Nonlinear Optics 2024 - Homework 4

Due Wednesday, March 20, 2024
Gaussian beams with phase conjugated mirror
Reminder: equation of a Gaussian beam:

$$
\begin{equation*}
\tilde{\mathcal{E}}(x, y, z)=\frac{\mathcal{E}_{0}}{\sqrt{1+z^{2} / \rho_{0}^{2}}} e^{-i \Theta} \times e^{-i k_{\ell}\left(r^{2}\right) / 2 R} \times e^{-\left(r^{2}\right) / w^{2}} \tag{1}
\end{equation*}
$$

where the various parameters are:

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
R=R(z) & =z+\rho_{0}^{2} / z \\
w=w(z) & =w_{0} \sqrt{1+z^{2} / \rho_{0}^{2}} \\
\Theta=\Theta(z) & =\arctan \left(z / \rho_{0}\right) \\
\rho_{0} & =\rho(z=0)=\frac{n \pi w_{0}^{2}}{\lambda} . \\
\rho & =\frac{n \pi w^{2}}{\lambda}
\end{aligned}
$$

A flat, ideal phase conjugate mirror transforms Eq. (1) into:

$$
\begin{equation*}
\tilde{\mathcal{E}}(x, y, z)=\frac{\mathcal{E}_{0}}{\sqrt{1+z^{2} / \rho_{0}^{2}}} e^{i \Theta} \times e^{i k_{\ell}\left(r^{2}\right) / 2 R} \times e^{-\left(r^{2}\right) / w^{2}} \tag{2}
\end{equation*}
$$

In terms of complex q-parameter, Eq. (1) is:

$$
\begin{equation*}
\tilde{\mathcal{E}}(x, y, z)=\frac{\mathcal{E}_{0}}{\sqrt{1+z^{2} / \rho_{0}^{2}}} e^{-i \Theta} \times e^{-i k_{\ell}\left(r^{2}\right) / 2 \tilde{q}} \tag{3}
\end{equation*}
$$

1.Find the q-parameter transformation for a flat phase conjugated mirror

2. Write this transformation in terms of ABCD matrix

Without phase conjugation:

$$
\begin{equation*}
\frac{1}{q_{2}}=\frac{C+\frac{D}{q_{1}}}{A+\frac{B}{q_{1}}} \tag{4}
\end{equation*}
$$

Hint: with phase conjugation the expression may involve complex conjugation.

3. Stability condition of a simple cavity

Having determined the ABCD matrix for a phase congution mirror, apply this result to analyze the satbility of a simple cavity with a curved (normal) mirror and a flat phase conjugated mirror.
Hint: make 2 round-trips.
Find the stability condition and the beam size.

4. Why the hint in the previous question?

5. Non degenerate FWM: find the resonance condition for longitudinal modes

The process is:

$$
\begin{equation*}
\omega_{p}+\omega_{p}-\omega_{1}-\omega_{2}=0 \tag{5}
\end{equation*}
$$

