-classical approach applied to cascade excitation of multilevel systems One
can also use a multiple wavelength source, each wavelength of the source being
resonant with successive dipole transitions. If in addition the sum of the n pho-
ton frequencies is resonant with a particular level, we have a case of “cascade
n-photon resonance”. This problem can be solved formally in all generality from
Schrodinger’s equations. From the general solution, we can particularize to the
case of identical fields, off-resonance intermediate levels, multiphoton resonance.P
For simplicity, we will limit ourselves here to a three-level system. The procedure
followed here is easily generalized to n-levels.

We consider a bichromatic laser pulse described by:

E() = &i()cos[weit+ei1(h)]
+ 82(t)COS[(U&2t+(p2(Z)]+.... (3.38)

Note that we are not using at this point the complex notations. As it is often the case
in nonlinear optics, one has to be careful to include both the positive and negative
frequencies at the onset.

The relevant three level system is sketched in Fig. 3.4. The detunings are defi-
ned as:

A1 = wor—we
Ay = wer—(we1 +wep) (3.39)
2
e m e - A,
huwae: 1
‘u I A
hw1yy 1

Figure 3.4: Sketch showing the three levels 0, 1 and 2, the light frequencies 7iw;, and
hiwye and the detunings.

The coupling with the multilevel (three) system is through the dipole inte-
raction term in the time dependent Schrddinger equation:

o

Hy =i, 3.40
v ih=> (3.40)
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with:
H=Hy+H =Hy—p-EQ®) (341

where p is the dipole moment. The wave function ¢ is written as a linear combi-
nation of the wave function of the unperturbed atomic system i

() = ) atn (3.42)
k
which leads to a system of differential equations for the coefficients a(?):

d j < ~
% = —iwgay + ; épk,j[& et + Ee' 0 +c.c]a (3.43)

The “rotating frame” approximation for this particular situation is:

apy = Qo
a; = €9l
a, = Werted o (3.44)

In substituting in Eqs. (3.43), it is important to keep only the slowly varying terms
(as compared to the light frequency or transition frequency). This is the step where
we see the importance of having defined the field as a real quantity, i.e. with both
positive and negative frequencies. The positive field frequencies combine with
negative going frequencies, and vice versa, to give:

dcg i ~

—_ = — *(t

7 thl,oal( ) C1

dCl . i ~ i o

il —iAjcy + ﬁpo,lal(f)co + ﬁpz,laz(t)cz

dcy . i .

E = —lA262 + ﬁpl’zaz(t)cl (3.45)

or in general, applicable to a n-level system:

dcy st i i
_ = C —_ —_
dr kT on 2h

This systems takes a simpler form is we define the Rabi frequencies as:

Prc1xED k-1 + == Prar1E ()Chs1- (3.46)

i

El = hpl,OSl
- i ~
E, = £p2,182. (3.47)

Substituting:
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dco 1.
— = 0+=Ejc1+0
di 21!
det L co— it + LB
— = —=Ficg—iAic1+=E5c
i S E16o e
d .
f = 0- EEQC] - iAzCz
or in matrix form:

d () 0~ %ET (,)_, Cco

=l e |= —zE iA gE5 || e (3.48)
(&%) 0 —%Ez —iAz )

This is the basics of the treatment of a cascade of multilevel systems. The ex-
tension to a larger number of transitions is straightforward. A basic approximation
is that any level k is connected by a dipole transition to a level k+ 1 and k— 1.

The system of equations (3.48) is easy to solve numerically. One is generally
not interested in expressing the results as a matrix of ¢ coefficients, but instead
the 3 X 3 matrix of the density matrix elements p;; = c,-cj. The diagonal elements
cic; represent the populations of the level i. The off-diagonal elements cic; are a
measure of the amplitude excitation at the frequency w; — w;, and will be directly
connected to the polarization, as we have already seen in the case of the two level
system.

This matrix formalism is most useful in reaching a desired population distri-
bution. This approach can be used in systems where the density of levels is such
that one can generally find a “ladder” of levels to climb. An example of application
is given in Appendix ??. It is shown in that appendix how a properly phased se-
quence of pulses can create a complete population inversion in the vibro-rotational
level structure of CH3F. It can also be applied to the less crowded level structure
of atomic transitions. The example of inverting a two-photon transition in sodium
vapor, with the purpose of creating a bichromatic articifial guide-star, is treated in
Appendix ?? In the case of atomic transitions, the more often considered case is
to have the intermediate level — or intermediates levels — far off resonance. In that
case, the equation for that particular (or these particular) intermediate level(s) can
be considered to be steady state, and the system of equation is reduced. This is the
“adiabatic approximation”, which will be solved in Section 3.3.1.

3.3.1 Adiabatic approximation; multiphoton Bloch model

If the detuning of the intermediate level 1 is larger than the transition rates: the
second Eq. (3.48) can be considered to be in steady state, and one can solve for the
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coeflicient cq:

‘1=

A (E1c0 E: Cz) (3.49)

By substituting this solution in the other two equations, the three level system
has been reduced to a two-level system, where the ground and upper state are not
connected by a dipole transition. These equation can be represented by a “Bloch
vector” model, in which a “pseudo-polarization” vector rotates around a “pseudo-
electric-field” vector with an angular velocity given by a Rabi frequency that is
now proportional to the square of the electric field amplitude. Substituting the
solution (3.49) into the other two equations:

CO = 4A1 (E]C() EZCZ)EI
. [ . .
cy = —4—A1E1E26‘0 + 4—A1E2E262 —iMrcs. (3.50)
Defining:
0, = —icocy
Wo = cc;—coc (3.51)
leads to the following set of equations:
2 . 1 E2
0, = l{A2+—[lE1|2—|Ezl2]} Qz— ! Wz
W, = —Re |E\E207). (3.52)

We recognize here Bloch’s equations for a two-level system [15], if we define a
two photon Rabi frequency «»&?, where:

Ki1k2 _ PolpP12

= . 3.53
2A1 H2A; (353)

Ky =

In general, more than one intermediate level may be involved in the calculation of
the two-photon Rabi frequency. This simply means than instead of the single term
in the right hand side of Eq. (3.53), there will be a sum over i, the latter designing
the index of an intermediate level with detuning A; [essentially replacing all indices
“1“ by “i” in Eq. (3.53)].

Note a small complexity appearing in the detuning: a time dependent detuning
Aw;(t) has to be substituted to the constant detuning A;:

— 1 2 2
Aws() = Mo+ 7 |1V P = B (3.54)

The substitution leads to the Maxwell’ Bloch multiphoton system of equations:
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0, = isz(t)Qz—Kzng—T—z (3.55)
2
. 1 W=W,
W = Re|&*0"|- 0 (3.56)
T,
08 . N L
9 L Ly 0s8 — LB panbs 0" (3.57)
0z 2
o0& L~ Q-
B2 pan0,E- 265 (3.58)
0z 2
(3.59)

0, is the amplitude of some atomic “excitation” oscillating at the frequency of
the two-photon transition, or 2 w. It is thus natural to expect that the field oppo-
sing the driving field (hence responsible for two-photon transition) is given by the
combination Q,&* which would be the amplitude of an oscillation at the frequency
2w —w = w. A rigorous derivation of the polarization shows that this is indeed the
case [16]. An additional contribution to a time varying polarization comes from the
fact that the atom has a different polarizability in the ground state versus the upper
state. Therefore, as the populations swing up and down under the influence of the
field, there will be a modulation of the polarization proportional to the population
difference. This has a negative impact on phase matching in third harmonic gene-
ration. A fourth equation has been added to the set (3.52), with the combination of
0-E&, expected to oscillate at the frequency 3w,. This is the term responsible for
two-photon resonant third harmonic generation discussed in the next section.

The system of Egs. (3.55) through (3.57) can easily be generalized to mul-
tiphoton resonant interaction, where n- rather than 2- photons are near resonance
with two atomic levels [17, 18]. In most of the cases, a geometric representation
applies, as sketched in Fig. 3.5(a). The n-photon have created a matter excitation
at frequency nw, which is represented by a a three dimensional “pseudo-vector”
é(Qr, 0;, W), where W is proportional to the population difference between the re-
sonant levels. The geometric interpretation of the Eqs. (3.55,3.56) is that the time
evolution of the vector @ results from a rotation of the @ around a pseudo-vector
5(8,.6’,, Aw) with an angular velocity proportional to |§|. The third component of
the pseudo-vector E is the detuning between nw, and the near resonant level, as
modified by an eventual Stark shift.

In the set of Egs. (3.55) through (3.57), the phase ¢(¢) of the field does not
appear explicitly. An equivalent form of equations that is preferred for analytical
treatments is obtained by the substitution Q = (iu + v)exp(i¢). The geometrical
representation of the interaction is that given in Fig. 3.5(b), where the medium
resonance is described by the vector f’(u, v, W). Here also the motion of the vector
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(e)

ol

Figure 3.5: Bloch vector model for the near resonant interaction between light and an

atomic system. The first two components of é are —iQ, + Q; = p1, where py, is the single-
or multi-photon resonant matrix element between the ground state and the resonant level.
In (a), the field is represented by its real and imaginary parts. In (b), the field is represen-
ted by its amplitude & and phase ¢, and Q = (iu + v)exp(ig). The closest analogy to the
generalized polarization is not an oscillating spring, but a gyroscope as represented in (c).

P is a rotation about the pseudo-electric field vector 5(8”,0, Aw —doty). This
particular model will be dealt with in more details when discussing linear optics
as a limiting case of coherent interaction (Section 3.3.4). It is seen here that the
fundamental mechanical analogy of resonant excitation of matter by a light pulse is
not an harmonic force driving a spring near its resonance, but a gyroscope. Indeed,
as shown in Fig. 3.5(c), the vector P is represented by the shaft of a gyroscope of
angular momentum /w, If a force F is applied to the cage of the gyroscope, the
axis P will precess following an equation of motion 87_5/ o PXTF.

3.3.2 Optimizing harmonic conversion

Long wavelength lasers being generally more efficient, frequency conversion by
harmonic generation is often used to generate shorter wavelength. Gases and ato-
mic vapors have often been used as nonlinear media because of their higher damage
threshold as compared to nonlinear crystals. The set of equations presented in the
previous section provides a guide to the choice of nonlinear material. If the medium
has a two photon resonance, the generation length for a maximum third harmonic
generation will be reduced.In the set of Eqgs. the function Q has a maximum va-
lue, limited by the radius of the Bloch sphere. At the maximum value of Q, the
propagation equations appear to be describing just linear gain or linear absorption.
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3.3.3 Coherent Raman scattering

It is essentially the same model/equations as in the previous section, with the level
2 “folded down”. The notations are &; at we, for the Raman pump, &, at w2
for the Stokes signal; the ground level is “0”, the upper level (connected by dipole
transition) “1”, and the Raman transition is 0 — 2.

Stimulated Stokes Backward Raman Scattering

The system of Maxwell-Bloch equations reduces now to:

" )
Or = ihn(00; 81 E3W -
. ~ o~ W-Wy
W = Re [K2818;Qi] - T—
1
8z ¢ ot e
081 108 .
-2 - 00,6,
8z ¢ ot p=r
(3.60)
The fields, with their complete exponential dependence, are
E,| = glei(w/,lt—klz)
E2 — 81 ei(w[,zt+k22)
(3.61)
The Raman excitation has the harmonic dependence:
Qei[(w/,rwc,z)t—(kl+k2)z] (3.62)

All these exponential dependence are consistent with the above equations.
The coefficients @, and «,, should contain the respective optical frequencies, in
order to satisfy energy conservation.



166 CHAPTER 3. SEMI-CLASSICAL

3.3.4 Single photon coherent propagation

Whether we are dealing with molecular or atomic transitions, the situation can
arise where the ultrashort duration of the optical pulse becomes comparable with
— or even less than — the phase relaxation time of the excitation. In the frequency
domain, the pulse spectrum is broader than the homogeneous linewidth defined in
the first section of Chapter 3. If the pulse is so short that its spectrum becomes
much larger than the inhomogeneous linewidth, the medium response becomes
similar to that of a single atom. It may seem like a simplified situation when the
excitation occurs in a time shorter than all inter-atomic interaction. It is in fact quite
to the contrary: in dealing with longer pulses, the faster phase relaxation time of
the induced excitation simplifies the light matter response. One is used to dealing
with a steady state rather than the “transient” response of light-matter interaction.

We will start from the semi-classical equations for the interaction of near reso-
nant radiation with an ensemble of two-level systems inhomogeneously broadened
around a frequency w;,. The extension to multilevel systems will be discussed
in the next section. We refer to the book by Allen and Eberly for more detailed
developments [19].

In this section we chose a density matrix approach to derive the interaction
equations for a near resonant two-level system, of ground state |0) and upper state
|1), excited by the field E(¢). The density matrix equation for this two-level system
is:

1
p= %[Ho—pE, Pl (3.63)

where H) is the unperturbed Hamiltonian, and p the dipole moment which is paral-
lel to the polarization direction of the field. Introducing the complex field through
E = E* + E~ in Eq. (3.63) leads to the following differential equations for the dia-
gonal and off-diagonal matrix elements:

2pr. L -
P11 = P00 %[1,001E —lP10E+] (3.64)

. ipE*
po1 = iwppor + ph o1 —pool (3.65)

where wy is the resonance frequency of the two-level system. It is generally con-
venient to define a complex “pseudo polarization” amplitude Q by

T
ipo1 pN = EQeXp(lwet) (3.66)

where N = Noginn(wo — wj,) and Ny is the total number density of the two-level
systems. The real part of Q will describe the attenuation (or amplification for an
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initially inverted system) of the electric field. Note that O = i where P is the
slowly varying polarization envelope defined in Eq. (??). Further we introduce a
normalized population inversion:

w = pN(p11 = Poo)- (3.67)

The complete system of interaction and propagation equations can now be written
as:

0 = i(wo—wg)Q—KgW—Tg (3.68)
2

. _ 5 Ak & A O* _W_WO

W= S10°8+08"] - (3.69)

0& _ Mowee [ L, , ,

i fO O(wy)ginn(wy — wip)dwy. (3.70)

The quantity k& with x = p/# is the Rabi frequency. T and T, are respectively
the energy and phase relaxation times. Most of the energy conserving relaxations
are generally lumped in the phase relaxation time 7. Equation (3.70) has been
obtained from Eq. (??) by integrating over the polarization of subensembles with
resonance frequency wy,. The set of Eqs. (3.68)—~(3.70) is generally designated as
Maxwell-Bloch equations.

Another common set of notations to describe the light-matter interaction uses
only real quantities, such as the in-phase (v) and out-of phase (1) components of
the pseudo-polarization Q, and, for the electric field &, its (real) amplitude & and
its phase ¢. Defining

0 = (iu+v)e' (3.71)
and substituting in the above system of equations leads to the usual form of Bloch

equations' for the subensemble of two-level systems having a resonance frequency
wo.

i = (wo—we—P— — (3.72)
T,
b o= —(a)o—u)g—c,b)u—KSw—i (3.73)
T,
W= k& LW (3.74)
T,

I These equations are the electric-dipole analogues of equations derived by F. Bloch [20] to des-
cribe spin precession in magnetic resonance.
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where the initial value for w at t = —o0 is
— N (e _ (o 3.75
wo=Pp (,011 p()o)- (3.75)

The propagation equation Eq. (3.70), in terms of & and ¢, becomes

& Howee [, , ,
w - fo o(w))gimn(wh— wip)dwly — (3.76)
dg Howec f * u(wy) , /
= - inn(wh —wipdw).  (3.77
92 m o S 8 h(wo win) wy 3.77)

The motion of the pseudopolarization vector P (initially pointing downwards
along the w axis) is a rotation around the pseudo-electric field vector & with an
angular velocity proportional to the amplitude of that vector. (b) In the complex
amplitude representation, the phase of the electric field determines the particular

vertical plane containing the pseudo-electric field vector §

The vector representation of Feynman et al. [15], for the interaction equa-
tions is particularly useful in the description of coherent phenomena. The re-
presentation is a cinematic representation of the set of equations (3.72), (3.73),
and (3.74). For simplicity, we consider first an undamped isolated two-level system
(T1 =T, = T3 = 00), and construct a fictitious vector P of components (u,v,w), and
a pseudo-electric field vector Eof components («&,0,—Aw). The detuning is defi-
ned as Aw = wy — w¢ — ¢. The system of Eqgs. (3.72)—(3.74) are then the cinematic
equations describing the rotation of a pseudo-polarization vector P rotating around
the pseudo-electric vector & with an angular velocity given by the amplitude of the
vector & [Fig. 3.5(a)]. The vectorial form of Eqgs. (3.72)- (3.74) is thus:

P/t = ExP (3.78)

Depending on whether the two-level system is initially in the ground state or inver-
ted, the pseudo-polarization vector is initially pointing down or up. Since we have
assumed no relaxation, the length of the pseudo-polarization vector is a constant of
the motion, and the tip of the vector moves on a sphere. The conservation of length
of the pseudo-polarization vector can be verified directly from the set of Bloch’s
equations. Indeed, the sum of each equation (3.72), (3.73) and (3.74) multiplied by
u, v, and w, respectively, yields after integration:

W +w? = w(z) (3.79)

which is satisfied for each subensemble of two-level systems. As shown in Fig. 3.5(a),
a resonant excitation (Aw = 0)) will tip the pseudo-polarization vector by an angle
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6o = f_ 0; k&dt in the (v,w) plane. For a sufficiently intense pulsed excitation, it is
possible to achieve complete population inversion when 6y = 7. The effect of phase
relaxation (homogeneous broadening) is to shrink the pseudo-polarization vector
as it moves around. To take into account inhomogeneous broadening, we have
to consider an ensemble of pseudo-polarization vectors, each corresponding to a
different detuning Aw.

A similar representation can be made for the system of Egs. (3.68)—(3.69).
The pseudo-polarization vector is then the vector é(Q,-, QOr,w) rotating around a
pseudo-electric field vector g(KSr,KSi, —Aw) [Fig. 3.5(b)]. Physically, the first two
components of the pseudo-polarization vector o] represent the dipolar resonant field
that opposes the applied external field (and is thus responsible for absorption).

3.4 From transient to stationary interaction

Most classical linear and nonlinear optics, which is treated in the next chapter,
treats the linear and nonlinear polarizations as being instantaneous. Therefore,
it be understood as a steady-state approximation of the equations covered in the
preceding sections.

3.4.1 Rate equations

We have seen how the semiclassical interaction in multilevel systems can be redu-
ced to a two-level system, described by Bloch’s equations, if the near resonance
of a pair of levels dominates. The next most common situation is when dealing
with pulses long compared with the phase relaxation time. If the light field enve-
lope is slowly varying with respect to 7>, Bloch’s equations reduce to the standard
rate equations. For pulses longer than the dephasing time 75, the two first Bloch
equations (3.72), (3.73) are stationary on the time scale of the pulse. Solving these
equations for u, v, and substituting v into the third equation (3.74) for the population
difference, leads to the rate equation:
EWPT\TH) w  w—wy 3 1 w—wp

o = - W (3.80)
1+AT; T T LioprTo 1 T,

Equation (3.80) defines a saturation field at resonance Eo=1/ (kT Ty). Off re-

sonance, a larger field Smff =&y ,/1 +Au)2T22 is required to saturate the same
transition. To that off-resonance saturation field corresponds a saturation intensity
Iy, ffe

For pulses much shorter than the energy relaxation time 7, < T and purely ho-
mogeneoulsy broadened media the rate equation (3.80) can be integrated together
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with the propagation equation (3.70) which yields for the transmitted intensity
WOV,

a_1 4 eWOIW,

I(z,0) = Io(t)e_ (3.81)

In this last equation W(¢) = f_t - Iy(t)dt,and a = 0'(()01)w0z /p is the linear gain/absorption
coefficient. Equation (3.81) corresponds can be written in terms of photon flux F:

e201 Wo(r)

F(z.1) = Fo()—

e a _ 1 + eZU'OIV_V()(l‘) (382)

where Wo(r) = [ Fo(t')dr' =1/(hw) [*_ Io(@')dr’ (Io intensity of the incident pulse),
cf. Egs. (1.29), (1.30), and
a=ogANYz (3.83)

is the absorption (AN® < 0) or amplification (AN® > 0) coefficient correspon-
ding to a sample of length z. Wy(¢) is a measure of the incident pulse energy
(area) density until time # in units of (photons)/cm?. The total incident energy den-
sity is fiweWo(t = 00) = hwWp o = Wy. The transmitted energy density W(z,7) =
hweW(z,t) is obtained by integrating Eq. (3.82) with respect to time and can be
written as

!
W(z,1) = hwe f F(z.t)dt' = WylIn[1—e®(1—e"0/)], (3.84)

(o)

where W, = fiwe/(2071) is the saturation energy density of the medium. With
Eq. (??), in the limit 7, < T, we can express the population inversion as

AN®©
1 —e4[1 —eWo®/Ws]’

AN(z,) = AN©e 200 WD) — (3.85)

Femtosecond pulse propagation through a homogeneously broadened saturable
medium in the limit of 7> < 7, < T is completely determined by two parame-
ters: the saturation energy density Wy and the linear absorption (gain) coefficient a.
Equation (3.81) is particularly useful in calculating pulse propagation in amplifiers,
as further detailed in Chapter 8.1.

3.4.2 Steady-state approximation: linear and nonlinear optics

Steady state solutions of the first two Bloch’s equation (field variations slow com-
pared to T, lead to the rate equation (after insertion of these solutions in the third
Bloch equation).

KSTzw

0= T_ihaTs’ (3.86)
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or, in terms of u and v:

AwTkET

u = _Dwhkolaw (3.87)
1+ Aw?T?
kETHw

v = ————, 3.88
1+ Aw?T? -89

Substituting v in the third Bloch equation (3.74) leads to the rate equation discussed
in the previous Section [Eq. (3.80)]
Linear optics is the steady state solution of all three equations.

AwT-kET
6 = - el s (3.89)
1+ A?T? +K2ET T,
ET
b = — KO W (3.90)
1+ Aw?T; +K*ET T,
wo(l + Aw?T?)
= = - (3.91)
1+ A(l.)zT2 +K282T1 T> 1+ m

where we used the off-resonance saturation intensity defined in Eq. (3.80).

3.5 Small motions at the bottom of the sphere

Bloch’s equations can be solved analytically in the weak short pulse limit, i.e., for
pulses that do not induce significant changes in population and have a duration
short compared to the phase relaxation time 7,. The interaction equation (3.68)
can be written in the integral form:

t
@) = f kEwe ool =] gy (3.92)

For weak pulses w = wy) and the right hand side of Eq. (3.92) at ¢ = oo is proporti-
onal to the Fourier transform of kxEw. Thus we have:

0P =’ +0?

K*wilE(wo — we)* (3.93)
—2wo(Weo —Wo) (3.94)

X

where E(wg — wy) is the amplitude of the Fourier transform of the field envelope
at the line center frequency wyp. The last equality results from the conservation of

the length of the pseudo-polarization vector (u? + v*> + w? = wé = constant). The
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approximation is made that the change in population is small: w2 = [wo + (Weo —
wo)I* & w§ + 2wo(weo — wo). The final expression is:

2

(Weo = 0) = = 1E(wo — w)l” (3.95)
This is a close connection to linear optics. Equation (3.93) tells us that the am-
plitude of the dipolar field that opposes the applied field is proportional to the
Fourier component of the applied field at the dipole resonant frequency. The form
of Eq. (3.95) is of equal physical importance, since it relates the energy absorbed
by the two-level system to the spectral intensity of the light at the resonance fre-
quency. The approximations made to arrive to this conclusion are more general
than the steady-state approximations of the previous section.
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3.6 Light-molecule interaction

Molecules have two additional types of motion compared to atoms: they can rotate
around their axes of symmetry and concurrently vibrate to and from because of the
restoring force between their atoms. These additional degrees of freedom bring
features to the molecular spectra that are not present in atomic spectra.

Molecular structures vary in term of their symmetry and consequently their
behavior. This section we only discuss the spectra of diatomic molecules, which
can easily be extended to more complex molecules.

3.6.1 Rigid rotator model

The Schrodinger equation of a rotating light object bound by a restoring force to a
very heavy stationary object is:

L0240 L2 L a0 = [E- v lwine 3.96
‘z[ﬁ("a)('EF o sl |00 = [E-VO|¥(r6.0)  (3.96)
where u = mymy/(m; + my) is the reduced mass of the objects, V() is the bonding
potential and (r,0,¢) are the spherical coordinate components. J is the angular
momentum operator which commutes with its z-component; [J%,J.] = 0. One can
assume that the displacement of the particle from its equilibrium point is negligible.
The Hamiltonian of a rotating quantum object is therefore

12 2P
X v 'z
2lxx  2lyy 2Izz

Hio = (397)

where Ixy, Iyy and Izz are the moments of inertia, ,urz, around the body-fixed
(X,Y,Z) axes. W can be separated to radial and angular parts as ¥ = R(r)Y (8, ¢).
Angular solutions of the Schrodinger equation above are shown to be spherical
harmonics, Y;,,,(6,¢), with the eigenvalues of

PYim®.0) = JUJ+DRYju(6.0) (3.98)
1. Yim.0) = mhYju(0,¢) (3.99)

with J=0,1,2,... and m < |J|.
We focus on the case of a linear molecule for which Ixxy = Iyy =1, Izz = 0.
From J? = J§( + J% + J% the rotation of molecule creates a series of discrete states

with energies
J(J + D2

rot = 1
¢ i (3.100)
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In spectroscopy it is more popular to consider the rotational energy terms in
units of wavenumber, therefore, for the rigid rotator model we introduce

F(J) = JU+1)=BJJ+1) (3.101)

8m2cl

where B is the rotational constant in units of cm™! |, % is the Planck’s constant and
c the speed of light.

3.6.2 Oscillator Model of Diatomic Molecules

Atoms in a diatomic molecule are bound together by a restoring force caused by
their electrons cloud. This force can be approximated by a linear function of displa-
cement from an equilibrium point, i.e., F(r) = —k(r — r,). This model is equivalent
to the classical harmonic oscillator.

For the radial part of 3.96 the potential energy is

wm:%mz (3.102)

Solutions of Schrodinger equation of a harmonic oscillator can be found in many
introductory quantum mechanics books. The vibrational states have energies of

1
Eyib = hwyip (v + 5) (3.103)

/k
Wyib = 1|~ (3.104)
Jii

In spectroscopic units (cm™'), the vibrational energy is

withv=0,1,2,... where

hawyib

CO=

(v+%) =w(v+%) (3.105)
This shows that the energies of the harmonic oscillator are equally spaced, contrary
to the rotational energies of a rigid rotator.

Although the harmonic oscillator model is sufficient to address the features of
molecular spectra for small values of v, for higher values this model is not precise
enough. This is due to the shape of vibration potential curve. We expect that if
atoms of a molecule move far from their equilibrium value, the molecule dissoci-
ates, i.e., it splits into separate atoms. Equivalently, the potential curve flattens for
large values of r. In other words the potential curve is deformed from the parabolic
shape of the harmonic oscillator model.
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Consequently the vibration potential of the anharmonic oscillator is a polyno-
mial with displacement terms of higher order added to the potential of the harmonic
oscillator. Energy levels of the solutions of the Schrodinger equations for the an-
harmonic oscillator (in cm™!) are:

1 1 1
G(0) = WV +5) = we Xe(v+ 5)2 +we VeV + 5)3 _ (3.106)

Values of w,, w.x. and w,y, decrease rapidly, e.g. these values for the X 12;: elec-
tronic state of N molecule are w, = 2358.57, wex, = 14.324 and w,y, = —0.00226.
Anharmonicity removes the equality of distances between energy states that is va-
lid for harmonic oscillator. From Eq. (3.106) the spacing between vibrational levels
decreases as v increases.

3.6.3 Nonrigid rotator Model of Diatomic Molecules

In Section 3.6.1 the rotator is assumed to be rigid, i.e. the distance between the cen-
ter of gravity and the rotating object is constant over one rotation period. However,
spectral observation proves this assumption to be an approximation. Variation of
internuclear distance because of molecular vibration affects the rotational motion
in two ways. First, a classical picture of rotation requires a centrifugal force to
compensate the restoring force. In classical paradigm of rotation we have

J2

pow’r = — (3.107)
ur
and the equation of centrifugal force and restoring force is
J2
r—re= (3.108)
urek

where r, is the vibration equilibrium position where assumption can be made that
r—r. ~ r, as the displacement of molecule from its equilibrium position is very
small. The energy of a vibrating rotator is

J2 1 5

+ —k(r—r, .

2urz 2 (r=re)”= 2urz  2u2r8k

The quantum mechanical Hamiltonian of this system is obtained by substituting

the angular momentum operator. The eigenvalues of such an Hamiltonian (in units
of cm™!) are

J? J*

E=

(3.109)

J+1)?
hczﬂr (J+17

:BJ(J+1)—DJZ(J+1)2 (3.110)
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As aresult the centrifugal distortion decreases the spacing between rotational ener-
gies. In Eq. (3.110) higher terms can be introduced if anharmonicity is involved.
However, they play a less important roles as their amounts are negligible compared
to the first two constants.

The second way that vibrations change the rotational motion is that the varia-
tion of internuclear distance manipulates the amount of moment of inertia, /, as it
is a function of (r —r,). This in turn affects the values of B and D as

BU=Be—a(v+%) (3.111)
Dy =D, —Bo(v+ %) (3.112)

Here, higher terms are neglected as their effect is negligible. In conclusion the
amount of energy that a molecule contains due to its rotation and vibration is

1 1 1
T = w.(v+ 5) —WeXe(V+ 2)2 + Wy (v+ 5)3 +...

+BJJ+1)=DJ*J+1)* +... (3.113)

3.6.4 Molecular alignment by linearly polarized laser field
General formalism

Interaction of laser light with a molecule without permanent dipole moment indu-
ces a dipole moment, i, by separating the centers of positive and negative charges.
This dipole moment is proportional to the electric field by polarizability tensor, «.
Laser makes the induced dipole moment to be aligned along the same direction
as the electric field. Assuming a molecule with diagonal polarizability tensor, the
energy of the molecule inside the electric field is changed as

E i-&

N =N =

i
(Q'XXag( + ozyy8%, + a’zzsé). (3.1 14)

Hence, for a molecule with axx = ayy = @, and azz = ¢ the energy is
82
E=—70 Aa cos? 6, (3.115)

where Aa = a)—a, and & = EycosHZ with 6 being the angle between the mo-
lecule’s axis of symmetry along Z and the electric field polarization axis. This



3.6. LIGHI-MOLECULE INTERACTION 177

implies that the molecule rotates to align itself along the field axis, € = 0, so as to
maintain a minimum energy.

However, for a molecule one needs to treat the interaction quantum mechani-
cally to reveal the full dynamics. The Hamiltonian of the interaction between the
induced dipole moment and the electric field, for the case that the frequency of the
electric field is far from any electronic and vibrational transition is [21]:

1 ’ 1 ’ / *

Hin =7 ) Eapr€) = ~7 D D & (plkawe (K )8}, (3.116)
o’ pp’ kK

where a,,» and ay are the polarizability tensors in body-fixed and space-fixed fra-

mes. k, p and (p|k) are the body-fixed frame ()A(, )4 ,2), space-fixed frame (%, y,2) and
elements of Euler transformation matrix from one frame to the other, respectively.

Molecule Byo(cm™')  Do(cm™)  Aay(A?)  geven Zodd
N, 1.989581 5.76x107° 0.93 2 1
0, 14297  4.839%x107° 1.15 0 1

CO, 0.3902  0.135x107°° 2 1 0

Table 3.1: Molecular rotational properties of N, O, and CO; [22,23]

Here we only consider a linearly polarized field, & = &z, and linear molecules,
I77 = 0, Ixx = Iyy = I where [ is the moment of inertia in Eq. (3.97) and azz =
a|, axx = ayy = @, . An explicit form of Eq. (3.116) for this special case is

&2
_ 0 2
Hint = —I Aa cos“6 (3117)

which has the similar form as Eq. (3.115) with the same definition of Aa. Ro-
tational properties are briefly listed in table 3.1. The total Hamiltonian of a li-
near molecule interacting with a linearly polarized field is obtained by adding
Eq. (3.97) and Eq. (3.117): H = H,o + Hin. Note that Eq. (3.97) for a linear mole-
cule has energies as in Eq. (3.100). The solution of the time-dependent Schrédinger
equation is a linear combination of spherical harmonics in Eq. (3.98) of the form
S im @Y i (6, 0).

The expectation value of the molecule’s polar angle, (cos”6), is a measure that
quantifies how the molecule aligns with respect to the space-fixed frame. Note that
revealing the complete 3-D orientation of molecule needs the expectation value
of all the Euler angles to be calculated. This is beyond the scope of this text and
curious reader is encouraged to consult the reference [24]. \/@ ~ (J) is used to
define the dynamics of rotational states during the interaction.
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A molecular ensemble has a thermal distribution over rotational states that is
defined by Boltzmann statistics

1 E;

P(Ep)= 8 (2]+1)exp(—kB—T), (3.118)
where Z, g; (cf. table 3.1), kp are the partition function, nuclear spin statistics and
the Boltzmann constant. The (2J + 1) term accounts for the number of degenerate
states with same energy but different m.

Hence, the expectation value of any observable should be calculated by

1 E
(cos? ) = > ;’; g7 exp(— kB—JT)<Cos2 6) m (3.119)

where the Boltzmann distribution is used to average the (cos?6) for the rotational
states initially in J and m state.. (cos2 6) Jm means that we assume that initially
only |J,m) = 1; we then calculate (cos”6) and multiply it by its thermal weight.
The same operation is performed for the rest of the states, and sum the results.

Dependence of the Hamiltonian on cos?# allows Raman-type transitions with
AJ =0,+2 and Am = 0 selection rules between rotational states [22]. Transitions
redistribute the population of rotational states during the interaction. Here we dis-
cuss the importance of the interaction duration, or in other words the duration of
the electric field.

Adiabatic versus impulsive alignment

In the absence of any electric field, the rotational period of a molecule is 7,5 =
1/(2Bc) with B defined in Eq. 3.101. This period establishes a scale to define
two regimes of interaction with respect to the pulse duration 7: adiabatic regime
(T > Trot) and nonadiabatic or impulsive regime T < Tyot. The response to the laser
field is different in the two temporal regions. Analytical treatments can be found in
reference [25] to understand this difference. The numerical simulations presented
in Figs 3.6 and 3.7 illustrate the difference between the two regimes. Let us assume
first that the molecule is at zero temperature so that initially only J = 0 is populated.
In the adiabatic regime [Fig. 3.6 (center)], the J > O states start to populate as the
pulse rises, with the maximum J being reached at the peak of pulse maximum.
However, as the pulse slope turns negative, the population rolls back to J = 0, and
the system returns to its initial state upon the pulse turn-off. This scenario requires
the pulse duration to be longer than the rotational period, so that the rotational states
have sufficient time to transit back to the initial state. Figure 3.7 (center) shows the
VJ(J +1) for adiabatic case. This verifies that the pulse escalates the J value from
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Figure 3.6: Dynamics of wavefunction coefficients, aj s as function of time for N, at T=0°K for
different pulse durations. (left) [Ton = 25 ps, Tog = 25 psl, (middle) [Ton = 100 fs, 7o = 100 fs] and
(right) [Ton = 25 ps, Tog = 100 fs]. Normalized pulse shape is shown with grey line. Abscissa is in
picoseconds time unit. Ty is the rising half-width at half-maximum of the rising side of pulse and
Toff 1s the rising half-width at half-maximum of the falling side of pulse.

zero to a maximum and then this value is dropped as the pulse declines. Also,
(cos?0) suggests that the molecule is aligned toward the electric field direction as
the pulse enters and when it disappears molecules are left randomly aligned, as
they were at the beginning.

Figure 3.7 (left) shows the +/J(J+ 1) for adiabatic case. This verifies that the
pulse escalates the J value from zero to a maximum and then this value is dropped
as the pulse declines. Also, {cos?#) suggests that the molecule is aligned toward
the electric field direction as the pulse enters and when it disappears molecules are
left randomly aligned, as they were at the beginning.

In Figure 3.7 (middle) average amount /J(J + 1) at the end of pulse duration
is nonzero i.e. molecule gains angular momentum. After the pulse turn-off, these
states evolve freely and beat just like a superposition of sinusoidal functions with
different frequencies. Effect of superposition of states emerges in the value of
(cos?6). Tt is obvious that even after the interaction is terminated molecules change
their angle with the space-fixed frame. This oscillatory effect is called “rotational
revivals” with period equal to the 7. It should be noted that these alignment
revivals are hindered by the damping effects which are not discussed in this text.

Value of v/J(J +1) is shown in Figure 3.7 with blue dashed line. It shows that
in case of nonadiabatic alignment that molecule is left in J > 0 states contrary to
the adiabatic alignment that angular momentum is zero. Figure 3.6 and Figure 3.7
(right) show the case that 7., = 25 ps (adiabatic turn-on) and 7., = 100 fs (nona-
diabatic turn-off). This case inherits the properties of adiabatic and nonadiabatic
cases. The most striking differences of this with nonadiabatic interaction is that the
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—cos?0. - - VJ(J + 1) =—pulse

Figure 3.7: Dynamics of {cos?6) (red, left ordinate) and v(J(J+ L) (blue, right ordinate) with
same conditions as in Figure 3.6. (left) [Ton = 25 ps, Tog = 25 psl, (middle) [ton = 100 fs, 7o = 100
fs] and (right) [Ton = 25 ps, 7o = 100 fs]. Normalized pulse shape is shown with grey line. Abscissa
is in picoseconds time unit.

value of v/J(J+1) is higher, i.e. more rotational states contribute to the dynamics
of the molecule. As a result the beating between these states which is observable in
(cos?6) quantity results in sharper features for Figure 3.7 (right). In other words,
broader wavepacket in J space is equivalent of sharper alignment peaks. For this
hybrid type of interaction, simulations show that the vertical separation between
peaks and dips of (cos”#) are more pronounced.

Numerical results of Eq. (3.119) are shown in Figure 3.8 for nitrogen, oxyegn
and air molecules ensemble at T=295°K interacting with a linear pulse. Air is as-
sumed to consist of 78% nitroegn and 22% oxygen. Pulse has a Gaussian temporal
shape with full-width at half-maximum of 60 femtosecond and peak intensity is 50
TW/cm?. Higher temperature requires more rotational states to be considered in
Eq. (3.119) according to Eq. (3.118). Similar to Figure 3.7 (middle), after the pulse
declines molecular wavepacket beats at multiples of rotational frequency. After in-
tegral multiples of .o, “full-revival”, molecule’s rotational states have 2nm phase.
This moment occurs at 8.34 ps for N, and 11.66 ps for O,.

The local maxima represent alignment of molecules in direction of laser po-
larization i.e. the angle between the laser polarization and the molecular axis is
reduced while the minima show the antialignment of molecules i.e. the angle be-
tween the laser polarization and the molecular axis is increased. Angular shape
of molecule at alignment and anti-alignment instances are presented in middle and
right panel of Figure 3.9, respectively. Contrary to the angular shape of molecule
before the interaction with the pulse that is sphere, Figure 3.9, at the alignment
molecule is stretched along the polarization axis while it becomes flat in the plane
perpendicular to the polarization at the anti-alignment moment.
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Figure 3.8: Nondissipative {(cos?6) of O, (bottom), N, (middle) and air (top). Air is
assumed to be a mixed ensemble of 78% of N, and 22% of O,. Electric field is a 60 fs, 50
TWem™2 linearly polarized pulse (shown in top plot with black solid line. Abscissa is in
picoseconds
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Figure 3.8 shows that the transition from alignment to antialignment and vice
versa is very fast compared to the rotational period. This fast transition is important
in many applications as we will discuss in section ??

3.6.5 Orientational index of refraction

This section deals with the reaction of the molecules rotated by the light field on the
light field itself. This reaction is due to the fact that the molecules have a different
(linear) index of refraction along their different axis of symmetry.
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Figure 3.9: Angular distribution of N, molecule at T=0°K in absence of aligning pulse (left), in
alignment instance near the full-revival (middle) and anti-alignment near full-revival (right).
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Chapter 4

Neo-classical Light—-Matter
Interaction

In the previous chapter, the quantum mechanical response of the medium inte-
racting with a light field was calculated. We arrived to classical linear and nonlinear
polarization in the limit of stationary response, i.e. pulses much longer than the
matter relaxation times. This is the situation that occurs when the pulse spectrum
does not cover any resonant transition. Non-resonant optical processes are parti-
cularly useful in femtosecond phenomena because they can lead to conversion of
optical frequencies with minimum losses. Nonlinear non-resonant phenomena are
currently exploited to make use of the most efficient laser sources, which are only
available at few wavelengths, to produce shorter pulses at different wavelengths
(nonlinear frequency conversion and compression) and amplify them (parametric
amplification). In contrast to the previous section where the interaction was domi-
nated by a resonance, we will be dealing with situations where the light frequency
is far away from optical resonances. Nonlinear crystals lend themselves nearly
ideally to frequency conversion with ultrashort pulses because their nonlinearity is
electronic and typically non-resonant from the near UV through the visible to the
near IR spectral region. Therefore, the processes involved respond nearly instan-
taneously on the time scale of even the shortest optical pulse. There appears to
be no limit in the palette of frequencies that can be generated through nonlinear
optics, from dc (optical rectification) to infrared (difference frequency generation
and optical parametric generation and amplification), to visible, and to UV (sum
frequency generation). The shorter the pulse, the higher the peak intensity for a
given pulse energy (and thus the more efficient the nonlinear process).

For cw light of low intensity, a medium with a non-resonant nonlinearity ap-
pears completely transparent and merely introduces a phase shift. For pulses, as

185
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discussed in Chapter 1, dispersion has to be taken into account, which can lead
to pulse broadening and shortening depending upon the input chirp, and to phase
modulation effects. The light-matter interaction is linear, i.e., there is a linear
relationship between input and output field, which results in a constant spectral in-
tensity. A typical example is the pulse propagation through a piece of glass. The
situation becomes much more complex if the pulse intensity is large, which can be
achieved by focusing or/and using amplified pulses. The high electric field associa-
ted with the propagating pulse is no longer negligibly small as compared to typical
local fields inside the material such as inner atomic (inner molecular) fields and
crystal fields. The result is that the material properties are changed by the incident
field and thus depend on the pulse. The induced polarization which is needed as
source term in the wave equation is formally described by the relationship

P=cx(E)E = e VE +epYPE> + ey VE* + ... + oY E" + ..
= P4+ POy 4+ P4 .. 4.1)

The quantities y™ are known as the nonlinear optical susceptibilities of n™ order

where x( is the linear susceptibility introduced in Eq. (1.81). The ratio of two

successive terms is roughly given by

pn+1)
P®

X(n+ l)E

E
E mat

~
=~

4.2)

where E,,, is a typical value for the inherent electrical field in the material. For
simplicity we have taken both E and P as scalar quantities. Generally, y™ is a
tensor of order (n+ 1) which relates an n-fold product of vector components E; to
a certain component of the polarization of n order,! P™; see, for example, [1-3].

4.1 Non-instantaneous response

For Eq. (4.1) to be valid in the time domain, we must assume that the sample
responds instantaneously to the electric field: in other words, it does not exhibit a
memory. The polarization at an instant ¢ = fyp must depend solely on field values
at t = fp. As discussed in the previous section for resonant interaction, a non-
instantaneous response and memory effects, respectively, are a result of phase and
energy relaxation processes. They become noticeable if they proceed on a time
scale of the pulse duration or longer. Fortunately, in non-resonant light—matter
interaction many processes are well described by an instantaneous response even

'Note that this product can couple up to n different input fields depending upon the conditions of
illumination.
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when excited by pulses with durations of the order of 10~!# s. This is generally
true for nonlinear effects of electronic origin. Often however, the motion of the
much heavier atomic nuclei and molecules contribute to the material response. In
such a case, memory effects are likely to occur on a fs time scale, and the nth-order
polarization depends on the history of the field:

P(")(t)=€0ff...f Y At1, 1, s t) E(t—1)E(t — 1) — 1)...

XE(t—t —...—ty)dt1dty...dt,, 4.3)

which illustrates the influence of the electric field components at earlier times.

Let us discuss the meaning of a memory of the nonlinear polarization for the
case of n = 2. The nonlinear polarization of second order is responsible for second
harmonic generation or frequency mixing or parametric amplification:

P“m=P@m=@fj}@m@wm—m&aﬁrﬁMmm, (4.4)

where E| and E, are optical fields, which can be identical, and y® is the suscep-
tibility of second order. Note that, even though the expression (4.4) is a time con-
volution, its Fourier transform is not a simple product, but also a convolution in
the frequency domain. This convolution takes a simple form in the case of an
instantaneous nonlinearity:

x2(t1,10) = X6 - 1) 1), (4.5)
In the time domain, the corresponding nonlinear polarization is:
PNE(1) = eox VE1(DEa (1), (4.6)

By taking directly the Fourier transform of this expression, we find that the nonli-
near polarization in the frequency domain is a convolution:

PMQ) = f PV (e ™ dt = ey f E(Q-Q)Ex(Q)dQ. (4.7

For monochromatic waves and long pulses, where the fields can be approximated
by d-functions in the frequency domain, Eq. (4.7) reduces to a product.

Equation (4.7) fails as soon as the nonlinear response can no longer be conside-
red to be instantaneous. We will now show how one can find the general expression
for a nonlinear polarization of second order, cf. Eq. (4.4), in the frequency domain.
Fourier-transforming Eq. (4.4) yields:

PNL(Q)=eoff)((z)(tl,tg)[fEl(t—tl)Ez(t—tl—tz)e_’ntdt dudt,  (4.8)
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where we have changed the order of integration. The expression in brackets,
C(t1,1,9Q), is the Fourier transform of a product, which can be written as the con-
volution of the FT’s of the factors, e ¥ E|(Q) and e 12 E,(Q):

C(11.1,Q) = f e ) By (@) OO £ (Q - Q)d QY (4.9)

After inserting Eq. (4.9) into Eq. (4.8) the polarization in the frequency domain
reads

PMQ) = f f X2 t1,0)[Cty, 12, )] drdts. (4.10)
Inserting Eq. (4.9) into Eq. (4.10) and changing the order of integration, we find

PYEQ) = g f Ey(Q)E(Q - Q)P (Q,0)deY, (4.11)
where

Y2@Q,0) = f f Y21, 0)e e gty diy . (4.12)

The result of Eq.(4.11) is easily generalized to higher order susceptibilities. If the
susceptibility is not frequency dependent we reproduce the result of Eq. (4.7). This
is again a manifestation of the fact that an instantaneous response (no memory) is
characterized by nondispersive material properties.

4.2 Pulse propagation

To study pulse propagation in a nonlinear optical medium we can proceed as in the
previous section. To the linear wave equation for the electric field, which contains
the y! contribution, we add the nonresonant nonlinear polarization. As result we
obtain the wave equation with the nonlinear polarization as source term:
: 2 2

6%8— ék}’%é+ .@) FRD oo = i’th—(; Of?PNL. (4.13)
The polarization appearing in the right hand side can be instantaneous, or be the
solution of a differential equation as in the case of most interactions with resonant
atomic or molecular systems, see previous section and Chapter ??. If we represent
the polarization as a product of a slowly varying envelope % and a term oscillating
with an optical frequency w,,, ¢/“r’ | the right-hand side of Eq. (4.13) can be written

as : . 5. N
pre (Pe"‘”’t + c.c.) = (ﬁp-'_ 2ia)pa—t7)— a)fﬂ) e +c.c. (4.14)
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In order to compare the magnitude of the individual terms we approximate (3/9t)P
with fD/Tp which yields for the ratio of two successive members of the sum in the
brackets w,7,. Therefore, if the pulse duration is (much) longer than an optical
period, that is w,7, = 2n7,/T), > 1, we may neglect the first two terms in favor of
w3 P. This will simplify the further evaluation of Eq. (4.13) significantly.

As pointed out earlier the SVEA becomes questionable if the pulses contain
only few optical cycles. Brabec and Krausz [4] derived a propagation equation
under less stringent conditions. If

1(0/02)E| << k&) 4.15)
and
[(8/00)E| << wlé) (4.16)
or
Up
1-—|<x<1 4.17)
Ug

are satisfied pulse propagation in the presence of a nonlinear polarization of slowly-
varying amplitude ™1 and dispersion can be described by

. . -1 .
[a+ : (1 lﬁ) vi—@ﬂﬁlé:—i“’”’“‘o(l—iﬁ)ﬂmh (4.18)

9z 2k \ w0t 2 210 wo Ot
where
A aq 0 = 1 (o 0 "
D=5 il (-15)
with
11 am
ay = 307 [Imk(€)],, and k;, = 07 [Rek()],, »

see Appendix F. The coordinates z,t refer to a frame moving with the group velo-
city of the pulse. The additional time derivatives of the nonlinear polarization
and the diffraction term (V2 ) become important for extremely short pulses. This
propagation equation was termed slowly evolving envelope equation”. In many
materials phase and group velocity are not much different and condition (4.17) is
satisfied. Conditions (4.15) and (4.17) can be combined to the “slowly evolving
wave approximation” [4]

‘EE << k/|E|, (4.19)
0z

which states that the amplitude and phase of the electric field must not change
significantly over a propagation distance of the order of a wavelength.
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In general, when a nonlinear polarization is involved, there will not be just
one propagation equation of the form of Eq. (4.14), but as many as the number
of waves that participate in the nonlinear optical process. For instance, a third
order polarization excited by a field at frequency w, will create a polarization at
3w = we + we + wy, and a polarization at wy = wy — we + wy. The first process is ge-
neration of a third harmonic field, and the second is either two-photon absorption
or a nonlinear index of refraction, depending on the phase of the nonlinear suscep-
tibility. The generated field at 3w, will propagate, and interfere with the field at 3w,
produced at a different location by the fundamental. The third harmonic field may
also lead to the generation of other frequencies, through the third order process.
For instance, there will be re-generation of the fundamental frequency through the
third order process w; = 3w¢ — w¢ — wy, and the latter field will also interfere with
the propagated fundamental. The third harmonic may also create a 9" harmo-
nic through the nonlinear susceptibility. At a minimum, there will be at least two
differential equations of the form Eq. (4.14), with a third order susceptibility, cor-
responding to the fundamental and third harmonic fields. More equations have to
be added if more frequencies are generated.

It is beyond the scope of the book to give a detailed description of the various
possible nonlinear effects and excitation schemes. The reader is referred to the stan-
dard texts on nonlinear optics, for example Schubert and Wilhelmi [1], Boyd [2],
Bloembergen [3] and Shen [5]. Here we shall restrict ourselves to a nonlinearity of
second order that is responsible for second harmonic generation (SHG), optical pa-
rametric amplification (OPA), and to a nonlinearity of third order describing (self)
phase modulation [(S)PM].

The tensor character of the nonlinear susceptibility describes the symmetry
properties of the material. For all substances with inversion symmetry, y*” = 0
(n=1,2...) holds, and therefore no second harmonic processes can be observed in
isotropic materials and centrosymmetric crystals for example. In contrast, third-
order effects are always symmetry allowed. However, even in isotropic materials,
the tensor character of the nonlinear susceptibility should not be ignored. The
electric field of the light itself can break the symmetry, leading to interesting pola-
rization rotation effects.

In the following sections we will discuss various examples of nonlinear opti-
cal processes with short light pulses. The propagation of the corresponding wave
packets at carrier frequency w; is described by a group velocity v; for which

I nlw) w; dn

(4.20)

v; c c dQl,,

holds. Sometimes it will also be necessary to specify the polarization direction, é;,
of the waves participating in the nonlinear process.
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Unless stated otherwise we will assume that the nonlinear susceptibility is
much faster than the time scale of interest (pulse duration). This will allow us
to simplify the derivations by applying the concept of an instantaneous material
response. Also, to simplify the discussion on effects typical for the conversion
of very short light pulses, we will usually neglect any change in intensity due to
focusing effects; an approximation, which generally holds for nonlinear materi-
als shorter than the Rayleigh range. An exception is when self-focusing occurs, a
nonlinear effect discussed in Section 4.7.

4.3 Second harmonic generation (SHG)

Second harmonic generation has gained particular importance in ultrashort pulse
physics as a means for frequency conversion and nonlinear optical correlation.
Owing to the characteristics of ultrashort pulses, a number of new features unknown
in the conversion of cw light have to be considered [6—10]. We will examine first
the relatively simple case of type I SHG, in which the fundamental wave propa-
gates as an ordinary (o) or extraordinary (e) wave, producing an extraordinary or
ordinary second harmonic (SH) wave, respectively. We will briefly discuss at the
end of this section the more complex case of type Il SHG, in which the nonlinear
polarization, responsible for the generation of a second harmonic propagating as
an e wave, is proportional to the product of the e and o components of the funda-
mental. We will see that group velocity mismatch between the fundamental and
the SH leads generally to a reduced conversion efficiency and pulse broadening.
Under certain circumstances, however, it is possible to have simultaneously high
conversion efficiency and efficient compression of the second harmonic in presence
of group velocity mismatch. Second harmonic is only a particular case of sum fre-
quency generation. Therefore, in some of the subsections to follow, we will treat in
parallel second harmonic generation and the more general case of sum frequency
generation.

4.3.1 Type I second harmonic generation

Let us assume a light pulse incident upon a second harmonic generating crystal.
The electric field propagating inside the material consists of the original (funda-
mental) field (subscript i = 1) and the second harmonic field (subscript i = 2). The
total field obeys a wave equation similar to Eq. (4.13) with a nonlinear polarization
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of second-order as source term:

[( o 10 ik

9,22 T % g
a2 v dt 20:2) 1+ (e

k(o 10 ik) o?
—2[( T )82+Z)

i(wt—k12)

piwnitad) | o g _ M0 O

9z wat 2 o2 ky dr2
4.21)
where the second-order polarization can be written as
P — 60/\/(2)1 [élei(w”_k'z) + Szei(a)zt—kzz) +e.c ]2 (4.22)
1 .C.. .

Since the group velocities v; and v, are not necessarily equal there is no coordinate
frame in which both the fundamental and SH pulses are at rest. Therefore z and
t are the (normal) coordinates in the laboratory frame. With the simplifications
introduced above for the polarization, we obtain two coupled differential equations
for the amplitude of the fundamental wave

2
w ~ o~
L_&r&,eltk (4.23)
1

4c2k

o 14 ik
T E +D; =-ir®
(az 01 0t 2&2) =T

and for the second harmonic (SH) wave

o 10 ik 9%
z, o2 8 - _ 2) 2 82 —iAkz 4.24
(8z+028t 2 aﬂ) A T ’ (4-24)

where Ak = 2k (w;) —ky(wy) is the wave vector mismatch calculated with the wave
vector values at the carrier frequency of the fundamental and second-harmonic.
Since ki, kp are functions of the orientation of the wave vector with respect to
the crystallographic axis, it is often possible to find crystals, beam geometry and
beam polarizations, for which Ak = 0 (phase matching) is achieved [1-3]. Note
that in the case of ultrashort pulses the wave vectors vary over the bandwidth of the
pulse. This variation caused by the linear polarization has already been taken into
account by the time derivatives on the left-hand sides of Eqs. (4.23) and (4.24), cf.
Eq. (1.100).

Type I — small conversion efficiencies

Small conversion efficiencies occur at low input intensities and/or small length of
the nonlinear medium and nonlinear susceptibility. Under these circumstances we
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may assume that the fundamental pulse does not suffer losses. If we assume in
addition that k' = k) = Dy = Dy ~ 0 we find for the fundamental pulse, using
Eq. (4.23), &(t,z) = & (t —z/v1). The fundamental pulse travels distortionless in
a frame moving with the group velocity v;. This expression can be inserted into
the generating equation for the SH, Eq. (4.24). Integration with respect to the
propagation coordinate yields for the SH at z = L:

@2 L

~ L w ~ 1 1 ;

&l-=.L :—iuf Sli-Za[=-2)eei™ar  @25)
(2] 4C2k2 0 U %) U1

Using the correlation theorem, Eq. (4.25) can be transformed into the frequency
domain:
2 )2

L
2 f E1QHEN(Q-Q)dY f @' -0h-Akz g, (4.06)
C2k2 0

~ X
E(Q, L) =—i
2 (Q,L) i

After integration with respect to the propagation coordinate we obtain for the SH
field

E(Q,L) =
@wlL 1 1 L % &
—i)(—zsinc ———|Q-Ak|= f&(Q’)Sl(Q—Q')dQ,
4¢2k, v U 2

4.27)

and for the spectral intensity of the SH (apart from the conversion factor from field
squared to intensity):

1E2(Q, L) =
@D W2L\ 11 L N y 2
X9 |2 - 2 )a-aklZ ’ f EI(QHEI(Q-Q)HdY| .
402](2 %) U1 2

(4.28)

Maximum conversion is achieved for zero group velocity mismatch (v; = v2) and
zero phase mismatch (Ak = 0).

The term (v I vl‘l)z in the argument of &, in Eq. (4.25) describes the walk-off
between the second harmonic pulse and the pulse at the fundamental wavelength
owing to the different group velocities. The result is a broadening of the second
harmonic pulse, as can be seen from Fig. 4.1. Only for crystal lengths

Tpl

L< L% = —F— (4.29)
|1)2 _Ul |
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Figure 4.1: Second harmonic pulse at different, normalized crystal lengths, L/ L%H G ac-
cording to Eq. (4.25). (——— input sech - pulse; the intensity is not to scale)

can the influence of the group velocity mismatch on the shape of the second-
harmonic pulse be neglected. In this case the SHG intensity varies with the square
of the product of crystal length and intensity of the fundamental, cf. Eq. (4.25). Be-
cause of this quadratic dependence, the second harmonic pulse is shorter than the
fundamental pulse (by a factor V2 for Gaussian pulses). For L > L%HG the pulse
duration is determined by the walk-off and approaches a value of L X |v; I vl‘ll,
the peak power remains constant, and the energy increases linearly with L. Of
course, one needs to avoid this regime if short second harmonic pulses are requi-
red. The group velocity mismatch between the fundamental and SH pulse is listed
in Table 4.1 for some typical crystals used for SHG. Similar conclusions can be
drawn from the frequency domain solution for the SH pulse. The group velocity
mismatch causes the SHG process to act as a frequency filter, cf. Eq.(4.28). The
bandwidth becomes narrower with increasing crystal length. In addition, the sinc?
term in Eq. (4.28) introduces a modulation of the spectrum of the second harmonic.
The period of that modulation can serve to estimate the group velocity mismatch
(vy L_ v[l) of the particular crystal used.

It is interesting to note what happens when the phase matching condition is not
satisfied (Ak # 0). The introduction of exp(—iAkz) in the integrand of Eq. (4.25)
produces a second harmonic output that varies periodically with the propagation
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crystal | A[nm]  6[°] (5" —v;") [fs/mm]
KDP | 550 71 266
620 58 187
800 45 77
1000 41 9
LilO; | 620 61 920
800 42 513
1000 32 312
BBO | 500 52 630
620 40 365
800 30 187
1000 24 100
1500 20 5

Table 4.1: Phase matching angle 6 and group velocity mismatch (v;' —v;') for type-I
phase matching (oo-e) in some negative uni-axial crystals. The data were obtained from
Sellmeier equations, see [11-13].

distance. The periodicity length is given by

2n
Lo == 4.30

P Ak (430)
if group velocity mismatch can be neglected. In such cases it is recommended to
work with crystal lengths L < L;H G,

Type I — large conversion efficiencies

The simple approach of the previous section does no longer apply to conversion
efficiencies larger than a few tens of percent. We have to consider the depletion of
the fundamental pulse as the second harmonic pulse grows according to the com-
plete system of differential equations (4.23), (4.24). In the phase and group velo-
city matching regime, the second harmonic energy approaches its maximum value
asymptotically. Because of their lower intensities, the pulse wings reach this “sa-
turation” regime later and the second harmonic pulse duration 7,, broadens until
it reaches a value that is approximately given by the duration of the fundamental
pulse 7,1. Therefore, even a moderate energy conversion requires very high con-
version efficiencies for the peak intensities. Figure 4.2 shows schematically the
conversion efficiencies in various regimes for zero group velocity mismatch (long
pulses).
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Figure 4.2: Conversion efficiencies neglecting (---) and taking into account (— — —) de-

pletion of the fundamental wave. The inset illustrates the shaping of the SH and funda-
mental pulse in the crystal.

With the inclusion of group velocity and phase mismatch, the processes invol-
ved in SHG become very complex. Numerical studies of Eqgs. (4.23) and (4.24)
in [14-16] reveal pulse splitting and a periodical behavior o