
The Fabry-Perot Cavity

We will consider for simplicity a symmetric Fabry-Perot cavity. The boundaries of the
Fabry-Perot are air (outside, medium 1) glass (inside, medium 2) interfaces. We will use
the following notations:

• t̃12 = transmission from outside (1) to inside (2)

• t̃21 = transmission from inside (2) to outside (1)

• r̃12 = reflection from outside (1) to inside (2)

• r̃21 = reflection from inside (2) to outside (1).

The incident field is a plane wave of amplitude unity.

Field transmission

T = t̃12t̃21e
−ikd

+t̃12t̃21
(
e−2ikd · r̃21r̃21

)
e−ikd

+t̃12t̃21e
−ikd

(
e−2ikd · r̃21r̃21

)2
+ . . .

= t̃12t̃21e
−ikd 1

1− r̃221e
−2ikd

. (1)

Interface properties

For a symmetric interface:

t̃12t̃21 − r̃12r̃21 = 1 (2)

and
r̃12 = −r̃∗21 (3)

Equation (2) implies that we can do the following substitution in Eq. (1:

t̃12t̃21 = 1 + r̃12r̃21 = 1− |r12|2 = 1−R. (4)

The result for the field transmission is:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(5)

where
δ(Ω) = 2φr − 2k(Ω)d (6)
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is the total phase shift of a round-trip inside the Fabry-Perot, including the phase shift
φr upon reflection on each mirror. Note the factor exp[−ikd] on the numerator, often
ignored in most textbooks. It represent a phase shift with no consequence in the case of a
pure dielectric. However, kd — hence also δ — is in general a complex number, of which
the imaginary part represents absorption or amplification.

Field reflection

R = r̃12

+t̃12t̃21r̃21e
−2ikd + t̃12t̃21r̃21r̃21r̃21e

−4ikd + . . .

=
1

r̃21

{
r̃12r̃21 − t̃12t̃21 + t̃12t̃21

[
1 + (r̃21)

2e−2ikd + . . .
]}

=
1

r21

{
−1 +

t̃12t̃21
1−Reiδ

}
e−iφr . (7)

The phase shift on the numerator is the same as if only the first mirror of the structure
was reflecting. Since this phase shift will play no role in the intensity reflection, we will
neglect it in the final expression:

R(Ω) =

√
R

(
eiδ − 1

)
1−Reiδ

.

(8)

One can easily verify that, if — and only if — kd is real:

|R|2 + |T |2 = 1 (9)

Equations (5) and (8) are the transfer functions for the Fourier transform of the field.
The dependence on the frequency argument Ω occurs through k = n(Ω)Ω/c.

Unequal reflectivities

Reflection

We use the same notations as above, but label the parameters of the second surface with
a “prime”.

R = r̃12

+t̃12t̃21r̃
′
21e

−2ikd + t̃12t̃21r̃
′
21r̃12r̃

′
21e

−4ikd + . . .

=
1

r̃21

{
r̃12r̃21 − t̃12t̃21 + t̃12t̃21

[
1 + (r̃21r̃

′
21)e

−2ikd + (r̃21r̃
′
21)

2e−4ikd . . .
]}

=
1

r21

{
−1 +

t̃12t̃21
1− (r̃21r̃′21)e

−2ikd

}
e−iφr . (10)
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Substituting t̃12t̃21 = 1 + r̃12r̃21:

R =
1

r21

{
(r̃21r̃

′
21)e

−2ikd − 1 + 1 + r̃12r̃21
1− (r̃21r̃′21)e

−2ikd

}
e−iφr

=
(r̃′21)e

−2ikd + r̃12
1− (r̃21r̃′21)e

−2ikd
(11)

Defining:

r̃′21 = r′eiφr′

r̃21 = reiφr

r̃12 = −r̃∗21 = −re−iφr

δ = −2kd+ φr′ + φr + iα (12)

were α is a loss coefficient (dimensionless). we get the final expression for the reflection
of unbalanced Fabry-Perot in reflection:

R̃(Ω) =
(r′eiδ − r)e−iφr

1− rr′eiδ
.

(13)

1 Gires-Tournois and ring resonator

Figure 1: (a) Fabry Perot with field reflectivity r from the left, and r′ from the right. (b) This
configuration is equivalent to a ring resonator.

The Fabry-Perot with a 100% reflectivity at r′ is a Gires-Tournois resonator, which is
equivalent to a ring resonator, as shown in Fig. 1, The intensity reflection corresponding
to Eq. 13 is:

R = |R|2 = r′2 + r2 − 2rr′ cos δ

1 + r2r′2 − 2rr′ cos δ
(14)
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It can be easily verified that this expression is equal to unity when R′ = 1 and α = 0. It
is worth noting also that the coefficient r′ place exactly the same role as an absorption
loss α in Eq. 14. Therefore, the ring resonator can be brought to r′ ≈ 1 by inserting gain
in the ring.

It is interesting to assess the change in reflectivity R at resonance, when the reflectivity
r′ is less than unity r′ = 1− ϵ. To first order in ϵ, one finds R ≈ 1− 2ϵ(1− r2)/(1− r)2.
While this approximation is only valid for small ϵ, it does show that the higher the quality
factor of the resonator, the larger the departure from unit of the output at resonance.

1.1 Dispersion

The transfer function of the Fabry-Perot or ring resonator given by Eq. (13) is
√
R exp(−ψ),

where R is given by Eq. (14). T find ψ we decompose R̃(Ω) in its real and imaginary
part:

Re(R) =
r′(1 + r2) cos δ − r(1 + r′2)

1 + r2r′2 − 2rr′ cos δ
(15)

Imag(R) =
(r′ − r2r′) sin δ)

1 + r2r′2 − 2rr′ cos δ
(16)

The phase angle of the transfer function is:

ψ = φr − arctan

{
r′(1− r2) sin δ

r′(1 + r2) cos δ − r(1 + r′2)

}
= φr − arctan

{
a sin δ

b cos δ − c

}
(17)

The dispersion of the device is the first derivative with respect to frequency:

dψ

dδ
= − a(b− c cos δ)

a2 sin2 δ + (b cos δ − c)2
. (18)

where

a = r′(1− r2) (19)

b = r′(1 + r2) (20)

c = r(1 + r′2) (21)

For the no-loss case r′ = 1:

dψ

dδ
=

(1− r2)(1 + r2 − 2r cos δ)

(1− r2)2 sin2 δ + [(1 + r2) cos δ − 2r]2
. (22)

This expression at resonance(δ = 0)leads to the well known dispersion of the Gires-
Tournois:

dψ

dΩ
=

1 + r

1− r

dδ

dΩ
. (23)
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1.2 Plots and trends

The four plots of Fig. 2 illustrate some of the dependence of the dispersion and resonant
reflection on r and r′. The dependence in reflectivity of the front face or on the coupling
constant r, for r′ constant is that increasing r results in:

• Larger loss.

• Skinnier resonance.

• Larger beat note enhancement.

As for the dependence in r′: setting r′ < 0.9 results in the reflection going to zero at
resonance. Increasing r′ results in

• Decreasing loss at resonance.

• Slightly broader resonance.

• Slightly lower enhancement.

r and r′ are field reflectivities. The value of r′ = 0.999 corresponds thus to an intensity
reflectivity of 99.8%, which is a relatively standard coating. A scenario with r = 0.96 and
r = 0.999 gives a large enhancement (50) with a loss of less than 10%.

It is rather strange for me that r′ contains gain or loss in the case of the non-symmetric
Fabry-Perot, but once r′ = r, that is no longer the case (see below).

Another surprising observation is that the dispersion has opposite sign for r′ > r as
compared to r′ < r.
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Figure 2: (a) Intensity reflection versus round-trip phase δ, for field reflectivities r = 0.8 and
r′ = 0.9. We note that the reflection drops nearly to zero at resonance. (b) Phase (blue line)
and dispersion (red line = derivative of the phase) versus δ. (c)Intensity reflection for r = 0.8
and r′ = 0.999. (c) phase and dispersion for r = 0.8 and r′ = 0.999.

Fabry-Perot with gain

We assume the gain to be linear and uniform in the frequency range around a Fabry-Perot
resonance of interest. The gain factor a at each round-trip can be incorporated into the
phase factor δ: δ̃ = δ − ia, where δ̃ is the previously defined complex phase factor, and δ
is the real part of this phase factor.

Substituting into the expressions for the transmission [Eq. (5)] and reflection [Eq. (8)]
and taking the absolute value squared to find the intensity transmission factor:

|R|2 =
(1−R)2

1 +Re2a − 2Rea cos δ

|T |2 =
R [e2a + 1− 2ea cos δ]

1 +Re2a − 2Rea cos δ
. (24)

The traditional approach to simplify these expression is to make the substitution cos δ =
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1− 2 sin2(δ/2). The result is:

|R|2 =
R (ea − 1)2

(1−Rea)2

[
1 + 4ea

(ea−1)2
sin2 δ

2

]
1 + 4Rea

(1−Rea)2
sin2 δ

2

(25)

|T |2 =
(1−R)2

(1−Rea)2
1

1 + 4Rea

(1−Rea)2
sin2 δ

2

(26)

For values of δ close to the resonance condition (Nπ), the shape of the transmission
function is a Lorentzian, of half width determined by the condition:

4Rea

(1−Rea)2
sin2 δ

2
= 1. (27)

As the gain a increases, the transmission at resonance increases, to reach infinity at
threshold (Rea = 1). The linewidth decreases to zero at the threshold gain.

The reflection at δ = 0 is:

|R|2 = R (1− ea)2

(1−Rea)2
(28)

For small a, this expression can be approximated as:

a2R

(1−Rea)2
(29)

which also tends to infinity at threshold.
Let us sent through this Fabry-Perot a probe beam, at a frequency tuned to the half

width (i.e. transmission of the intensity = 0.5) of the empty (no gain) Fabry-Perot. The
detuning for the empty cavity is given by the condition:

sin2 δ

2
=

(1−R)2

4R
. (30)

If this value is substituted in the expression for the transmission, we find:

|T |2 = x
[

1

1 + xea

]
(31)

The transmission is the limit for x→ ∞ of this expression, where

x =
(1−R)2

(1−Rea)2
. (32)

The solution is
x

1 + xea
→ e−a ≈ 1. (33)

Thus, even though the linewidth tends to zero and the transmission to infinity, there is still
a transmission factor of unity at the optical frequency corresponding to 50% transmission
for the empty cavity.
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The intensity inside the resonator is simply the transmitted intensity divided by the
transmission coefficient of the second mirror:

Ii =
I0

|T |2
1

1−R
. (34)

The threshold condition Rea = 1 corresponds to the onset of laser oscillation. In the
considerations above, we have assumed the gain a to be a constant, independent of the
intensity. In reality, the gain a is itself a function of Ii:

a =
a0

1 + Ii
Is

, (35)

where a0 is the unsaturated absorption coefficient, and Is is the saturation intensity.
Given an unsaturated gain above threshold, and an input intensity I0, the intensity

will build up inside the cavity, and the gain will decrease, until reaching the equilibrium
condition that corresponds to the gain = loss:

Rea0/(1+Ii/Is) = 1 (36)

which is the threshold condition defined previously through Eqs. (25) and (26).

Absorbing Fabry-Perot

The absorbing Fabry-Perot equivalent to the Fabry-Perot with gain, except that the gain
factor a is negative.
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Impulse response of a Fabry-Perot

The transmission of any signal — cw, pulse, train of pulses — through a Fabry-Perot
can be calculated by taking the product of the Fourier transform of the pulse and the
transfer function Eq. (5). The result of this operation is the Fourier transform of the
transmitted pulse. For instance, cw radiation corresponds in the frequency domain to a
δ(Ω−ωℓ) function. The transmitted field through the Fabry-Perot is therefore simply the
value of the function (5) at the frequency ωℓ (×E0). For a very short pulse that covers
N modes of the Fabry-Perot, the Fourier transform of the transmission is a comb of N
Fabry-Perot transmission peaks. The Fourier transform of that frequency comb is a pulse
train. Because the envelope of these peaks has the same shape as the Fourier transform
of the incident pulse, the pulses of the sequence have the same shape and duration as
the incident pulse. The shape of the envelope of the pulse sequence is the inverse Fourier
transform of a Fabry-Perot transmission peak. Since the latter is a Lorentzian, the pulse
train follow a decaying exponential. The latter situation is easier to analyze in the time
domain. A single pulse, shorter than the mirror spacing, is sent to the Fabry-Perot. There
are no interferences. The pulse rattles inside the cavity, losing a fraction (1−R) at each
reflection.

We consider next the more complex problem of the transmission/reflection of a Fabry-
Perot to a train of pulses. Here again, the numerical approach would be to multiply
the Fourier spectrum of the pulse train by the transfer function Eq. (5) for transmis-
sion, or Eq. (8) for the reflection. The direct derivation in time however gives a better
understanding of the resonator response.

We consider the irradiation of a Fabry-Perot by the output of a mode-locked laser
of which the cavity is 4 × longer than the Fabry-Perot. Each pulse of the train has a
duration much smaller than the round-trip time of the Fabry-Perot.

Let us first derive an expression for the electric field of the transmitted pulse(s) through
this Fabry-Perot irradiated by the mode-locked laser. We will make step by step deri-
vation, following the pulse as it enters the resonator and travels back and forth in that
cavity, keeping in mind the ratio of cavity and pulse rates.

The field transmission factor is given by:

T = t̃12e
−ikdt̃21 + t̃12r̃

8
21e

−9ikdt̃21 + t̃12r̃
16
21e

−19ikdt̃21 . . .

=
t̃12t̃21e

−ikd

1− r̃821e
−i8δ

(37)

For the intensity transmission:

|T |2 = (1−R)2

1 +R8 − 2R4 cos 8δ
. (38)

If we make the standard replacement cos 8δ = 1−2 sin2 4δ, the equation for the transmitted
intensity becomes:

|T |2 =
(1−R)2

1 +R8 − 2R4(1− 2 sin2 4δ
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Figure 3: Fabry-Perot cavity irradiated by a mode-locked pulse train of 4 times lower repetition
rate than the round-trip rate of that Fabry-Perot.

=
1

(1 +R +R2 +R3)2 + 4R4

(1−R)2
sin2 4δ

=
1

(1 +R +R2 +R3)2
1

1 + 4R4

(1−R)2(1+R+R2+R3)2
sin2 4δ

(39)

This is to be compared to the transmission of the Fabry-Perot for cw light:

[
|T |2

]
cw

=
1

1 + 4R
(1−R)2

sin2 δ
2

. (40)

In the case of the cw FP, this represents near the resonance (for R close to unity) a
Lorentzian of full width at half maximum (FWHM):

∆δcw =
1−R√

R
=

T√
R
. (41)

For this case of mode-locked input, the FWHM of the Lorentzian is:

∆δml =
(1−R)(1 +R +R2 +R3)

8R2
≈ T

2R2
. (42)

where the approximation R ≈ 1 was made for the sum in the numerator. One could argue
that the Fabry-Perot is 4 times longer as seen by the mode-locked train, therefore the
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FWHM should be 4 times narrower. On the other hand, the losses due to the reflections
not synchronized with the feeding pulse contribute to a broadening of the transmission
peak (term in R2 instead of

√
R in Eq. (42).

The Fabry-Perot transmission at resonance is the expression Eq. (38) for δ = 0:

|T |2 =
(1−R)2

(1−R4)2

=
(

1

1 +R +R2 +R3

)2

≈ 1

16
, (43)

where the approximation applies to a high Q cavity (R ≈ 1).

Reflected and transmitted energy in the limit R → 1

Let W1 be the energy of each incident pulse. Since there are four transmitted pulses
for each incident pulse, the total transmitted energy is 4W1/16 = W1/4, where W1 is
the energy of incident light. The reflected energy should therefore be (3W1/4), which
comprises 3 pulses with energyW/16 and one pulse with energyW1× [(12/16)−(3/16)] =
9W1/16, in order to satisfy energy conservation. The reflected field of 3E1/4 results from
destructive interference of the incident field (amplitude E1) and the transmitted field from
the Fabry-Perot (amplitude E1/4).
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The nonlinear Fabry-Perot

Saturable gain of absorption off resonance

As we have seen, the laser can be seen as a nonlinear Fabry-Perot, where the linewidth and
tranmission factor are dependent on the gain, itself dependent on the intracavity intensity,
itself dependent on the transmission factor. If radiation is injected in such a Fabry-Perot
with gain off resonance, the index of refraction is also dependent on the intensity, hence
on the transmission, which is also dependent through δ on the index... One can feel that
this problem can become rather complex.

Nonlinear index of refraction

We will consider here a simpler nonlinearity, that of the Kerr effect, or an index of re-
fraction linearly dependent on the intensity:

n = n0 + n2Ii (44)

where the subscript i of the intensity indicates that we are concerned with the intracavity
intensity.

Fabry-Perot – simplest case

We will consider that the phase shift δ is real, and is only due to the propagation factor:
δ = −kd− ϕ. The intensity transmission of a Fabry-Perot is given by:

T =
1

1 + 4R
(1−R)2

sin2 ϕ
2

=
1

1 +
(
2F
π

)2
sin2 ϕ

2

≈ 1

1 + R
(1−R)2

ϕ2
. (45)

where the approximation is valid for (1−R) ≪ 1, and ϕ≪ 1. Within that approximation,
the transmission function is a Lorentzian of width (FWHM) ∆ϕt:

∆ϕt = 2

√
R

(1−R)
. (46)

In the above expressions, R =
√
R1R2, R1 and R2 being the (intensity) reflection coef-

ficients of the mirrors, and ϕ = k(2L) = 4πnL/λ = 4πνnL/c is the round-trip phase
shift. The free spectral range, or the frequency spacing between transmission peaks,
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is ∆ν = c/(2nL). The finesse F is the ratio of the full width half maximum of each
transmission peak ∆νt to the free spectral range ∆νax = c/(2nL).

F =
π
√
R

1−R
(47)

Another form for the Fabry-Perot transmission is:

T =
(1−R)2

1 +R2 − 2R cosϕ
=

[
ϵ

D

]2
. (48)

The transmission of the Fabry-Perot can be determined by a simple geometrical con-
struction, as sketched in Fig. 4(b). The incident field is represented by a unit vector
OA with a phase angle ϕ. The quantity D =

√
1− 2R cosϕ+R2 is the side AB of the

triangle, where B is the point at ϵ = 1 − R from the intersection of the circle with the
ϕ = 0 axis. It is easily seen from the figure that the transmission factor [ϵ/D]2 varies
between unity and [(1−R)/(1 +R)]2.

Figure 4: Fabry-Perot cavity (a) and geometrical representation of its transmission factor (b).
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A Fabry-Perot cavity as an ultrafast switch?

Any change in cavity length, or change in index, will shift the resonance. Since the
resonance can be very narrow, one would see here an ideal opportunity to make an ultrafast
switch. Let us assume for simplicity that the two mirrors are identical. For the transmitted
intensity T given above, the intensity inside the device is T/(1−R). If the Fabry-Perot is
filled with a medium with a nonlinear index (n = n0+n2I), the phase shift ϕ is a function
of the transmission:

ϕ = ϕ0 +
4πn2TI0L

λ(1−R)
= ϕ0 +

TI0
a
. (49)

Equation (49) can be represented by straight lines on a graph of T versus ϕ:

T =
a

I0
(ϕ− ϕ0) . (50)

Starting from the situation sketched in Fig. 5, as the incident intensity increases from an
initial value of 0 [vertical line for Eq. (50)] the transmission become multivalued. The
Fabry-Perot has become a multistable element. The intersections of the straight lines in
Fig. 5 with the Fabry-Perot transmission curves are made to construct the transmission
characteristic of the bistable Fabry-Perot of Fig. 6.

Figure 5: Fabry-Perot transmission versus the phase factor ϕ (a), which has become itself a
linear function of transmission (straight lines of decreasing slope as the intensity I0 is increasing).
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Figure 6: Fabry-Perot transmission versus the input intensity, constructed graphically from the
previous figure. Corresponding points A, B, C and D are labelled on both figures.
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