
Electron Plasma Oscillator

Electron gas
Consider an ensemble of charges at equilibrium (electrons in a metal for instance) of density
Ne. The electrons and positive charges cannot be in a static equilibrium – there is always
some motion unless we are at absolute zero. Above an average electron density Ne, there will
be fluctuations of electron density δN . To these fluctuations δN(t) – representing a departure
from equilibrium, will correspond some local field E(t) and forces on the electron that departed
from equilibrium. First task is to derive a second order differential equation for the fluctuation
δN , and for the electric field induced by these fluctuations.

In general in a fluid, the velocity is not only a function of time, but also of position. There-
fore, the derivative of velocity v⃗ is:

dv⃗

dt
=

∂v⃗

dt
+ (∇⃗ · v⃗)dr⃗

dt
. =

∂v⃗

dt
+ v⃗∇⃗ · v⃗). (1)

for those familiar with hydrodynamics, this is the Navier Stokes equation. Newton’s equation
of motion for an electron in such a fluid is

me
∂v

∂t
+mev∇v = F (2)

F being the force on an electron, with a term proportional to the local field E and the charge,
and a term proportional to the magnetic field and the electron velocity.

The conservation equation for the total electrons density N is

∂N

∂t
+ ∇⃗ ·Nv⃗ = 0 (3)

One can easily derive this equation by manipulation of Maxwell’s equation, but in doing so,
one looses completely the physical picture. Instead, show that the Eq. (3) results from simple
logical consideration of the flux of electrons entering an infinitesimal volume.

To simplify, let us make the following approximations.

1. N = Ne + δNe, where δNe is small compared to n0.

2. Magnetic field neglected

3. v⃗∇v⃗ neglected (correct for an incompressible fluid, or for v small)

4. There is no applied external field, no external source.

5. neglect collisions
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No applied field

The conservation equation for the cloud of electrons is:

∂Ne

∂t
+∇Nv =

∂N

∂t
+ ∇⃗ ·Nv⃗ = Source terms = 0. (4)

The equation of motion is:

∂v

∂t
+ v∇v = − e

m
Einternal +

e

m
Eapplied (5)

where the magnetic field has been neglected – kind of standard approximation when studying
local effects, except for the last problem where an external magnetic field is applied. Given the
approximations stated above:

∂δNe

∂t
+Ne∇v = 0 (6)

∂v

∂t
= − e

m
E (7)

∇E = − e

ϵ0
δNe (8)

which leads to:

∇∂v

∂t
=

∂

∂t
∇v = − 1

Ne

∂2δNe

∂t2
= − e

m
∇E =

e2δNe

mϵ0
(9)

leading to:
∂2δNe

∂t2
+ (

e2Ne

mϵ0
)δNe = 0. (10)

It is remarkable that both v and E can be eliminated. To get to the field equation, uses the
Ampere law:

∇×B =
∂D

∂t
− eδNev = 0 (11)

since B is neglected. This leads to:

∂E

∂t
=

e

ϵ0
δNev (12)

and taking the derivative:

∂2E

∂t2
=

e

ϵ0

∂(Nv)

∂t
≈ eNe

ϵ0

∂v

∂t
= −

(
e2Ne

mϵ0

)
E (13)

Influence of collisions The collisions enter as a term proportional to the velocity in the equa-
tion of motion. As in the classical harmonic oscillator, they will bring a damping term for
the fluctuations of density. In presence of collisions, the system of equations for the plasma
fluctuations is:

∂δNe

∂t
+Ne∇v = 0 (14)

∂v

∂t
+ νcv = − e

m
E (15)

∇E = − e

ϵ0
δne (16)
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which leads to:

∇∂v

∂t
=

∂

∂t
∇v = − 1

Ne

∂2δNe

∂t2
= − e

m
∇E +

νc
n0

∂δNe

∂t
=

e2δNe

mϵ0
(17)

leading to:
∂2δNe

∂t2
+

νc
Ne

∂δNe

∂t
+ (

e2Ne2

mϵ0
)n = 0. (18)

Dielectric constant of plasma
An electromagnetic wave of frequency ω is incident on a region containing 1016 electrons/cc.
The collision rate of the electrons is 1010 s−1. (a) Find the dielectric constant of that medium
at the frequency ω. (b) Plot the phase velocity of the radiation and the attenuation coefficient in
that medium, as a function of frequency.

As for the previous problem, we neglect the term v⃗∇⃗ · v⃗. For the driving field, write E =
E exp(iωt). Choose an axis x along the E field, and z for the direction of propagation. The B
field will induce a longitudinal (along z) component of the motion of the electron, which we
will neglect. Find the current Neevx due to the applied field, and use it in the right hand side of
Ampere law (Biot Savard), to find a dielectric constant.

Equation of motion

me
dv

dt
= −eE + e[v ×B]−meνcv (19)

Electron current For the driving field, we write E = (1/2)E exp(iωt). Let us choose an axis
x along the E field, and z for the direction of propagation. The B field will induce a longitudinal
(along z) component of the motion of the electron, which we will neglect. (We will consider a
longitudinal applied magnetic field B0 along z in the last problem of this series.

The main effect of the electromagnetic field will be to impart an electron motion along x,
with a velocity vx, giving rise to a current Neevx given by:

Neev =
Nee

2E
me(νc + iω)

(20)

Dielectric constant To find the dielectric constant, we use Maxwell’s equation:

∇×H = iωϵ0E +
Nee

2E
me(νc + iω)

(21)

= iωϵ0E
[
1− Nee

2

meϵ0(ω2 + ν2
c )

− i
Nee

2

meϵ0(ω2 + ν2
c )

νc
ω

]
, (22)

where we have assumed that there is no magnetic field. One could also attribute the source term
on the right of Eqs. (22) to a displacement current:

∇×H =
∂D

∂t
=

∂ϵE

∂t
(23)

= iωϵE (24)
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This classical short cut is used to define a complex dielectric constant ϵ:

ϵ = ϵ0

[
1− Nee

2

mϵ0(ω2 + ν2
c )

− i
Nee

2

meϵ0(ω2 + ν2
c )

νc
ω

]

= ϵ0

[
1−

ω2
p

ω2 + ν2
c

(
1 + i

νc
ω

)]
= ϵr + iϵi. (25)

The big approximation, questionable in dynamic plasma (in particular when the density is
fast increasing with time, is in Eq. (24). Instead, one should write after Eq. (21):

∇×H =
∂ϵE

∂t
= E

∂ϵ

∂t
+ ϵ

∂ϵE

∂t
= iωϵE + E

∂ϵ

∂t
(26)

CASE I: High frequency ω ≫ ωp; νc ≪ ωp.

For the given data, ωp ≈ 5.645 · 1012 s−1, larger than νc = 1010 s−1. Let us start at the high
frequency end of the scale, where ω ≫ ωp ≫ νc. In the high frequency range, ϵr ≫ ϵi [as
shown by Eq. (25)], we can make the approximation:

n =

√
ϵ

ϵ0
=

√
ϵr
ϵ0

√
1 + i

ϵi
ϵr

≈
√
ϵr
ϵ0

(
1 + i

ϵi
2ϵr

)

nr =

√√√√1−
ω2
p

ω2 + ν2
c

ni = 0 (27)

The phase velocity is therefore approximately given by:

c

n
≈ c

√
ϵ0
ϵr

=
c√

1− ω2
p

ω2+ν2c

≈ c

[
1 +

1

2

ω2
p

ω2 + ν2
c

]
. (28)

CASE II: Intermediate frequency ω close to ωp, with the condition νc ≪ ωp.

One can see from Eq. (28) that the phase velocity will increase as the frequency decreases, to
reach a huge value at the frequency ωc given by ω2

c + ν2
c = ω2

p in Eq. (25). The real part of ϵ
goes to zero, and the phase velocity goes to infinity. There is no propagation in the plasma — in
fact no penetration, since the reflection coefficient [(n− 1)/n+ 1)]2 → 1 is unity. The plasma
has become a perfect mirror.
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CASE III: Going to the limit ω → 0.

As ω → 0, the real part of ϵ tends towards a constant value:

ϵr → ϵ0

[
1−

ω2
p

ν2
c

]
. (29)

The imaginary part of ϵ tends towards infinity. By substituting in the expression for the index
of refraction, one sees that the real and imaginary parts of the index tend to infinity at the same
rate as

√
ϵi/

√
2ϵ0.

plots

The plots below use the expression:

ñ = nr + i · ni =
√
1 + χr + i. χi (30)

Figure 1: Real part of the index of refraction versus frequency.

5



Figure 2: Imaginary part of the index of refraction versus frequency.

Dielectric constant of an ensemble of dipoles
Instead of free electrons, we have now a concentration of 1016 bound electrons/cc, with a resto-
ring force such that the natural resonance frequency is 1015 s−1, and the same collision rate as
above. Plot the real and imaginary parts of the index of refraction, as a function of frequency.
Find the FWHM of the absorption. Assuming an initial intensity of 10 W/cm2, and light at
the resonance frequency, find an expression for the intensity versus propagation distance in this
medium. The dipole moment is p = qr, and the polarization of the medium is just the sum of
the dipole moment of each atom or molecule. We just need to find r in terms of the other pa-
rameters, such as the exciting electric field E = E exp(iωt). The medium response is assumed
to be r exp(iωt). We assume that the local field seen by the electrons is the same as the applied
electric field.

The equation of motion for the electrons is now:

m
d2r

dt2
= −ω2

0mr − m

τ

dr

dt
− eE (31)

The dipole moment is p = qr, and the polarization of the medium is just the sum of the dipole
moment of each atom or molecule. We just need to find r in terms of the other parameters,
such as the exciting electric field E = E exp(iωt). The medium response is assumed to be
r exp(iωt). We assume that the local field seen by the electrons is the same as the applied
electric field. After substitution in Eq. (31), we find for the motion amplitude:

r =
−e/m

ω2
0 − ω2 + iω/τ

. (32)

The polarizability of the medium consisting in N non-interacting electron oscillators is:

Nα = ϵ0χ =
Ne2/m

ω2
0 − ω2 + iω/τ

, (33)
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from which one can extract the real and imaginary parts:

χr =
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + ω2

τ2

χi =
ω2
p(

ω
τ
)

(ω2
0 − ω2)2 + ω2

τ2

. (34)

Near resonance, we can write:

nr = 1 +
ω2
p(ω0 − ω)/4ω0

(ω0 − ω)2 + 1
2τ2

ni =

ω2
p

4ω0τ

(ω0 − ω)2 + 1
2τ2

(35)

With the values given, nr(ω = ω0) ≈ 1 goes to the maximum value nr(ω = ω0 − 1/2τ) =
1 + 1/8, and a minimum value of nr(ω = ω0 + 1/2τ) = 1 − 1/8, where ni(ω = ω0) = 1/4,
and the FWHM of the absorption line is 1/τ .
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Dielectric constant of a medium with magnetic field
Consider the same medium as in the previous problem.

Now a static magnetic field B in the direction of propagation of the electromagnetic wave
is added. Show that the left and right circularly polarized electromagnetic waves have different
dielectric functions. How does this result influence the propagation of a linearly polarized
beam?

Equation of motion Take the z-axis along the direction of propagation. When a static mag-
netic field B = Bez is added , the equation of motion for a harmonically bounded particle
is

m× d2x

dt2
= −mω2

0x+ eE + e(
dx

dt
×B) (36)

As plane electromagnetic was are transverse, E has only x and z components. The compo-
nent equation are

m
d2x

dt2
= −mω2

0x+ eEx + e(
dy

dt
×Bz)

m
d2y

dt2
= −mω2

0y + eEy − e(
dx

dt
×Bz)

m
d2z

dt2
= −mω2

0z (37)

Right circularly polarized The last equation shows that motion along the z direction is har-
monic but not affected by the applied fields and can thus be neglected. For the right circularly
polarized wave

ER = E0 cos(ωt)ex − E0 sin(ωt)ey (38)

so the remaining equations of motion are

m
d2x

dt2
= −mω2

0x+ eE0 cos(ωt) + e(
dy

dt
×Bz) (39)

m
d2y

dt2
= −mω2

0y − eE0 sin(ωt)− e(
dx

dt
×Bz) (40)

Putting

u = x+ iy ; ωc =
eB

m
(41)

(number) - i(number+1) gives

d2u

dt2
− i× ωc

du

dt
+ ω2

0 =
eE0

m
eiωt (42)

In the steady state u ≈ eiωt. substitution in the above gives
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u =
eE0(cos(ωt) + i sin(ωt)

m(ω2
0 − ω2 + ωωc)

(43)

Separating the real and imaginary parts we have

x =
eE0(cos(ωt)

m(ω2
0 − ω2 + ωωc)

y = − eE0(sin(ωt)

m(ω2
0 − ω2 + ωωc)

(44)

combining the above in the vector form gives

r =
eER

m(ω2
0 − ω2 + ωωc)

(45)

Hence the polarization of the medium due to the right circularly polarized wave is

P = Ner =
Ne2ER

m(ω2
0 − ω2 + ωωc)

(46)

Asϵ = ϵ0(1 +
P
E
), the above gives

ϵR = ϵ0(1 +
Ne2

m(ω2
0 − ω2 + ωωc)

(47)

Left circularly polarized Similarly for the left circularly polarized wave

EL = E0 cos(ωt)ex + E0 sin(ωt)ey (48)

we find

ϵL = ϵ0(1 +
Ne2

m(ω2
0 − ω2 − ωωc)

(49)

The difference between ϵR and ϵL is therefore

δϵ(ω) = ϵL − ϵR = ϵ0
Ne2

m

2eBω/(mc)

(ω2
0 − ω2)2 − (eBω/mc)2

(50)
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