Maxwell’s equations
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1 Derive the wave equation

We begin from first principles i.e. Maxwell’s equations in a material:

V-D = py Gauss’ Law (1)
V-B=0 Gauss’ magnetism law (2)
B
VXxE= _a(‘?_t Faraday’s Law (3)
oD
V x H= e + Js Ampere’s Law (4)

Applying the curl (V) to both sides of Faraday’s law and simplifying (dis-
tributive property and curl of curl identity) leads to,

0B
V(V-E)-V?E=-V x = (5)
Since the curl and time derivative operators commute (as any mixed partial
derivative should), they can be interchanged on the right-hand-side (RHS):

v<v-E)—v2E_—%<vXB). (6)



The constitutive relation between the magnetic flux density, B, and the mag-
netic field strength (or magnetic auxiliary filed), H, is,

B = po(H + M)

= po(H + xmH)

= po(1 + xm)H

= uH.
As an aside, keep in mind that H is the magnetic field in vacuum and B is
the total magnetic field. This seems to be opposite of the electric field where
E is the field in vacuum and the auxiliary displacement field, D, is the total
field. In a non-magnetic material like the one we will consider here, u = py.

Also, since we are in a dielectric there is no free current, J; = 0. This allows
us to plug Ampere’s law into Eq. 6:

(7)
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The constitutive relations for the displacement and electric field are,
D=¢FE+P
=€kl + P+ Pyp,
= e E + eox"ME + Pyp, (9)
=e(l+x)E+ Pyr
=el + Pyp.

Here we will consider a linear medium so that Py; = 0. This means, since
pr = 0 in the dielectric, that V- D =V - e&/ = 0. Using the second equality
of Eq. 9 results in Eq. 8 taking the form,

0’E 0Py,
2 _
V°E — MOEOW = Mow- (1())
Finally poeo = 1/c* which leads us to the wave equation,
1 0°FE 0*p,
V2E — == = jig——=-. 11
2o Mo (1)
Other relations that may be useful include,
& = cfeo=1+x (12)
fr = 1/ po = 1+ Xm (13)
n? = e fiy (14)



2 Derive the slowly-varying wave equation

We start with the 1-Dimensional Ansatz,

g( ) z‘(wt—kz)‘ (15)
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so that V — —% in the wave equation. From Eq. 9 we know that P, = ¢y E.
The wave equation is now,

PE  10*E _ xO*E

2 E2or 2or (16)

In an absorbing medium, Y is actually complex. In this case we will specify
that n be the index of refraction, or the real part of x. The constitutive
relations can be refined (inserting p, = 1 since the dielectric considered here
is non-magnetic),

X = Xr +iX; (17)
€& =€/eg =14+ X (18)
n®=e, (19)

Eq. 16 can be rearranged,

82E 14 Xr 82E ¢ 82E

02 @ of '@ op (20)
0*FE B n_282E B Z,&WE
0z2 % ot? 2 0t?

Using the Ansatz of Eq. 15 and the chain rule results in (dropping the
explicit z and ¢ amplitude dependence for brevity of notation),’

O°E 825 i(wt—kz) . 85 (wt—kz) 1

i( 2o i(wt—kz)
— — —w?fe 21
o 2&” T 2" (1)
PE 10° 5 O 1,55,
622 2 622 (wt—kz) ik o ez(wt—kz) . §k25€z(wt—kz) ) (22>

IThere is a shortcut that can be used by noticing that the LHS of Eq. 16 can be decom-
2 2
posed into left and right propogating waves: 2% — L2E — (92 _ 19E) (9B 4 10F)

This significantly simplifies the math and leads to the same Eq. 26.




Invoking the slowly varying envelope approximation (SVEO) means that
D2E JOt* = 9?E/02* = 0 so Eq. 20 becomes,
0  n2wdE <n2w2 1k2> 5 WX o Wiy

E= 2 5 o E. (23)
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Setting k = nw/c causes the first order term on the LHS to become zero,
such that we must keep the second order € /0t term. This is not the case on
the RHS where the first order term remains and suppresses the effect of the
second-order term i.e. (wy;/c2)(9E/0t) < (iw?y;/2c¢*)E. Rearranging leads
to,

A A L ¥ (24)

(25)

o cor
In order to avoid explicitly calculating x, we will define an effective propo-
gation constant 8 = ky;/n? in addition to recalling that n = c¢/v.

0 10E B
9 Tvor 2t (26)
2.1 Retarded frame

First we change coordinates to the retarded frame of reference such that,
P (27)

Propogating this through,
E(z,t) = E(Z'(2),t(2,1))
0 _oox ofor
0z 02/ 0z~ Ot' 0z

T 0z wot (28)
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Which means,

08 10 0 10 10€

0z Twor 0y wor uor (29
o
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Using the change of coordinates of Eq. 29 in Eq. 26 leads to,
0 B
— ==£. 30
0z 2 (30)



