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When a spherical mirror interferometer is illuminated by an off-axis ray of light, the repeated reflections
cause the ray to trace a path which lies on the surface of a hyperboloid, with the points of reflection on
the mirrors on ellipses. Under special conditions, these ellipses may become circles, with the points
of reflection displaced by an angle 20 after every round trip. When 2 vO = 24r, and g being integers,
the rays retrace their paths. These ray paths give rise to additional resonances which were observed.
Pictures of the points of reflection are reproduced. The theory is in good agreement with the experi-
mental observations. In laser amplifiers these ray paths enable one to obtain long effective path lengths
in the active medium which may be contained in a thin annular cylindrical or hyperboloidal shell.

Connes' has explored and described the use of a
confocal interferometer which consists of two spherical
mirrors spaced at a distance equal to twice their focal
length. The use of nonconfocal systems as resonators
for optical maser oscillators2 3 leads us to investigate
the properties of interferometers formed of spherical
mirrors at other than confocal spacings.

If one illuminates an interferometer of this type with
a monochromatic light beam from a He-Ne gas maser,
for instance, and this beam is misaligned with respect
to the interferometer axis, one can measure a free-
spectral range which corresponds to an interferometer
with a spacing that is several times greater than the
actual one. One can also observe an elliptical pattern
of spots on each mirror. The number of spots is just
equal to the factor by which the apparent inter-
ferometer spacing exceeds the actual one.

The patterns of spots and the corresponding reso-
nance characteristics can be explained theoretically in
good agreement with experiment.

The ray family inside the interferometer which is
obtained in the case of a circular pattern of spots is
exactly the one proposed by one of the authors (R.
Kompfner) sometime ago as a ray system suitable for
optical maser amplifiers.

Distribution of Spots on Mirror Surfaces

In terms of ray optics an interferometer system con-
sisting of two equal and coaxial mirrors is equivalent
to a series of equally spaced thin lenses as shown in Fig.
1. The lenses are all of focal length f and they are
spaced at distances d.
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The behavior of a paraxial ray passing through a
system of this kind has been analyzed by Pierce.4

Using a Cartesian coordinate system, a ray in the sec-
tion between the nth and the (n + 1)th lenses is
described by the coordinates (x, y,) of the point where
it intersects the center plane of the nth lens, and by
the slopes Xn' and yn' just to the right of this lens
(see Fig. 1). We are interested in the coordinates
x,, and y of a ray which is injected at the input lens
with given coordinates x0 and yo and slopes x0' and yo'.
Using Pierce's results it is easy to show that

where

Id
Z = x csno + 4f d(xo + 2fxo') sinno,

coso = 1 - (d/2f).

(1)

(2)

A corresponding relation holds for y. We postulate
that the lens system is stable, i.e., that

d

f

is satisfied.
Equation (1) can be rewritten in the form

xn = Asin (nO + a),

with

tana = - I - I ± 2f -0* d /( O )

and
4f

A2 = d (XO2 + dxoxo' + dfxo").
4f - d

(3)

(4)

(5)

(6)

The quantity A is the maximum possible excursion of
the ray in the x direction, on its way through the series
of lenses for given initial values x0 and x'.
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Fig. 1. Series of equally spaced thin lenses.
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Fig. 2. Projections of intersection points (Xn, y,,) lying on circle.

For the y coordinate one obtains similarly

yn = Bsin (no + Al). (7)

Imagine, now, all intersection points (x, y,,) for a
given ray projected into an x-y plane. We can see
from Eqs. (4) and (7) that these projections will, in
general, lie on an ellipse. In special cases they will
be on a circle, namely, when

A = B (8)

and

aY = (4 : (or tana -tang3 = -1) (9)
2

A is, of course, the radius of the circle.
Equations (8) and (9) impose certain conditions on

the initial values x, yo, o', and yo'. If we postulate,
for instance, that yo' = 0 and prescribe x, then y, the
radius A, and the slope xo' are determined via Eqs.
(4) and (5):

Yo2= X02(- ) (10)(d )(10d
2 = xo + O2=4 o2 211

XeI = -- = _- .
d Alfd

(12)

This last relation tells us with what slope the ray has
to be injected to produce a desired circle of radius A.

In Fig. 2 the projections of the intersection points
(x,, yn) on an x-y plane are shown for the case where

z they lie on a circle. Under this condition the polar
angle So corresponding to the point (, yn) is

v = n + ae. (13)

The difference in polar angle between this point and
its neighbors (n+l, Yni+) is therefore equal to the angle
0 which was defined in Eq. (2) for mere analytical
reasons.

We can use the above findings to understand the way
in which a ray is reflected back and forth between the
two concave mirrors of a resonator. The even-num-
bered intersection points will be the points where the
ray strikes the one mirror, and the odd-numbered
points will correspond to the points of impact on the
other mirror.

If the ray is injected at the angle given by Eq. (12),
the points of impact on each mirror will lie on a circle,
and the difference in polar angle between neighboring
points on one particular mirror will amount to 20.
While it is reflected back and forth between the two
mirrors, the ray stays on the surface of a rotational
hyperboloid. This fact can be used in designing a
maser amplifier, where the rays use the volume of a
concentric cylindrical shell.

In particular, it has been found that the gain and
power output of an optical maser, employing a gas as
the active medium, depends critically on the distance
between the light rays and the walls containing the
gas. The proposed system of rays enables one to con-
struct an annular container having walls sufficiently
close to all the rays and having, because of its cylindri-
cal geometry, sufficient mechanical strength to with-
stand the pressure difference between the gas and the
atmosphere.

The mirror system has, of course, all the refocusing
properties of a periodic sequence of lenses. To keep
all spots as small as possible it is necessary to image
the beam so that the wavefront has the same curvature
as the illuminated mirror surface and to limit its aper-
ture to the diameter of the fundamental cavity mode
at the surface of the mirror.

Photographs of the distribution of spots on one of
the mirror surfaces were taken when the spherical sur-
face cavity was illuminated with the beam from a He-
Ne maser.

The mirrors used in the cavity were slightly trans-
parent, so a field lens was placed just beyond the mir-
ror to collect the transmitted light into a camera lens
which was used to image the spots onto polaroid
photographic film. The mirrors were changed to ob-
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Fig. 3. Photographs of light patterns on mirrors.

d= 2f I 1 d=f

,- -I- A 1,_ ^.

a) CONFOCAL SYSTEM b) FOCAL SPACING

Fig. 4. Closed ray paths.

tain various cavity geometries, and a series of pictures
as shown in Fig. 3 was obtained.

Re-entrant Condition

If the resonator dimensions are such that 20 is an
integer fraction v of 27r, namely,

2>0 = 
2

(14)

then a ray returns exactly to its entrance point (x, yo)
= (, y) after v return trips through the system, and
continues to retrace the same ray pattern again and
again. Closed paths of this type are known to exist
for the confocal resonator with a repetition rate of two
return trips as shown in Fig. 4(a). For a system with
a mirror separation equal to the focal length (d = ),
one has a closed path of three basic return trips. This
is shown in Fig. 4(b). Other "magic" resonator di-
mensions can be computed from Eqs. (2) and (14),
some of which are given in the following table:

2 3 4 6 12 24
fld 0.5 1 1,7 3,7 14,7 58

It is only the ratio between focal length and mirror
spacing which determines whether one has a closed
path or not. It can be seen from Eq. (1) that, if condi-
tion (14) holds, a ray returns to its entrance point
after v return trips no matter what its entrance slope.
To obtain a closed path it is, therefore, not necessary
that the points where the ray strikes one of the two

mirrors lie on a circle. Equations (1) and (14) tell
us, in addition, that one obtains a 1:1 image of the
input spot after v return trips (and an inverted image
after / 2 return trips if v is even). The radiation does
not spread as in free space but is continuously refocused
by the concave mirror system.

More complicated closed ray paths are obtained when

2vO = 27r

with an integer number, not equal to v.
An examination of the pictures in Fig. 3 shows that

the number of spots is due to repeated circuits around
the ellipse. By inserting a blade into the space be-
tween the mirrors, it is possible to intercept the beam
after only one pass around the ellipse and to show the
distribution of spots in one circuit.

Figure 3(a) shows the intersection at one mirror of
an off-axis path between a 2-m radius reflector and a
10.5-m radius reflector at a spacing of 14.6 cm. The
lower picture shows the path interrupted after nine
multiple reflections or one complete circuit of the
ellipse. The center picture shows the pattern on one
reflector when the beam is limited to two circuits of
the ellipse consisting of 19 multiple reflections. The
upper picture shows the pattern resulting from un-
limited multiple reflections in the resonator. Figure
3(b) shows the same patterns for mirrors of 2-m radius
at 14.6-cm spacing. It can be seen that the ray be-
comes re-entrant after five circuits of the ellipse made
up of 40 multiple passes between the mirrors. Picture
3(c) shows the patterns for one circuit and unlimited
passes in a resonator with 10.5-m mirrors at 14.6-cm
spacing.

To discuss the interferometric properties of our con-
figuration assume that both mirrors have a power re-
flection coefficient R and a transmission coefficient
T and that a light beam suffers a phase shift so during
transit from one mirror to the other.

If a light beam is injected in perfect alignment with
the optic axis of the mirror system (interferometer),
interference will take place after each return trip of the
light beam, and one observes the well-known5 char-
acteristics of a Fabry-Perot interferometer:
a transmission To given by

To = T eis'T I - (15),,
a fringe finesse

-?/R
- R (16)

and a cavity Q factor

(17)Qo1=so1 -R

Considering the case where the beam is injected at
an angle of off-axis, let us assume that the interfero-
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Fig. 5. Spectra of spherical mirror resonator. (a) Axial illumi-
nation. (b) Off-axis illumination.

meter dimensions are such that we have a closed path
of v return trips and that the spots of beam impact
on each mirror do not overlap. Interference will now
take place only after v return trips, and the spectral
response of this configuration will be similar to a Fabry-
Perot of v times the mirror spacing. It is easy to
show that the power transmission T through the first
output spot is given by

T e'P (
I 1 - RI e2j>v (18)

the fringe finesse by

RV/2

- R,
(19)

and the Q factor by

(20)
V1 P

If we compare this to the original one-return-trip
interferometer, we notice that for reflectivities close
enough to unity the finesse has deteriorated by a factor
v and the Q factor only slightly improved.

Resonances of a Spherical Interferometer

The resonances of the interferometer were examined
with an oscillating interferometer6 in which the spacing
between the two mirrors was varied sinusoidally at
60 cps over a distance of about a wavelength permitting
the transmitted band to be scanned in wavelength.
The interferometer was illuminated with the beam
from a He-Ne maser, and the transmitted light was
received by a multiplier phototube and displayed on
an oscilloscope. The sweep of the oscilloscope was
driven in synchronism with the drive of the mirror
spacing.

When this interferometer was illuminated on the
axis of the interferometer, patterns, as shown in Fig.
5(a), were obtained showing the detail of the output
of the maser. When the interferometer was illumi-
nated in an off-axis manner, the single resonant peak
of the cavity was broken up into nineteen resonances,
as shown in Fig. 5(b). Their individual amplitudes
are still modified by the original resonant period.
These nineteen resonant peaks within the width of the
usual spacing correspond to the nineteen round trips
through the interferometer before the beams are re-
entrant.

Conclusions

An examination of ray paths in a nonconfocal
spherical interferometer shows that off-axis paths
have interesting properties which may, on the one
hand, be of use in amplifiers and absorption cells and
which, on the other hand, may adversely affect the per-
formance of an interferometer.
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