Homework 5

Due Wednesday, before 1 p.m., November 15, 2023

1 Fabry-Perot

1.1 Empty cavity

Find the linewidth, free spectral range of the transmission modes of the Fabry-Perot with the following parameters:

1. thickness 1 mm .
2. 2 mirrors with equal (intensity) reflectivity of $4 \mathrm{R}=99 \%$
3. $\lambda=500 \mathrm{~nm}$
4. Index of refraction $n=1$

1.2 Dispersion due to an absorber

The Fabry-Perot cavity is filled with an absorbing medium with an homogeneously broadened absorption line exactly resonant with a mode of this Fabry-Perot.
Linear absorption coefficient $\alpha_{0}=1 \mathrm{~mm}^{-1}$
The inverse linewidth of the line (phase relaxation time) is $T_{2}=1 \mathrm{ps}$.
Calculate the contribution of this line to the index of refraction $n(\Delta \omega)$ where $\Delta \omega$ is the detuning from the center of the line.

1.3 Absorber in the Fabry-Perot

Calculate how the transmission of laser light for the mode at resonance and for two adjacent modes is affected by the absorber inserted in the cavity.

1.4 Calculate the shift in frequency for the two modes adjacent to the center mode

