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1 Derive the wave equation

We begin from first principles i.e. Maxwell’s equations in a material:

∇ ·D = ρf Gauss’ Law (1)

∇ ·B = 0 Gauss’ magnetism law (2)

∇× E = −∂B

∂t
Faraday’s Law (3)

∇×H =
∂D

∂t
+ Jf Ampere’s Law (4)

Applying the curl (∇×) to both sides of Faraday’s law and simplifying (dis-
tributive property and curl of curl identity) leads to,

∇(∇ · E)−∇2E = −∇× ∂B

∂t
. (5)

Since the curl and time derivative operators commute (as any mixed partial
derivative should), they can be interchanged on the right-hand-side (RHS):

∇(∇ · E)−∇2E = − ∂

∂t
(∇×B) . (6)
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The constitutive relation between the magnetic flux density, B, and the mag-
netic field strength (or magnetic auxiliary field), H, is,

B = µ0(H +M)

= µ0(H + χmH)

= µ0(1 + χm)H

= µH.

(7)

As an aside, keep in mind that H is the magnetic field in vacuum and B is
the total magnetic field. This seems to be opposite of the electric field where
E is the field in vacuum and the auxiliary displacement field, D, is the total
field. In a non-magnetic material like the one we will consider here, µ = µ0.
Also, since we are in a dielectric there is no free current, Jf = 0. This allows
us to plug Ampere’s law into Eq. 6:

∇(∇ · E)−∇2E = −µ0
∂

∂t

∂D

∂t
. (8)

The constitutive relations for the displacement and electric field are,

D = ϵ0E + P

= ϵ0E + PL + PNL

= ϵ0E + ϵ0χ
(1)E + PNL

= ϵ0(1 + χ)E + PNL

= ϵE + PNL.

(9)

Here we will consider a linear medium so that PNL = 0. This means, since
ρf = 0 in the dielectric, that ∇ ·D = ∇ · ϵE = 0. Using the second equality
of Eq. 9 results in Eq. 8 taking the form,

∇2E − µ0ϵ0
∂2E

∂t2
= µ0

∂2PL

∂t2
. (10)

Finally µ0ϵ0 = 1/c2 which leads us to the wave equation,

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2PL

∂t2
. (11)

Other relations that may be useful include,

ϵr = ϵ/ϵ0 = 1 + χ (12)

µr = µ/µ0 = 1 + χm (13)

n2 = ϵrµr (14)
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2 Derive the slowly-varying wave equation

We start with the 1-Dimensional Ansatz,

E =
1

2
Ẽ(t, z)ei(ωt−kz). (15)

so that∇ → − ∂
∂z

in the wave equation. From Eq. 9 we know that PL = ϵ0χE.
The wave equation is now,

∂2E

∂z2
− 1

c2
∂2E

∂t2
=

χ

c2
∂2E

∂t2
(16)

In an absorbing medium, χ is actually complex. In this case we will specify
that n be the index of refraction, or the real part of χ. The constitutive
relations can be refined (inserting µr = 1 since the dielectric considered here
is non-magnetic),

χ = χr + iχi (17)

ϵr = ϵ/ϵ0 = 1 + χr (18)

n2 = ϵr (19)

Eq. 16 can be rearranged,

∂2E

∂z2
− 1 + χr

c2
∂2E

∂t2
= i

χi

c2
∂2E

∂t2

∂2E

∂z2
− n2

c2
∂2E

∂t2
= i

χi

c2
∂2E

∂t2

(20)

Using the Ansatz of Eq. 15 and the chain rule results in (dropping the
explicit z and t amplitude dependence for brevity of notation),1

∂2E

∂t2
=

1

2

∂2Ẽ
∂t2

ei(ωt−kz) + iω
∂Ẽ
∂t

ei(ωt−kz) − 1

2
ω2Ẽei(ωt−kz) (21)

∂2E

∂z2
=

1

2

∂2Ẽ
∂z2

ei(ωt−kz) − ik
∂Ẽ
∂z

ei(ωt−kz) − 1

2
k2Ẽei(ωt−kz). (22)

1There is a shortcut that can be used by noticing that the LHS of Eq. 16 can be decom-

posed into left and right propogating waves: ∂2E
∂z2 − 1

c2
∂2E
∂t2 =

(
∂E
∂z − 1

c
∂E
∂t

) (
∂E
∂z + 1

c
∂E
∂t

)
.

This significantly simplifies the math and leads to the same Eq. 26.
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Invoking the slowly varying envelope approximation (SVEO) means that
∂2Ẽ/∂t2 = ∂2Ẽ/∂z2 = 0 so Eq. 20 becomes,

−ik
∂Ẽ
∂z

− i
n2ω

c2
∂Ẽ
∂t

+

(
n2ω2

2c2
− 1

2
k2

)
Ẽ =

ωχi

c2
∂Ẽ
∂t

− i
ω2χi

2c2
Ẽ . (23)

Setting k = nω/c causes the first order term on the LHS to become zero,
such that we must keep the second order ∂E/∂t term. This is not the case on
the RHS where the first order term remains and suppresses the effect of the
second-order term i.e. (ωχi/c

2)(∂Ẽ/∂t) ≪ (iω2χi/2c
2)Ẽ . Rearranging leads

to,

ik
∂Ẽ
∂z

+ ik
n

c

∂Ẽ
∂t

= −i
k2χi

2n2
Ẽ (24)

∂Ẽ
∂z

+
n

c

∂Ẽ
∂t

=
kχi

2n2
Ẽ . (25)

In order to avoid explicitly calculating χ, we will define an effective propo-
gation constant β = kχi/n

2 in addition to recalling that n = c/v.

∂Ẽ
∂z

+
1

v

∂Ẽ
∂t

=
β

2
Ẽ . (26)

2.1 Retarded frame

First we change coordinates to the retarded frame of reference such that,

z′ = z

t′ = t− z

v

(27)

Propogating this through,

Ẽ(z, t) → Ẽ(z′(z), t′(z, t))
∂Ẽ
∂z

=
∂Ẽ
∂z′

∂z′

∂z
+

∂Ẽ
∂t′

∂t′

∂z

=
∂Ẽ
∂z

− 1

v

∂Ẽ
∂t′

∂Ẽ
∂t

=
∂Ẽ
∂z′

∂z′

∂t
+

∂Ẽ
∂t′

∂t′

∂t

=
∂Ẽ
∂t′

.

(28)
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Which means,
∂Ẽ
∂z

+
1

v

∂Ẽ
∂t

=
∂Ẽ
∂z′

− 1

v

∂Ẽ
∂t′

+
1

v

∂Ẽ
∂t′

=
∂Ẽ
∂z′

(29)

Using the change of coordinates of Eq. 29 in Eq. 26 leads to,

∂Ẽ
∂z′

=
β

2
Ẽ . (30)
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