2.3 Optics of Uniaxial Crystals

In wmigxial crystals a special dircction exists called the opric axis (£ axis). The
plane containing the £ axis and the wave vector & of the light wave is termed the
principal plane. The light beam whose polarization (Le, the direction of the
vector E oscillations) is normal to the principal plane is called an ordinary beam
or an o=beam (Fig. 2.2). The beam polarized in the principal plane s known as
the extraordinary beam or e-beam (Fig. 2.3). The refractive index of the o-beam
does not depend on the propagation direction, whereas for the e-beam it does.
Thus, the refractive index in anisotropic crvstals generally depends bath on fight
polarization and propagation direction.

Fig. 2.2, Principal plane of the crystal (kZ) and ordinary beam
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Fig. 2.3. Principal plane of the crystal (k£ and extraordinary beam



The difference between the refractive indices of the ordinary and extraordin-
ary beams is known as birefringence An. The value of An is zero along the optic
axis Z and maximum in the direction normal to this axis. The refractive indices
of the ordinary and extraordinary beams in the planc normal to the Z axis are
termed the principal values and are denoted by n, and n,, respectively. The
refractive index of the extraordinary wave is, in general, a function of the polar
angle @ between the Z axis and the vector k (Fig. 2.4). It is determined by the
equation (index e in this case is written as a superscript):

ne(6) = n,[(1 + tan? 8)/(1 + (n,/n.)* tan®6)]% . (2.14)

Fig. 24. Polar coordinate system for description of
refractive properties of uniaxial crysial (K is the light
propagation direction, Z is the optic axis, ff and ¢ are
the coordinate angles)

The following equations are evident:

n°(6) = n, , (2.15)
ne(0°)=n,, (2.16)
n*(90%) = n, . (2.17)
An(0%) =0, (2.18)
An(90°)=n, — n, , (2.19)
An(9) = n, — n(0) . (2.20)

If n, > n., the crystal is negative; if n, < n., it is positive. The quantity n* does not
depend on the azimuthal angle ¢ (the angle between the projection of k onto the
XY plane perpendicular to the Z axis and the X axis — see Fig. 2.4, The
indicatrix of the refractive indices is a sphere with radius n, for an ordinary beam
and an ellipsoid of rotation with semiaxes n, and n, for an extraordinary beam
(the axis of the ellipsoid of rotation is the Z axis). In the Z-axis dircction the
sphere and ellipsoid are in contact with cach other. In a necgative crystal
the eliipsoid is inscribed in the sphere (Fig. 2.5a), whereas in a positive crystal the
sphere is inscribed in the eliipsoid (Fig. 2.5b).

When a plane light wave propagates in a uniaxial crystal, the direction of
propagation of the wave phase (vector k) generally does not coincide with that
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Fig. 2.5. Indicatrices of the refractive indices for ordinary and extraordinary waves in negative {a)
and positive {b) uniaxial crystals

of the wave energy (vector s). The direction of s can be defined as the normal to
the tangent drawn at the point of intersection of vector k with the n(#) curve.
For an ordinary wave the n(f) dependence is a sphere with radius »,. Therefore,
the normal to the tangent coincides with the wave vector k. For an extraordin-
ary wave the normal to the tangent (with the exception of the cases = (” and
# = 90%) does not coincide with the wave vector &k but is rotated from it by the
birefringence angle (Fig. 2.6):

p(0) = +arctan[(n,/n,)*-tan0] F 0, (2.21)

where the upper signs refer Lo a negative crystal and the lower signs to a positive
one.
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Fig. 2.6. Disposition of the wave (k) and beam (s)
vectors in an isotropic medium (a) and anisotropic

()

negative (b) and positive (¢) uniaxial crystals (p is the
birefringence or anisotropy angle)

The correlation between p and  may serve as the basis for a simple way to
orient uniaxial single crystals [2.5]. Let a laser beam with an arbitrary linear
polarization fall on the input face of a crystal of thickness L. After passing
through the crystal, the beam is divided into two orthogonally polarized beams
that, at the output face of the crystal, arc scparated by (Fig. 2.7)

d=Ltanp. (2.22)

The crystal cut angle 8, the angle between the optic axis Z of the crystal and the
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Fig. 2.7. Caleulation of the cut angle 6, in a uniaxial crystal



normal to the crystal surface, corresponds to one of two values
[(rofney? — 1] L [(rofne)* — 17+ L2 -
= arot : . {2
f, = arc an{ 23 (nn ) AR — (n,/n.) (2.23)

A more rigorous consideration of crystal optics of anisotropic media is given
in [2.6].




2.6 Reflection and Refraction of Light Waves
at the Surfaces of Uniaxial Crystals

Reflection and refraction of light waves at the vacuum-—diclectric interface must
be taken into account. Therefore, we shall give the equations for the refraction
angles and for the reflection coeflicients for diflerent incidence angles and
polarizations of the light wave incident on the plane surface of a uniaxial
nonlinear crystal. In all cases the reflection angles are equal to the incidence
angles.

1) The E vector is perpendicular to the principal plane, o is the incidence angle.
is the refraction angle (Fig. 2.11a). i, can be found from

sing = n siny, ; (2.32)
the reflection coefficient is

_sin?(x — )

il |l 1 4 2
sin® (o + ¥,) =
For normal incidence (2 = i, = 0)
12
0=l (2.34)

a={) = i:-it,,:_i‘jz '

2) The E vector is in the main plane, z is the incident angle, ¢ is the refraction
angle (Fig. 2.11b,c): Y can be found from

o . [+ tan® (@, + y°)
Biny® = '@ =n |——m—mre=V¥ 7 _ 35
sina/siny/* = n°(0) n‘,\ﬁ To a1 v’ (2.35)

where @, is the cut angle of the crystal, and @ is the angle between the optic axis Z
and vector k in the crystal. If the vector & and optic axis Z lie on dillerent sides of
the normal to the crystal surface (Fig. 2.11b), the plus sign is used in (2.23). When
the vector & and optic axis Z are on the same side of the normal to the crystal
surface (Fig. 2.11c), the minus sign is used.

The reflection coefficient is

_tan?(x — y°)

=@ )’ =0
For normal incidence (x = ¢ = ()
. (@ —1p
0T el + 1 (2.37)
where
1 + tan®9
() = nt = ¢
ne (@) = n*(8.) “"\/l W T (2.38)
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Fig. 2.11. Reficction and refraction of waves on
the surface of a uniaxial crystal for incident
waves with ordinary (a) and extraordinary (b,c)
poiarizations

(©)

Note that the reflection coeflicicnts on the input and output surfaces of the
uniaxizal crystal are identical, as with an isotropic diclectric.

The equations given here can be used for calculating the external rotation
crystal angles necessary for angular tuning of the phasc-matching conditions
and for evaluating the reflection losses.



NONLINEAR OPTICS

210 Crystal Symmetry and Effective Nonlinearity:
Uniaxfal Crystzis

For anisotropic media the dielectric susceptibility coefficients x4 and 7 in
{2.2), are in general case the tengors of the second and third ranks, respectively.
Below we ghall consider the unjaxia] crystals. In diglectric reference frame X, ¥
Z, where Z is the optic axis, the tensors xg and gy are diagonal.

The following components:

2
fomr = &y = LT
2.55
=n; =2
are ponzéro components of the linear dielectric polarization tensor g. In
practice the tensor dyx is used inatcad of tensor Lyt the two tensors being
interrelated by the equation

Unlike tensor g, tensots y and o can be given only in a three dimensional
tepresentation. Usvally & “plane” representation of tensor dip in the form &y is
uped, wherei = 1 correponds to (X)L i = 2to (¥),1 = 3 to (Z), and [ takes the
following values:
XY ¥Y 27 ¥2=Z¥ XZ=ZY XYV -=¥¥
{2.57)
=1 2 13 4 5 &

The expression (2.2) ean be rewritten in a reduced form (with respect to the
Componeita):

P =xpa K - HL;E}' b e {253}



P2 2 Optics of Noalinear Crystals

where E is the six-dimensional vector of the field produts (summation over
the repeating indices is carried ont). For SHG in matrix form we have:

y E% W
Py dy dip dig du dis die g{
Py || =|dn dn dy du ds dis|- 25’;'9 ; {2.59)
£z dun dy dy da dys A 25}'32
x&z
| 24 Ey |

The total number of the components of the square nonlinearity tensor dy is 18.
In centrosymmetrical crystals (where the center is a symmetry element) all the
coroponcents of the square nonlinearity tensor & are equal to zer0. The non-
centrosymmetrical crystals comprising 21 crystallographic classes out of 32
usually have one or more symmetry elements (axes or planes of different or-
ders), which considerabiy decrease the number of independent components of

the tensor di.
Kleinmar [2.15] has established additional symmewry conditians for the case

of no dispetsion of electron nonlinear polarizability. When the Kieinman
symmctry conditinns are valid (in the great majority of practical cases), the
number of independent components of the tensor dy decreases from 18 o 10,
because

dy =dig; du=dyp; du =ds;

din=dys; dip=dw; dy=du; (2.60)

du=dyu=dy .
Since any linearly polarized wave in a uniaxial crystal can be represented as a
superposition of two waves with “ordimary” and “extraordivary” polariza-
tious, we provide the components of a unit polarization vector p given in polar
::ziblr?mr,tcz; B and ¢ along the dielectric axes X; ¥, Z, where Z is the optic axis

PiI=L

Pox = —sing, py = cosfcos §

Poy =c0s @, py =cosBsing (2.61)

PDZ = 0\ p% = -"m-ng -
The equations for calculating the conversion efficiency use the cffective nan-
Hnearity dqgp, which comprises all the summation operations along the polar-
ization directions of the interacting waves:

der = pydpapy = prdpspy = p3dpun (2.62)

The guantity der represents a scalar product of the first vector in (2.62) and a
tensor-vector product of the & pp type, which is also a vector. Depending on the
type of ineraction (ooe, oeg, and so on), the vector components p; are cal-
culated by {2.61), and the product (2.62) is found by the knawn rules of vector



2.1 Crystal Symmedry and Effective Nontmearity: Binxial Crystals a5

Tabde 3.3, Expressions for dupr in uniaxigl crystals of differcat point groups whea Klcinmao
symmelry relations are walid

Point Type of interaction
group
ooz, 0es, 600 €20, 602, 0t
§2m{D) dx1indtin2¢h dy 9in 20 cos2é
Im(Cs;) d: 5inf — dx cosfsin 3 d12c0s? ¢033
4(Cs)
:?CI:)EC“} } dy siné 0
6mm(Cer}
3(5.) (dop 92 + dy ©042¢)aind (dyscos2p — dy; 3 24) sin 28
3(Cs) (di s 3d — dnsin3p}cos@+ s siné (&) sin3 +dpy cos 3p) cos? O
:}2{93.} d..m&mM d.lmzﬁsin.”ﬁ
6(Cr) {dn1 cos 3¢ —dr sinId)cosé {d1 5in 3¢ +dgcos 3¢) cos? §
5m2(Dyp) H#2; cOBPSin 3¢ ' d 33 O8> G083
422(D4) 0 o
622(Ds) 0 0

algebra. Table 2.3 illustrates the values of ey determined in this way for
nonlinear uniaxial crystals of 13 point groups [2.3, 16].

The inclusion of the birefringence or “'walk-off" angle (Fig. 2.6) leads to
the change of the expressions for the nonfinear coupling coefficients (see below)
and for the effeciive nonlinearity. Although (he angle ¢ is defined as the angle
between axis Z and light propagation dirsction 2, the unit polarization vectors
2; are perpendicuiar to the direction of propagation of the wave energy s.
Therefore, it is necessary to correct the sxpressions for cormpenents of the unit
polarization vector p given by (2.61). The sign of birefringence angle p in these
formuls will depend on “walk-off” direction, i.e., in the case of 2 uniaxial
crystal, on the sign of the crystal (Fig. 2.6): for a negative crystal the angle o
must be added to 8, for 2 positive crystal it must be subtracted from 8. So, in
formulas (2.61) the angle # must be changed for (8 + p) for the negative crystal
and for {# ~ p) for the positive one. Remember that the value p is the function
of the angle § for the uniaxial ceystal {2.21). The dispersion of p shouid be also
taken into account. Therefore, in (2.61), instead of 8, we have sabstitute
6 & p(w, 2m), and the corresponding changes should be done also in expres-
sions for dr (Table 2.3).



