
Laser Beams and Resonators
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Abstract-This paper is a review of the theory-of laser beams and
resonators. It is meant to be tutorial in nature and useful in scope. No
attempt is made to be exhaustive in the treatment. Rather, emphasis is
placed on formulations and derivations which lead to basic understand-
ing and on results which bear practical significance.

1. INTRODUCTION

rT HE COHERENT radiation generated by lasers or
masers operating in the optical or infrared wave-
length regions usually appears as a beam whose

transverse extent is large compared to the wavelength.
The resonant properties of such a beam in the resonator
structure, its propagation characteristics i free space, and
its interaction behavior with various optical elements and
devices have been studied extensively in recent years.
This paper is a review of the theory of laser beams and
resonators. Emphasis is placed on formulations and
derivations which lead to basic understanding and on
results which are of practical value.

Historically, the subject of laser resonators had its
origin when Dicke [1], Prokhorov [2], and Schawlow and
Townes [3] independently proposed to use the Fabry-
Perot interferometer as a laser resonator. The modes in
such a structure, as determined by diffraction effects,
were first calculated by Fox and Li [4]. Boyd and Gordon
[5], and Boyd and Kogelnik [6] developed a theory for
resonators with spherical mirrors and approximated the
modes by wave beams. The concept of electromagnetic
wave beams was also introduced by Goubau and Schwe-
ring [7], who investigated the properties of sequences of
lenses for the guided transmission of electromagnetic
waves. Another treatment of wave beams was given by
Pierce [8]. The behavior of Gaussian laser beams as they
interact with various optical structures has been analyzed
by Goubau [9], Kogelnik [10], [11], and others.

.9The present paper summarizes the various thebries and
is divided into three parts. The first part treats the passage
of paraxial rays through optical structures and is based
on geometrical optics. The second part is an analysis of
laser beams and resonators, taking into account the wave
nature of the beams but ignoring diffraction effects due
to the finite size of the apertures. The third part treats the
resonator modes, taking into account aperture diffrac-
tion effects. Whenever applicable, useful results are pre-
sented in the forms off formulas, tables, charts, and
graphs.
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2. PARAXIAL RAY ANALYSIS

A study of the passage of paraxial rays through optical
resonators, transmission lines, and similar structures can
reveal many important properties of these systems. One
such "geometrical" property is the stability of the struc-
ture [6], another is the loss of unstable resonators [12].
The propagation of paraxial rays through various optical
structures can be described by ray transfer matrices.
Knowledge of these matrices is particularly useful as they
also describe the propagation of Gaussian beams through
these structures; this will be discussed in Section 3. The
present section describes briefly some ray concepts which
are useful in understanding laser beams and resonators,
and lists the ray matrices of several optical systems of
interest. A more detailed treatment of ray propagation
can be found in textbooks [13] and in the literature on
laser resonators [14].
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Fig. 1. Reference planes of an optical system.
A typical ray path is indicated.

2.1 Ray Transfer Matrix

A paraxial ray in a given cross section (z=const) of an
optical system is characterized by its distance x from the
optic (z) axis and by its angle or slope x' with respect to
that axis. A typical ray path through an optical structure
is shown in Fig. 1. The slope x' of paraxial rays is assumed
to be small. The ray path through a given structure de-
pends on the optical properties of the structure and on the
input conditions, i.e., the position x and the slope x' of
the ray in the input plane of the system. For paraxial rays
the corresponding output quantities x2 and x2' are linearly
dependent on the input quantities. This is conveniently
written in the matrix form

X9 -A B xi

X2i C D xi' (1)
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TABLE I

RAY TRANSFER MATRICES OF Six ELEMENTARY OPrICAL STRUCTURES f CC

NO. OPTICAL SYSTEM RAY TRANSFER MATRIX D
= (3)

C

1 A-i

where hi and h2 are the distances of the principal planes
from the input and output planes as shown in Fig. 1.

In Table I there are listed the ray transfer matrices of
six elementary optical structures. The matrix of No. I

IIj a O describes the ray transfer over a distance d. No. 2 de-

2 [ 8 W scribes the transfer of rays through a thin lens of focal
1 ' l lengthf Here the input and output planes are immediately

l l f to the left and right of the lens. No. 3 is a combination
1 2 of the first two. It governs rays passing first over a dis-

tance d and then through a thin lens. If the sequence is
reversed the diagonal elements are interchanged. The

d - d matrix of No. 4 describes the rays passing through two
f l structures of the No. 3 type. It is obtained by matrix

-! _ A multiplication. The ray transfer matrix for a lenslike
l Id medium of length d is given in No. 5. In this medium the
1 2 refractive index varies quadratically with the distance r

from the optic axis.

d~~~~~~~~d2~ ~ ~ ~ ~ ~ n = no - n2r . (4)

Id A d + 1 f2 d dI _ ftf 2 An index variation of this kind can occur in laser crystals

4 and in gas lenses. The matrix of a dielectric material of

lf d2 d, d2 d, dd2 index n and length d is given in No. 6. The matrix is
2¶fl f2 ff2 fl f2 f2 ff2 referred to the surrounding medium of index 1 and is

computed by means of Snell's law. Comparison with No.
1 shows that for paraxial rays the effective distance is

FI12 shortened by the optically denser material, while, as is
a - -d- - > S cosdn - nSI nd - well known, the "optical distance" is lengthened.

l no: ..::: no.;, :i n I
5 l : S t;. S S ifl.

5 K 2.2 Periodic Sequences

n n0o 2 n2 r
2

i n Nd cosd Light rays that bounce back and forth between the
2 no no spherical mirrors of a laser resonator experience a periodic

focusing action. The effect on the rays is the same as in a
periodic sequence of lenses [15] which can be used as an
optical transmission line. A periodic sequence of identical

n -Id/n optical systems is schematically indicated in Fig. 2. A

6- '_ XX/X/5X////@single element of the sequence is characterized by its
o / ABCD matrix. The ray transfer through n consecutive

elements of the sequence is described by the nth power
2

of this matrix. This can be evaluated by means of Sylves-
ter's theorem

where the slopes are measured positive as indicated in the A B n 1
figure. The ABCD matrix is called the ray transfer matrix.
Its determinant is generally unity C D sin 0

AD-BC = 1. (2) (5)

The matrix elements are related to the focal length f of A sin n@ - sin(n - 1)0 B sin nI
the system and to the location of the principal planes by C sin nO D sin nO - sin(n - 1)0 
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cos ) = (A + D).

Periodic sequences can be classified as either stable or
unstable. Sequences are stable when the trace (A+D)
obeys the inequality

-1 < (A2 + D) < 1. (7)

Inspection of (5) shows that rays passing through a stable
sequence are periodically refocused. For unstable sys-
tems, the trigonometric functions in that equation be-
come hyperbolic functions, which indicates that the rays
become more and more dispersed the further they pass
through the sequence. R = 2f, , R = 2f2

Fig. 3. Spherical-mirror resonator and the
equivalent sequence of lenses.

( ) Xl') Xn

Fig. 2. Periodic sequence of identical systems,
each characterized by its ABCD matrix.

2.3 Stability of Laser Resonators
A laser resonator with spherical mirrors of unequal

curvature is a typical example of a periodic sequence that
can be either stable or unstable [6]. In Fig. 3 such a
resonator is shown together with its dual, which is a
sequence of lenses. The ray paths through the two struc-
tures are the same, except that the ray pattern is folded in
the resonator and unfolded in the lens sequence. The focal
lengths j; and f of the lenses are the same as the focal
lengths of the mirrors, i.e., they are determined by the
radii of curvature R and R2 of the mirrors (fi=R,/2,
f 2 =R 2/2). The lens spacings are the same as the mirror
spacing d. One can choose, as an element of the peri-
odic sequence, a spacing followed by one lens plus another
spacing followed by the second lens. The ABCD matrix
of such an element is given in No. 4 of Table I. From this
one can obtain the trace, and write the stability condition
(7) in the form

0 < (I ) (1-) < 1. (8)

To show graphically which type of resonator is stable
and which is unstable, it is useful to plot a stability dia-
gram on which each resonator type is represented by a
point. This is shown in Fig. 4 where the parameters d/R,
and d/R 2 are drawn as the coordinate axes; unstable
systems are represented by points in the shaded areas.
Various resonator types, as characterized by the relative
positions of the centers of curvature of the mirrors, are
indicated in the appropriate regions of the diagram. Also
entered as alternate coordinate axes are the parameters g1
and 2 which play an important role in the diffraction
theory of resonators (see Section 4).
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Fig. 4. Stability diagram. Unstable resonator
systems lie in shaded regions.

3. WAVE ANALYSIS OF BEAMS AND RESONATORS 

In this section the wave nature of laser beams is taken
into account, but diffraction effects due to the finite size
of apertures are neglected. The latter will be discussed in
Section 4. The results derived here are applicable to
optical systems with "large apertures," i.e., with apertures
that intercept only a negligible portion of the beam power.
A theory of light beams or "beam waves" of this kind was
first given by Boyd and Gordon [5] and by Goubau and
Schwering [7]. The present discussion follows an analysis
given in [11].

3.1 Approximate Solution of the Wave Equation

Laser beams are similar in many respects to plane
waves; however, their intensity distributions are not uni-
form, but are concentrated near the axis of propagation
and their phase fronts are slightly curved. A field com-
ponent or potential of the coherent light satisfies the
scalar wave equation

V2 u + k2u = 0 (9)

where k = 27r/X is the propagation constant in the medium.

1552 APPLIED OPTICS / Vol. 5, No. 10 / October 1966

where

(6)

--- d---;

d- -- ---d--- II --- -
--- A 

f, fz f, f2

l t o i Z z w w w w r w w Z P w P - -



For light traveling in the z direction one writes t E

iu = V,(x, y, z) exp(-jkz) (10)

where 4' is a slowly varying complex function which
represents the differences between a laser beam and a
plane wave, namely: a nonuniform intensity distribu-
tion, expansion of the beam with distance of propagation,
curvature of the phase front, and other differences dis-
cussed below. By inserting (10) into (9) one obtains

+ - 2jk - = ° (11)
Ox2 ay2 OZ

where it has been assumed that 4' varies so slowly with z
that its second derivative 024'/0z2 can be neglected.

The differential equation (11) for A/ has a form similar
to the time dependent Schrddinger equation. It is easy to
see that

4 exp {- + 2 r2 (12)

is a solution of (11), where

r2 = 
2 + y2 . (13)

The parameter P(z) represents a complex phase shift which
is associated with the propagation of the light beam, and
q(z) is a complex beam parameter which describes the
Gaussian variation in beam intensity with the distance r
from the optic axis, as well as the curvature of the phase
front which is spherical near the axis. After insertion of
(12) into (11) and comparing terms of equal powers in r
one obtains the relations

q = I (14)

r
,,

Go

Fig. 5. Amplitude distribution of the fundamental beam.

When (17) is inserted in (12) the physical meaning of these
two parameters becomes clear. One sees that R(z) is the
radius of curvature of the wavefront that intersects the
axis at z, and w(z) is a measure of the decrease of the
field amplitude E with the distance from the axis. This
decrease is Gaussian in form, as indicated in Fig. 5, and
w is the distance at which the amplitude is l/e times that
on the axis. Note that the intensity distribution is Gaus-
sian in every beam cross section, and that the width of
that Gaussian intensity profile changes along the axis.
The parameter w is often called the beam radius or "spot
size," and 2w, the beam diameter.

The Gaussian beam contracts to a minimum diameter
2wo at the beam waist where the phase front is plane. If
one measures z from this waist, the expansion laws for
the beam assume a simple form. The complex beam
parameter at the waist is purely imaginary

-rI f
2

qo = (18)

and a distance z away from the waist the parameter is

7rwo2

q = q + = j + .

(15)P = -

q

where the prime indicates differentiation with respect to z.
The integration of (14) yields

After combining (19) and (17) one equates the real and
imaginary parts to obtain

W(Z) = W2 1 + (-2) ]
q2 = q1 + Z

(20)

(16)

which relates the beam parameter q2 in one plane (output
plane) to the parameter q, in a second plane (input plane)
separated from the first by a distance z.

3.2 Propagation Laws for the Fundamental Mode

A coherent light beam with a Gaussian intensity pro-
file as obtained above is not the only solution of (11),
but is perhaps the most important one. This beam is often
called the "fundamental mode" as compared to the higher
order modes to be discussed later. Because of its impor-
tance it is discussed here in greater detail.

For convenience one introduces two real beam param-
eters R and w related to the complex parameter q by

and

R(Z) = Z[ ( . (21)

Figure 6 shows the expansion of the beam according to
(20). The beam contour w(z) is a hyperbola with asymp-
totes inclined to the axis at an angle

(22)0=-*
7rWo

This is the far-field diffraction angle of the fundamental
mode.

Dividing (21) by (20), one obtains the useful relation

1 1 *X
- - .
q R 7rW

2
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ilar properties, and they are discussed in this section.
These solutions form a complete and orthogonal set of
functions and are called the "modes of propagation."
Every arbitrary distribution of monochromatic light can
be expanded in terms of these modes. Because of space
limitations the derivation of these modes can only be
sketched here.

a) Modes in Cartesian Coordinates: For a system with
a rectangular (x, y, z) geometry one can try a solution for
(11) of the form

g h

which can be used to express w0 and z in terms of w and R:

wo2 = W2j [1 + (-) (24)

/ = R 1 (R) 2 ] (25)
To calculate the complex phase shift a distance z away

from the waist, one inserts (1-9) into (15) to get

I j1p, (26)
q z + j(rwo 2 /X)

Integration of (26) yields the result

jP(z) = ln [1 - j(Xz/7rwo2)]

= ln-\/l + (z/7rw2)2 - j arc tan(Xz/rwO2 ). (27)

The real part of P represents a phase shift difference cJ be-
tween the Gaussian beam and an ideal plane wave, while
the imaginary part produces an amplitude factor w/w
which gives the expected intensity decrease on the axis due
to the expansion of the beam. With these results for the
fundamental Gaussian beam, (10) can be written in the
form '

; ts "1 -\,*

wO
it(r, z) =-

w

exp {-j(kz - ) -r2( - + R)} (28)

where

D= arc tan(XZ/7rWO2). (29)

It will be seen in Section 3.5 that Gaussian beams of this
kind are produced by many lasers, that oscillate in the
fundamental mode.

3.3 Higher Order Modes

In the preceding section only one solution of ( 1) was
discussed, i.e., a light beam with the property that its
intensity profile in every beam cross section is given by
the same function, namely, a Gaussian. The width of this
Gaussian distribution changes as the beam propagates
along its axis. There are other solutions of (11) with sim-

{ F [ 2q , ]}, e -j P + -'(XI 2. 2q j). (30)

where g is a function of x and z, and h is a function of y
and z. For real g and h this postulates mode beams whose
intensity patterns scale according to the width 2w(z) of a
Gaussian beam. After inserting this trial solution into
(11) one arrives at differential equations for g and h of the
form

d2 Hm dHrn
dx2 - 2x x + 2mHm = 0. (31)

> dx2 ~~~dx
This is the differential equation for the Hermite poly-
ftomial Hm(x) of order m. Equation (11) is satisfied if

.g J = Hm./2 -)H (,/2 &) (32)
,~~~~ W

where m and n are the (transverse) mode numbers. Note
that the same pattern scaling parameter w(z) applies to
modes of all orders.

Some Hermite polynomials of low order are

Ho(x) = 1
Hl(x) = x
H 2(x) = 4X2 - 2

H3(x) = 8x 3
- 12x. (33)

Expression (28) can be used as a mathematical descrip-
tion of higher order light beams, if one inserts the product
g' h as a factor on the right-hand side. The intensity pat-
ternin a cross section of a higher order beam is, thus, de-
scribed by the product of Hermite and Gaussian functions.
Photographs of such mode patterns are shown in Fig. 7.
They were produced as modes of oscillation in a gas laser
oscillator [16]. Note that the number of zeros in a mode
pattern is equal to the corresponding mode number, and
that the area occupied by a mode increases with the mode
number.

The parameter R(z) in (28) is the same for all modes,
implying that the phase-front curvature is the same and
changes in the same way for modes of all orders. The
phase shift 4, however, is a function of the mode numbers.
One obtains

4(m, n; z) = (m + n + 1) arc tan(Xz/7rwo2). (34)
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Fig. *4 Mode patterns of a gas laser oscil-
lator (rectangular symmetry).

This means that the phase velocity increases with increas-
ing mode number. In resonators this leads to differences
in the resonant frequencies of the various modes of oscil-
lation.

b) Modes in Cylindrical Coordinates: For a system with
a cylindrical (r, , z) geometry one uses a trial solution
for (11) of the form

(w = exp ! (a + -rol+ )
4 ' = 0I }t q (35)

After some calculation one finds=(v Lj\/2. Lp'(2 5) c(36)
where Lp4 i a generalized Laguerre polynomial, and p
and I are the radial and angular mode numbers. L,'(x)
obeys the differential equation

X 2 +(l +1-x) + p 'l= 0. (37)
dxl dx

Some polynomials of low order are

Lo'(x) = 1

Lll(x) = + 1-x

L 2
1(x) = 2'(l + 1) (I + 2) - (I + 2)x + x2. (38)

As in the case of beams with a rectangular geometry, the
beam parameters w(z) and R(z) are the same for all cylin-
drical modes. The phase shift is, again, dependent on the
mode numbers and is given by

43(p, ; z) = (2p + + 1) arc tan(Xz/rwo 2 ). (39)

3.4 Beam Transformation by a Lens

A lens can be used to focus a laser beam to a small spot,
or to produce a beam of suitable diameter and phase-
front curvature for injection into a given optical structure.
An ideal lens leaves the transverse field distribution of a
beam mode unchanged. i.e., an incoming fundamental
Gaussian beam will emerge from the lens as a funda-
mental beam, and a higher order mode remains a mode
of the same order after passing through the lens. However,
a lens does change the beam parameters R(z) and w(z).
As these two parameters are the same for modes of all
orders, the following discussion is valid for all orders;
the relationship between the parameters of an incoming
beam (labeled here with the index 1) and the parameters
of the corresponding outgoing beam (index 2) is studied in
detail.

An ideal thin lens of focal lengthf transforms an incom-
ing spherical wave with a radius R1 immediately to the
left of the lens into a spherical wave with the radius R 2

immediately to the right of it, where

1 1 1

t2 f 1 f
(40)

Figure 8 illustrates this situation. The radius of curvature
is taken to be positive if the wavefront is convex as
viewed from z= -oc. The lens transforms the phase fronts
of laser beiafrs in eactly the same way as those of spherical
waves. As the diameter of a beam is the same immediately
to the left and to the right of a thin lens, the q-parameters
of the incoming and outgoing beams are related by

1 1 1

q2 qi f
(41)

where the q's are measured at the lens. If q, and q2 are
measured at distances d1 and d2 from the lens as indicated
in Fig. 9, the relation between them becomes

q2 =
(1 - d2/f)qi + (d, + d2 - did2/f)

-(il'f) + ( -df)
(42)

This formula is derived using (16) and (41).
More complicated optical structures, such as gas lenses,

combinations of lenses, or thick lenses, can be thought of
as composed of a series of thin lenses at various spacings.
Repeated application of (16) and (41) is, therefore, suffi-
cient to calculate the effect of complicated structures on
the propagation of laser beams. If the ABCD matrix for
the transfer of paraxial rays through the structure is
known, the q parameter of the output beam can be cal-
culated from
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Fig. 8. Transformation of wavefronts by a thin lens.

trip. If the complex beam parameter is given by q,, im-
mediately to the right of a particular lens, the beam
parameter q2, immediately to the right of the next lens,
can be calculated by means of (16) and (41) as

1 1 1
(44)

q2 q1+ d f

Self-consistency requires that qf=q2=q, which leads to
a quadratic equation for the beam parameter q at the lenses
(or at the mirrors of the resonator):

1 1 1
_+-+- = 0.
q2 fq fd (45)

q, q2

Fig. 9. Distances and parameters for a
beam transformed by a thin lens.

Aq + B(43)

Cq + D

This is a generalized form of (42) and has been called the
ABCD law [10]. The matrices of several optical structures
are given in Section II. The ABCD law follows from the
analogy between the laws for laser beams and the laws
obeyed by the spherical waves in geometrical optics. The
radius of the spherical waves R obeys laws of the same
form as (16) and (41) for the complex beam parameter q.
A more detailed discussion of this analogy is given in [11] .

3.5 Laser Resonators (Infinite Aperture)

The roots of this equation are

1 1 / 1 

q 2f il'Vd 4f 2
(46)

where only the root that yields a real beamwidth is used.
(Note that one gets a real beamwidth for stable resonators
only.)

From (46) one obtains immediately the real beam
parameters defined in (17). One sees that R is equal to the
radius of curvature of the mirrors, which means that the
mirror surfaces are coincident with the phase fronts of
the resonator modes. The width 2w of the fundamental
mode is given by

(47)
/R X / RW2 = _ 2 - 1.

The most commonly used laser resonators are com-
posed of two spherical (or flat) mirrors facing each other.
The stability of such "open" resonators has been discussed
in Section 2 in terms of paraxial rays. To study the modes
of laser resonators one has to take account of their wave
nature, and this is done here by studying wave beams of
the kind discussed above as they propagate back and forth
between the mirrors. As aperture diffraction effects are
neglected throughout this section, the present discussion
applies only to stable resonators with mirror apertures
that are large compared to the spot size of the beams.

A mode of a resonator is defined as a self-consistent
field configuragion. If a mode can be represented by a
wave beam propagating back and forth between the
mirrors, the beam parameters must be the same after one
complete return trip of the beam. This condition is used
to calculate the mode parameters. As the beam that repre-
sents a mode travels in both directions between the mirrors
it forms the axial standing-wave pattern that is expected
for a resonator mode.

A laser resonator with mirrors of equal curvature is
shown in Fig. 10 together with the equivalent unfolded
system, a sequence of lenses. For this symmetrical struc-
ture it is sufficient to postulate self-consistency for one
transit of the resonator (which is equivalent to one full
period of the lens sequence), instead of a complete return

To calculate the beam radius wo in the center of the reso-
nator where the phase front is plane, one uses (23) with
z=d/2 and gets

X __Wo =- \d(2R-d).
27r

(48)

The beam parameters R and w describe the modes of
all orders. But the phase velocities are different for the
different orders, so that the resonant conditions depend on
the mode numbers. Resonance occurs when the phase
shift from one mirror to the other is a multiple of r.
Using (28) and (34) this condition can be written as

kd - 2(m + n + 1) arc tan(Xd/2rwo 2 ) = r(q + 1) (49)

where q is the number of nodes of the axial standing-wave
pattern (the number of half wavelengths is q+ 1),1 and m
and n are the rectangular mode numbers defined in Sec-
tion 3.3. For the modes of circular geoynetry one obtains
a similar condition where (2 p+l+ 1) replaces (m+n± 1).

The fundamental beat frequency vo, i e., the frequency
spacing between successive longitudinal resonances, is
given by

VO c/2d (50)

I This q is not to be confused with the complex beam parameter.
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Fig. 10. Symmetrical laser resonator and the equivalent sequence
of lenses. The beam parameters, q, and q2, are indicated.
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Fig. 1. Mode parameters of interest for a resonator with
mirrors of unequal curvature.

where c is the velocity of light. After some algebraic
manipulations one obtains from (49) the following for-
mula for the resonant frequenc" of a mode

1 
v/V0 = (qu)+-(m+n+ 1) arc cos(1 -d/R). (51)

Ir

For the special case of the confocal resonator (d= R = b),
the above relations become

W= Xb/r, w02 = Xb/27r;

v/vo ==(q + 1) + (?n + n + 1). (52)

The parameter b is known as the confocal parameter.
Resonators with mirrors of unequal curvature can be

treated in a similar manner. The geometry of such a
resonator where the radii of curvature of the mirrors are
R 1 and R2 is shown in Fig. 11. The diameters of the beam
at the mirrors of a stable resonator, 2w1 and 2 2, are
given by

R 2 -d d
w1 4 = (R 1/7) 2 _ 

R - d R, + R2 -d
R, - d d

wI 4 = (XR2 /1) 2 (3

R2 -d R1 +R2 -d
The diameter of the beam waist 2wo, which is formed
either inside or outside the resonator, is given by

/X2 d(R1 - d)(RI - d)(Ri + R2 - d)Wo4 = ).(54)
7r (R + R2 -2d) 2

The distances t and t2 between the waist and the mirrors,
measured positive as shown in the figure, are

d(R 2 - d)

R1 + R 2 - 2d

d(R1 - d)

R1 + R2 -2d
The resonant condition is

1

(55)

//Va = (q + :1) - (m + n + 1)
or

arc cosV/(l -d, /R 1)(l - d/f 2) (56)

where the square root should be given the sign of (1 - dIR1),
which is equal to the sign of ( -d/R 2 ) for a stable resona-
tor.

There are more complicated resonator structures than
the ones discussed above. In particular, one can insert a
lens or several lenses between the mirrors. But in every
case, the unfolded resonator is equivalent to a periodic
sequence of identical optical systems as shown in Fig. 2.
The elements of the ABCD matrix of this system can be
used to calculate the mode parameters of the resonator.
One uses the ABCD law (43) and postulates self-con-
sistency by putting ql=q2=q. The roots of the resulting
quadratic equation are

1 D-A - J 4q - 2B- \/4-(A+D)I
17 2B ~ 2B

which yields, for the corresponding beam radius w,

W = (2XB/)/V4 - (A-+ D)2.

(57)

(58)

3.6 Mode Matching

It was shown in the preceding section that the modes of
laser resonators can be characterized by light beams with
certain properties and parameters which are defined by
the resonator geometry. These beams are often injected
into other optical structures with different sets of beam
parameters. These optical structures can assume various
physical forms, such as resonators used in scanning
Fabry-Perot interferometers or regenerative amplifiers,
sequences of dielectric or gas lenses used as optical trans-
mission lines, or crystals of nonlinear dielectric material
employed in parametric optics experiments. To match
the modes of one structure to those of another one must
transform a given Gaussian beam (or higher order mode)
into another beam with prescribed properties. This trans-
formation is usually accomplished with a thin lens, but
other more complex optical systems can be used. Although
the present discussion is devoted to the simple case of the
thin lens, it is also applicable to more complex systems,
provided one measures the distances from the principal
planes and uses the combined focal length f of the more
complex system.

The location of the waists of the two beams to be
transformed into each other and the beam diameters at
the waists are usually known or can be computed. To
ma tch the beams one has to choose a lens of a focal length
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f that is larger than a characteristic length fo defined by
the two beams, and one has to adjust the distances be-
tween the lens and the two beam waists according to rules
derived below.

In Fig. 9 the two beam waists are assumed to be
located at distances di and d 2 from the lens. The complex
beam parameters at the waists are purely imaginary; they
are

q = frwi 2/X, q2 = ~rW2
2 /X (59)

where 2w1 and 2w2 are the diameters of the two beams at
their waists. If one inserts these expressions for q, and q2
into (42) and equates the imaginary parts, one obtains

d1 -f W12

d2 -f W2
2

Equating the real parts results in

(di -f)(d2 -f) f2-fo2

where

fo = TwriW2/X-

(60)

(61)

(62)

Note that the characteristic lengthfo is defined by the waist
diameters of the beams to be matched. Except for the
term fog, which goes to zero for infinitely small wave-
lengths, (61) resembles Newton's imaging formula of
geometrical optics.

Any lens with a focal length f>fo can be used to per-
form the matching transformation. Once f is chosen, the
distances d and d 2 have to be adjusted to satisfy the
matching formulas [10]

d1 =f- + Vy2 I fo2,
W2

W2d2=f ± - 2 fo2.
WI

(63)

These relations are derived by combining (60) and (61).
In (63) one can choose either both plus signs or both
minus signs for matching.

It is often useful to introduce the confocal parameters
b1 and b2 into the matching formulas. They are defined
by the waist diameters of the two systems to be matched

b2 = 27rW2
2/X. (64)

Using these parameters one gets for the characteristic
lengthfo

(65)fo2= bib2,

and for the matching distances

TABLE II

FORMULAS FOR THE CONFOCAL PARAMETER AND THE LOCATION OF
BEAM WAIST FOR VARIOUS OPTICAL STRUCTURES

di = 1 f ± _2b1 (f 2/fo 2 )-1,

= f + 2b2 V(f2/fa2) - 1. (66)

Note that in this form of the matching formulas, the
wavelength does not appear explicitly.

Table II lists, for quick reference, formulas for the two
important parameters of beams that emerge from various

optical structures commonly encountered. They are the
confocal parameter b and the distance t which gives the
waist location of the emerging beam. System No. 1 is a
resonator formed by a flat mirror and a spherical mirror
of radius R. System No. 2 is a resonator formed by two
equal spherical mirrors. System No. 3 is a resonator
formed by mirrors of unequal curvature. System No. 4
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is, again, a resonator-ror-md by two equal spherical mir-
rors, but with the reflecting surfaces deposited on plano-
concave optical plates of index n. These plates act as
negative lenses and change the characteristics of the
emerging beam. This lens effect is assumed not present in
Systems Nos. 2 and 3. System No. 5 is a sequence of
thin lenses of equal focal lengths f. System No. 6 is a
system of two irises with equal apertures spaced at a
distance d. Shown are the parameters of a beam that
will pass through both irises with the least possible beam
diameter. This is a beam which is "confocal" over the
distance d. This beam will also pass through a tube of
length d with the optimum clearance. (The tube is also
indicated in the figure.) A similar situation is shown in

System No. 7, which corresponds to a beam that is
confocal over the length d of optical material of index n.
System No. 8 is a spherical mirror resonator filled with
material of index n, or an optical material with curved
end surfaces where the beam passing through it is as-
sumed to have phase fronts that coincide with these sur-
faces.

When one designs a matching system, it is useful to
know the accuracy required of the distance adjustments.
The discussion below indicates how the parameters b2 and
d2 change when bi andf are fixed and the lens spacing di
to the waist of the input beam is varied. Equations (60)
and (61) can be solved for b2 with the result [9]

bl/f
b2/f - (1 - d/f) 2 + (bl/2f) 2 (67)

This means that the parameter b2 of the beam emerging
from the lens changes with d according to a Lorentzian
functional form as shown in Fig. 12. The Lorentzian is
centered at d1 =f and has a width of bl. The maximum
value of b2 is 4f 2/b1 .

If one inserts (67) into (60) one gets

1 - d2/f =
1 - d/f

(1 - df) 2 + (b1/2f)2 (68)

which shows the change of d2 with d. The change is
reminiscent of a dispersion curve associated with a
Lorentzian as shown in Fig. 13. The extrema of this curve
occur at the halfpower points of the Lorentzian. The slope
of the curve at d 1 =f is (2f/b 1)2 . The dashed curves in the
figure correspond to the geometrical optics imaging re-
lation between di, d2, and f [20].

3.7 Circle Diagrams

The propagation of Gaussian laser beams can be repre-
sented graphically on a circle diagram. On such a diagram
one can follow a beam as it propagates in free space or
passes through lenses, thereby affording a graphic solu-
tion of the mode matching problem. The circle diagrams
for beams are similar to the impedance charts, such as the
Smith chart. In fact there is a close analogy between
transmission-line and laser-beam problems, and there are
analog electric networks for every optical system [17].

The first circle diagram for beams was proposed by
Collins [18]. A dual chart was discussed in [19]. The
basis for the derivation of these charts are the beam prop-
agation laws discussed in Section 3.2. One combines
(17) and (19) and eliminates q to obtain

X I /7rW02 \
(w~fj X V-X--jz) = 1.
Irw2R R"X-/

(69)

This relation contains the four quantities w, R, w0, and z
which were used to describe the propagation of Gaussian
beams in Section 3.2. Each pair of these quantities can be
expressed in complex variables W and Z:

1
IV =-- +j-

7rw
2 R

7rWo
2

Z = -jz = b/2-jz,
X

(70)

where b is the confocal parameter of the beam. For these
variables (69) defines a conformal transformation

IV = I/Z. (71)

The two dual circle diagrams are plotted in the complex
planes of W and Z, respectively. The W-plane diagram
[18] is shown in Fig. 14 where the variables X/7rw2 and
I/R are plotted as axes. In this plane the lines of constant
b/2=7rw 2/X and the lines of constant z of the Z plane
appear as circles through the origin. A beam is represented
by a circle of constant b, and the beam parameters w and
R at a distance z from the beam waist can be easily read
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Fig. 15, The Gaussian beam chart. Both W-plane and Z-plane
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from the diagram. When the beam passes through a lens
the phase front is changed according to (40) and a new
beam is formed, which implies that the incoming and
outgoing beams are connected in the diagram by a
vertical line of length I/f. The angle cP shown in the figure
is equal to the phase shift experienced by the beam as
given by (29); this is easily shown using (23).

The dual diagram [19] is plotted in the Z plane. The
sets of circles in both diagrams have the same form, and
only the labeling of the axes and circles is different. In
Fig. 15 both diagrams are unified in one chart. The
labels in parentheses correspond to the Z-plane diagram,
and is a normalizing parameter which can be arbitrarily
chosen for convenience.

One can plot various other circle diagrams which are
related to the above by conformal transformations. One

such transformation makes it possible to use the Smith
chart for determining complex mismatch coefficients for
Gaussian beams [20 ]. Other circle diagrams include those
for optical resonators [211 which allow the graphic deter-
mination of certain parameters of the resonator modes.

4. LASER RESONATORS (FINITE APERTURE)

4.1 General Mathematical Formulation

In this section aperture diffraction effects due to the
finite size of the mirrors are taken into account; these
effects were neglected in the preceding sections. There,
it was mentioned that resonators used in laser oscillators
usually take the form of an open structure consisting of a
pair of mirrors facing each other. Such a structure with
finite mirror apertures is intrinsically lossy and, unless
energy is supplied to it continuously, the electromagnetic
field in it will decay. In this case a mode of the resonator
is a slowly decaying field configuration whose relative
distribution does not change with time [4]. In a laser
oscillator the active medium supplies enough energy to
overcome the losses so that a steady-state field can exist.
However, because of nonlinear gain saturation the me-
dium will exhibit less gain in those regions where the
field is high than in those where the field is low, and so the
oscillating modes of an active resonator are expected to
be somewhat different from the decaying modes of the
passive resonator. The problem of an active resonator
filled with a saturable-gain medium has been solved re-
cently [22], [23], and the computed results show that if
the gain is not too large the resonator modes are essen-
tially unperturbed by saturation effects. This is fortunate
as the results which have been obtained for the passive
resonator can also be used to describe the active modes of
laser oscillators.

The problem of the open resonator is a difficult one
and a rigorous solution is yet to be found. However, if
certain simplifying assumptions are made, the problem
becomes tractable and physically meaningful results can
be obtained. The simplifying assumptions involve essen-
tially the quasi-optic nature of the problem; specifically,
they are 1) that the dimensions of the resonator are large
compared to the wavelength and 2) that the field in the
resonator is substantially transverse electromagnetic
(TEM). So long as those assumptions are valid, the
Fresnel-Kirchhoff formulation of Huygens' principle can
be invoked to obtain a pair of integral equations which
relate the fields of the two opposing mirrors. Further-
more, if the mirror separation is large compared to mirror
dimensions and if the mirrors are only slightly curved,
the two orthogonal Cartesian components of the vector
field are essentially uncoupled, so that separate scalar
equations can be written for each component. The solu-
tions of these scalar equations yield resonator modes
which are uniformly polarized in one direction. Other
polarization configurations can be constructed from the
uniformly polarized modes by linear superposition.
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mirror apertures and the equivalent sequence of lenses set in
opaque absorbing screens.

In deriving the integral equations, it is assumed that a

traveling TEM wave is reflected back and forth between

the mirrors. The resonator is thus analogous to a trans-

mission medium consisting of apertures or lenses set in

opaque absorbing screens (see Fig. 16). The fields at the

two mirrors are related by the equations [24]

y(t)E(l)(si) = f Kl)(sl, s2)E(2)(s2)dS2
S2

(2 )E (2)(S2)= K(')(s2 , sI)E(1)(si)dSi (72)
Si

where the integrations are taken over the mirror surfaces

S2 and S1, respectively. In the above equations the sub-

scripts and superscripts one and two denote mirrors one

and two; si and s2 are symbolic notations for transverse

coordinates on the mirror surface, e.g., sl=(xi, yi) and

S2 =(X2 , y2) or si=(r,, 'k,) and s2=(r 2 , 42); E(') and E(2)

are the relative field distribution functions over the mir-

rors; 7ytl) and ya(2) give the attenuation and phase shift

suffered by the wave in transit from one mirror to the

other; the kernels K(1) and K(2) are functions of the dis-

tance between s1 and S2 and, therefore, depend on the

mirror geometry; they are equal [K(t)(s2, sl)=K(2)(sI, S2)]

but, in general, are not symmetric [K(l)(s2, si)KK(')(s1 , S2),

K(2)(Sl, s2) 5dK(2) (S2 S)]-

The integral equations given by (72) express the field

at each mirror in terms of the reflected field at the other;

that is, they are single-transit equations. By substituting
one into the other, one obtains the double-transit or

round-trip equations, which state that the field at each

mirror must reproduce itself after a round trip. Since the

kernel for each of the double-transit equations is sym-

metric [24], it follows [25]' that the field distribution

functions corresponding to the different mode orders are

orthogonal over their respective mirror surfaces; that is

f Em(l)(s)En.()(sI)dSi = 0,

j Em(2)(S2)E (2)(S2)dS2 = 0,
s2

m F ( n

m 5 n (73)

where m and n denote different mode orders. It is to be

noted that the orthogonality relation is non-Hermitian
and is the one that is generally applicable to lossy sys-

tems.

4.2 Existence of Solutions

The question of the existence of solutions to the

resonator integral equations has been the subject of

investigation by several authors [26]-[28]. They have
given rigorous proofs of the existence of eigenvalues and

eigenfunctions for kernels which belong to resonator
geometries commonly encountered, such as those with
parallel-plane and spherically curved mirrors.

4.3 Integral Equationsfor
Resonators with Spherical Mirrors

When the mirrors are spherical and have rectangular or

circular apertures, the two-dimensional integral equations
can be separated and reduced to one-dimensional equa-
tions which are amenable to solution by either analytical
or numerical methods. Thus, in the case of rectangular
mirrors [4]-[6], [24], [29], [30], the one-dimensional
equations in Cartesian coordinates are the same as those
for infinite-strip mirrors; for the x coordinate, they are

,(l)U(l)(xI) = j K(x, x2)u(2)(x2)dx2
- 2

(74)

where the kernel K is given by

K(x1, X2) = Vxd

*exp {- (gqX12 + 2X22 - 2xlX2 )}. (75)

Similar equations can be written for the y coordinate, so

that E(x, y)=u(x)v(y) and y-=Tyxy. In the above equa-

tion a, and a2 are the half-widths of the mirrors in the x

direction, d is the mirror spacing, k is 2 r/X, and X is the
wavelength. The radii of curvature of the mirrors R1 and

R 2 are contained in the factors

d,9= 1 - -

d
92 = 1 --

R2
(76)

For the case of circular mirrors [4], [31], [32] the equa-

tions are reduced to the one-dimensional form by using
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cylindrical coordinates and by assuming a sinusoidal
azimuthal variation of the field; that is, E(r, 4) = R1(r)e-i0.
The radial distribution functions R1 IM and R1(2) satisfy the
one-dimensional integral equations:

Yz ()2Rz(1)(ri)-\'ri = a2 KI(ri, r 2 )Rz(2)(r 2 )-/r2 dr2
0

7i 2 )R t 2 (r2)v'r 2 = KI(r, r2)R(')(r) Vrdr (77)

where the kernel K, is given by

3 , rir2~
K1(r1, r2) = ,k -) -\/lr

d( d

*exp *- - (glr1
2 + q2r22)I!- 2d +g2r-' (78)

same resonant frequency, and mode patterns that are
scaled versions of each other. Thus, the equivalence rela-
tions reduce greatly the number of calculations which are
necessary for obtaining the solutions for the various
resonator geometries.

4.5 Stability Condition and Diagram

Stability of optical resonators has been discussed in
Section 2 in terms of geometrical optics. The stability
condition is given by (8). In terms of the stability factors
G1 and G2, it is

0 < G1 G2 < 1

or

0 < 9192 < 1. (80)

and Jz is a Bessel function of the first kind and th order.
In (77), a, and a2 are the radii of the mirror apertures and
d is the mirror spacing; the factors gi and g2 are given by
(76).

Except for the special case of the confocal resonator
[5] (gl=g2=0), no exact analytical solution has been
found for either (74) or (77), but approximate methods
and numerical techniques have been employed with suc-
cess for their solutions. Before presenting results, it is
appropriate to discuss two important properties which
apply in general to resonators with spherical mirrors;
these are the properties of "equivalence" and "stability."

4.4 Equivalent Resonator Systems,

The equivalence properties [24], [331 of spherical-
mirror resonators are obtained by simple algebraic manip-
ulations of the integral equations. First, it is obvious that
the mirrors can be interchanged without affecting the
results; that is, the subscripts and superscripts one and
two can be interchanged. Second, the diffraction loss and
the intensity pattern of the mode remain invariant if both
gi and g2 are reversed in sign; the eigenfunctions E and
the eigenvalues y merely take on complex conjugate
values. An example of such equivalent systems is that of
parallel-plane (gl=g2=1) and concentric (gl=g2=-1)
resonator systems.

The third equivalence property involves the Fresnel
number N and the stability factors G1 and G2, where

a a2

xd

al
G1= a'-

a2

G2 = 2-* (79)
a,

If these three parameters are the same for any two resona-
tors, then they would have the same diffraction loss, the

Resonators are stable if this condition is satisfied and
unstable otherwise.

A stability diagram [6], [24] for the various resonator
geometries is shown in Fig. 4 where gi and g2 are the co-
ordinate axes and each point on the diagram represents a
particular resonator geometry. The boundaries between
stable and unstable (shaded) regions are determined by
(80), which is based on geometrical optics. The fields of
the modes in stable resonators are more concentrated
near the resonator axes than those in unstable resonators
and, therefore, the diffraction losses of unstable resona-
tors are much higher than those of stable resonators. The
transition, which occurs near the boundaries, is gradual
for resonators with small Fresnel numbers and more
abrupt for those with large Fresnel numbers. The origin
of the diagram represents the confocal system with mirrors
of equal curvature (R 1=R 2=d) and is a point of lowest
diffraction loss for a given Fresnel number. The fact that
a system with minor deviations from the ideal confocal
system may become unstable should be borne in mind
when designing laser resonators.

4.6 Modes of the Resonator

The transverse field distributions of the resonator
modes are given by the eigenfunctions of the integral
equations. As yet, no exact analytical solution has been
found for the general case of arbitrary G and G2, but
approximate analytical expressions have been obtained to
describe the fields in stable spherical-mirror resonators
[51, [6]. These approximate eigenfunctions are the same
as those of the optical beam modes which are discussed in
Section 2; that is, the field distributions are given approxi-
mately by Hermite-Gaussian functions for rectangular
mirrors [5], [6], [34], and by Laguerre-Gaussian func-
tions for circular mirrors [6], [7]. The designation of the
resonator modes is given in Section 3.5. (The modes are
designated as TEMmnq for rectangular mirrors and
TEMPI, for circular mirrors.) Figure 7 shows photo-
graphs of some of the rectangular mode patterns of a
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laser. Linearly polarized mode configurations for square
mirrors and for circular mirrors are shown in Fig. 17.
By combining two orthogonally polarized modes of the
same order, it is possible to synthesize other polarization
configurations; this is shown in Fig. 18 for the TEMol
mode.

Field distributions of the resonator modes for any
value of G could be obtained numerically by solving the
integral equations either by the method of successive ap-
proximations [4], [24], [31] or by the method of kernel
expansion [30], [32]. The former method of solution is
equivalent to calculating the transient behavior of the
resonator when it is excited initially with a wave of arbi-
trary distribution. This wave is assumed to travel back
and forth between the mirrors of the resonator, under-
going changes from transit to transit and losing energy by
diffraction. After many transits a quasi steady-state con-
dition is attained where the fields for successive transits

differ only by a constant multiplicative factor. This steady-
state relative field distribution is then an eigenfunction of
the integral equations and is, in fact, the field distribu-
tion of the mode that has the lowest diffraction loss for
the symmetry assumed (e.g., for even or odd symmetry in
the case of infinite-strip mirrors, or for a given azimuthal
mode index number I in the case of circular mirrors); the
constant multiplicative factor is the eigenvalue associated
with the eigenfunction and gives the diffraction loss and
the phase shift of the mode. Although this simple form
of the iterative method gives only the lower order solu-
tions, it can, nevertheless, be modified to yield higher
order ones [24], 135]. The method of kernel expansion,
however, is capable of yielding both low-order and high-
order solutions.

Figures 19 and 20 show the relative field distributions
of the TEM0 0 and TEMo modes for a resonator with a
pair of identical, circular mirrors (N=o1, al=a 2, gl=g2

= g) as obtained by the numerical iterative method.
Several curves are shown for different values of g, ranging
from zero (confocal) through one (parallel-plane) to 1.2
(convex, unstable). By virtue of the equivalence property
discussed in Section 4.4, the curves are also applicable to
resonators with their g values reversed in sign, provided
the sign of the ordinate for the phase distribution is also
reversed. It is seen that the field is most concentrated
near the resonator axis for g=0 and tends to spread out
as Ig increases. Therefore, the diffraction loss is ex-
pected to be the least for confocal resonators.

Figure 21 shows the relative field distributions of some
of the low order modes of a Fabry-Perot resonator with
(parallel-plane) circular mirrors (N= 10, a1 = a2, gl =g2 = 1)
as obtained by a modified numerical iterative method
[35]. It is interesting to note that these curves are not
very smooth but have small wiggles on them, the number
of which are related to the Fresnel number. These wiggles
are entirely absent for the confocal resonator and appear
when the resonator geometry is unstable or nearly un-
stable. Approximate expressions for the field distribu-
tions of the Fabry-Perot resonator modes have also been
obtained by various analytical techniques [36], [37]. They
are represented to first order, by sine and cosine func-
tions for infinite-strip mirrors and by Bessel functions for
circular mirrors.

For the special case of the confocal resonator (gl-=g2
= 0), the eigenfunctions are self-reciprocal under the

finite Fourier (infinite-strip mirrors) or Hankel (circular
mirrors) transformation and exact analytical solutions
exist [5], [38]-[40]. The eigenfunctions for infinite-strip
mirrors are given by the prolate spheroidal wave func-
tions and, for circular mirrors, by the generalized prolate
spheroidal or hyperspheroidal wave functions. For large
Fresnel numbers these functions can be closely approxi-
mated by Hermite-Gaussian and Laguerre-Gaussian
functions which are the eigenfunctions for the beam
modes.
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4.7 Diffraction Losses and Phase Shifts

The diffraction loss a and the phase shift for a par-
ticular mode are important quantities in that they deter-
mine the Q and the resonant frequency of the resonator
for that mode. The diffraction loss is given by

ao= l- Y12 (81)

which is the fractional energy lost per transit due to dif-
fraction effects at the mirrors. The phase shift is given by

/3 = angle of y

0 0.2 0.4 0.6 0.5 1.0

r/a

Fig. 20. Relative field distributions of the TEMot mode for
a resonator with circular mirrors (N= 1).

(82)

which is the phase shift suffered (or enjoyed) by the wave
in transit from one mirror to the other, in addition to the
geometrical phase shift which is given by 2rd/X. The
eigenvalue -y in (81) and (82) is the appropriate -y for the
mode under consideration. If the total resonator loss is
small, the Q of the resonator can be approximated by

27rd
Q = -- (83)

where ca,, the total resonator loss, includes losses due to
diffraction, output coupling, absorption, scattering, and
other effects. The resonant frequency v is given by

v/v = (q + 1) + o/h (84)

where q, the longitudinal mode order, and Po, the funda-
mental beat frequency, are defined in Section 3.5.
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The diffraction losses for the two lowest order (TEMoo
and TEMoi) modes of a stable resonator with a pair of
identical, circular mirrors (ai=a2 , gl=g2=g) are given
in Figs. 22 and 23 as functions of the Fresnel number N
and for various values of g. The curves are obtained by
solving (77) numerically using the method of successive
approximations [31 ]. Corresponding curves for the phase
shifts are shown in Figs. 24 and 25. The horizontal por-
tions of the phase shift curves can be calculated from the
formula

d = (2p + I + 1) arc cos -go12

0.11 1 ! I I I, 1 1 1 1 1 1 I I I 

0.1 0.2 0.4 0.6 1.0 2 4 6 10 20 40 60

N= a2/Xd

Fig. 24. Phase shift per transit for the TEMoi mode of a
stable resonator with circular mirrors.
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Fig. 25. Phase shift per transit for the TEM00 mode of a
stable resonator with circullar mirrors.

while the phase-shift curves are for positive g only; the
phase shift for negative g is equal to 180 degrees minus
that for positive g.

Analytical expressions for the diffraction loss and the
phase shift have been obtained for the special cases of
parallel-plane (g =1.0) and confocal (g= 0) geometries

when the Fresnel number is either very large (small dif-
fraction loss) or very small (large diffraction loss) [36],
[38], [39], [41], [42]. In the case of the parallel-plane
resonator with circular mirrors, the approximate expres-
sions valid for large N, as derived by Vainshtein [36], are

for 91 = 2 (85)

which is equal to the phase shift for the beam modes
derived in Section 3.5. It is to be noted that the loss curves
are applicable to both positive and negative values of g

a = 8'1 - (A + a) 
[(Sit + a)2 + 2] 2

/1f
A = a-I a
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= (2p + + 1) arc cos g, (86)

(87)



where 3=0.824, M= /8lrN, and Kp is the (p+)th zero
of the Bessel function of order . For the confocal resona-
tor with circular mirrors, the corresponding expressions
are [39]

27r(8wN) 2p+1+le-4,IN

p!(p + + 1)!

/ = (2p + + 1)

+ (2r)] (88)

(89)

Similar expressions exist for resonators with infinite-strip
or rectangular mirrors [36], [39]. The agreement be-
tween the values obtained from the above formulas and
those from numerical methods is excellent.

The loss of the lowest order (TEMoo) mode of an
unstable resonator is, to first order, independent of the
mirror size or shape. The formula for the loss, which is
based on geometrical optics, is [12]

1 - N1 - (9192)'
a= 1 ±1 + \-(99)

(90)

where the plus sign in front of the fraction applies for g
values lying in the first and third quadrants of the stability
diagram, and the minus sign applies in the other two quad-
rants. Loss curves (plotted vs. N) obtained by solving the
integral equations numerically have a ripply behavior
which is attributable to diffraction effects [24], [43]. I-low-
ever, the average values agree well with those obtained
from (90).

5. CONCLUDING REMARKS

Space limitations made it necessary to concentrate the
discussion of this article on the basic aspects of laser
beams and resonators. It was not possible to include such
interesting topics as perturbations of resonators, resona-
tors with tilted mirrors, or to consider in detail the effect
of nonlinear, saturating host media. Also omitted was a
discussion of various resonator structures other than
those formed of spherical mirrors, e.g., resonators with
corner cube reflectors, resonators with output holes, or
fiber resonators. Another important, but omitted, field is
that of mode selection where much research work is cur-
rently in progress. A brief survey of some of these topics
is given in [44].
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Modes, Phase Shifts, and Losses of Flat-Roof
Open Resonators

P. F. CHECCACCI, ANNA CONSORTINI, AND ANNAMARIA SCHEGGI

Abstract-The integral Squation of a "flat-roof resonator" is
solved by the Fox and Li method of iteration in a number of particular
cases.

Mode patterns, phase shifts, and power losses are derived. A good
overall agreement is found with the approximate theory previously
developed by Toraldo di Francia.

Some experimental tests carried out on a microwave model give a
further confirmation of the theoretical predictions.

I. INTRODUCTION

A PARTICULAR type of open resonator terminated
by roof reflectors with very small angles, the so-
called "flat-roof resonator" (Fig. 1) was recently

described by Toraldo di Francia [1].
The mathematical approach consisted in considering

the solutions of the wave equation (for the electric or
magnetic field) in the two halves of a complete "diamond
cavity" whose normal cross section is shown in Fig. 2,
ignoring the fact that the reflectors are finite.

The two half-cavities were referred to cylindrical co-
ordinates centered at G and H, respectively, and solutions
were given in terms of high-order cylindrical waves. The
field in the two half-cavities was matched over the median
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Fig. 1. The flat-roof resonator.
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Fig. 2. The diamond cavity.

plane BE by simply requiring that this plane coincide
with a node or an antinode. Obviously the a angle of the
roof must be so small that the curvature of the nodal or
antinodal surfaces can be neglected. Due to the high order
of the cylindrical waves, the field in the central region of
the cavity approaches the form of a standing wave be-
tween the two roof reflectors, while it decays so rapidly
from the central region toward the vertices G and H,
that the absence of the complete metal walls of the dia-
mond outside the resonator will have very little impor-
tance. This treatment, although approximate, allowed the
author to understand how the resonator actually worked
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