Maxwell's equations

Contents

1 Derive the wave equation

2 Derive the slowly-varying wave equation 3
2.1 Retarded frame . 4

1 Derive the wave equation

We begin from first principles i.e. Maxwell's equations in a material:

$$
\begin{array}{rlr}
\nabla \cdot D & =\rho_{f} & \text { Gauss' Law } \\
\nabla \cdot B & =0 & \text { Gauss' magnetism law } \\
\nabla \times E & =-\frac{\partial B}{\partial t} & \text { Faraday's Law } \\
\nabla \times H & =\frac{\partial D}{\partial t}+J_{f} & \text { Ampere's Law } \tag{4}
\end{array}
$$

Applying the curl $(\nabla \times)$ to both sides of Faraday's law and simplifying (distributive property and curl of curl identity) leads to,

$$
\begin{equation*}
\nabla(\nabla \cdot E)-\nabla^{2} E=-\nabla \times \frac{\partial B}{\partial t} \tag{5}
\end{equation*}
$$

Since the curl and time derivative operators commute (as any mixed partial derivative should), they can be interchanged on the right-hand-side (RHS):

$$
\begin{equation*}
\nabla(\nabla \cdot E)-\nabla^{2} E=-\frac{\partial}{\partial t}(\nabla \times B) . \tag{6}
\end{equation*}
$$

The constitutive relation between the magnetic flux density, B, and the magnetic field strength (or magnetic auxiliary field), H, is,

$$
\begin{align*}
B & =\mu_{0}(H+M) \\
& =\mu_{0}\left(H+\chi_{m} H\right) \\
& =\mu_{0}\left(1+\chi_{m}\right) H \tag{7}\\
& =\mu H .
\end{align*}
$$

As an aside, keep in mind that H is the magnetic field in vacuum and B is the total magnetic field. This seems to be opposite of the electric field where E is the field in vacuum and the auxiliary displacement field, D , is the total field. In a non-magnetic material like the one we will consider here, $\mu=\mu_{0}$. Also, since we are in a dielectric there is no free current, $J_{f}=0$. This allows us to plug Ampere's law into Eq. 6:

$$
\begin{equation*}
\nabla(\nabla \cdot E)-\nabla^{2} E=-\mu_{0} \frac{\partial}{\partial t} \frac{\partial D}{\partial t} \tag{8}
\end{equation*}
$$

The constitutive relations for the displacement and electric field are,

$$
\begin{align*}
D & =\epsilon_{0} E+P \\
& =\epsilon_{0} E+P_{L}+P_{N L} \\
& =\epsilon_{0} E+\epsilon_{0} \chi^{(1)} E+P_{N L} \tag{9}\\
& =\epsilon_{0}(1+\chi) E+P_{N L} \\
& =\epsilon E+P_{N L} .
\end{align*}
$$

Here we will consider a linear medium so that $P_{N L}=0$. This means, since $\rho_{f}=0$ in the dielectric, that $\nabla \cdot D=\nabla \cdot \epsilon E=0$. Using the second equality of Eq. 9 results in Eq. 8 taking the form,

$$
\begin{equation*}
\nabla^{2} E-\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}} \tag{10}
\end{equation*}
$$

Finally $\mu_{0} \epsilon_{0}=1 / c^{2}$ which leads us to the wave equation,

$$
\begin{equation*}
\nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}} \tag{11}
\end{equation*}
$$

Other relations that may be useful include,

$$
\begin{align*}
\epsilon_{r} & =\epsilon / \epsilon_{0}=1+\chi \tag{12}\\
\mu_{r} & =\mu / \mu_{0}=1+\chi_{m} \tag{13}\\
n^{2} & =\epsilon_{r} \mu_{r} \tag{14}
\end{align*}
$$

2 Derive the slowly-varying wave equation

We start with the 1-Dimensional Ansatz,

$$
\begin{equation*}
E=\frac{1}{2} \tilde{\mathcal{E}}(t, z) e^{i(\omega t-k z)} \tag{15}
\end{equation*}
$$

so that $\nabla \rightarrow-\frac{\partial}{\partial z}$ in the wave equation. From Eq. 9 we know that $P_{L}=\epsilon_{0} \chi E$. The wave equation is now,

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\frac{\chi}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} \tag{16}
\end{equation*}
$$

In an absorbing medium, χ is actually complex. In this case we will specify that n be the index of refraction, or the real part of χ. The constitutive relations can be refined (inserting $\mu_{r}=1$ since the dielectric considered here is non-magnetic),

$$
\begin{align*}
\chi & =\chi_{r}+i \chi_{i} \tag{17}\\
\epsilon_{r} & =\epsilon / \epsilon_{0}=1+\chi_{r} \tag{18}\\
n^{2} & =\epsilon_{r} \tag{19}
\end{align*}
$$

Eq. 16 can be rearranged,

$$
\begin{align*}
\frac{\partial^{2} E}{\partial z^{2}}-\frac{1+\chi_{r}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} & =i \frac{\chi_{i}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} \tag{20}\\
\frac{\partial^{2} E}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} & =i \frac{\chi_{i}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}
\end{align*}
$$

Using the Ansatz of Eq. 15 and the chain rule results in (dropping the explicit z and t amplitude dependence for brevity of notation), ${ }^{1}$

$$
\begin{align*}
\frac{\partial^{2} E}{\partial t^{2}} & =\frac{1}{2} \frac{\partial^{2} \tilde{\mathcal{E}}}{\partial t^{2}} e^{i(\omega t-k z)}+i \omega \frac{\partial \tilde{\mathcal{E}}}{\partial t} e^{i(\omega t-k z)}-\frac{1}{2} \omega^{2} \tilde{\mathcal{E}} e^{i(\omega t-k z)} \tag{21}\\
\frac{\partial^{2} E}{\partial z^{2}} & =\frac{1}{2} \frac{\partial^{2} \tilde{\mathcal{E}}}{\partial z^{2}} e^{i(\omega t-k z)}-i k \frac{\partial \tilde{\mathcal{E}}}{\partial z} e^{i(\omega t-k z)}-\frac{1}{2} k^{2} \tilde{\mathcal{E}} e^{i(\omega t-k z)} \tag{22}
\end{align*}
$$

[^0]Invoking the slowly varying envelope approximation (SVEO) means that $\partial^{2} \tilde{\mathcal{E}} / \partial t^{2}=\partial^{2} \tilde{\mathcal{E}} / \partial z^{2}=0$ so Eq. 20 becomes,

$$
\begin{equation*}
-i k \frac{\partial \tilde{\mathcal{E}}}{\partial z}-i \frac{n^{2} \omega}{c^{2}} \frac{\partial \tilde{\mathcal{E}}}{\partial t}+\left(\frac{n^{2} \omega^{2}}{2 c^{2}}-\frac{1}{2} k^{2}\right) \tilde{\mathcal{E}}=\frac{\omega \chi_{i}}{c^{2}} \frac{\partial \tilde{\mathcal{E}}}{\partial t}-i \frac{\omega^{2} \chi_{i}}{2 c^{2}} \tilde{\mathcal{E}} \tag{23}
\end{equation*}
$$

Setting $k=n \omega / c$ causes the first order term on the LHS to become zero, such that we must keep the second order $\partial \mathcal{E} / \partial t$ term. This is not the case on the RHS where the first order term remains and suppresses the effect of the second-order term i.e. $\left(\omega \chi_{i} / c^{2}\right)(\partial \tilde{\mathcal{E}} / \partial t) \ll\left(i \omega^{2} \chi_{i} / 2 c^{2}\right) \tilde{\mathcal{E}}$. Rearranging leads to,

$$
\begin{align*}
i k \frac{\partial \tilde{\mathcal{E}}}{\partial z}+i k \frac{n}{c} \frac{\partial \tilde{\mathcal{E}}}{\partial t} & =-i \frac{k^{2} \chi_{i}}{2 n^{2}} \tilde{\mathcal{E}} \tag{24}\\
\frac{\partial \tilde{\mathcal{E}}}{\partial z}+\frac{n}{c} \frac{\partial \tilde{\mathcal{E}}}{\partial t} & =\frac{k \chi_{i}}{2 n^{2}} \tilde{\mathcal{E}} \tag{25}
\end{align*}
$$

In order to avoid explicitly calculating χ, we will define an effective propogation constant $\beta=k \chi_{i} / n^{2}$ in addition to recalling that $n=c / v$.

$$
\begin{equation*}
\frac{\partial \tilde{\mathcal{E}}}{\partial z}+\frac{1}{v} \frac{\partial \tilde{\mathcal{E}}}{\partial t}=\frac{\beta}{2} \tilde{\mathcal{E}} . \tag{26}
\end{equation*}
$$

2.1 Retarded frame

First we change coordinates to the retarded frame of reference such that,

$$
\begin{align*}
z^{\prime} & =z \\
t^{\prime} & =t-\frac{z}{v} \tag{27}
\end{align*}
$$

Propogating this through,

$$
\begin{align*}
\tilde{\mathcal{E}}(z, t) & \rightarrow \tilde{\mathcal{E}}\left(z^{\prime}(z), t^{\prime}(z, t)\right) \\
\frac{\partial \tilde{\mathcal{E}}}{\partial z} & =\frac{\partial \tilde{\mathcal{E}}}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial z}+\frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial z} \\
& =\frac{\partial \tilde{\mathcal{E}}}{\partial z}-\frac{1}{v} \frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}} \tag{28}\\
\frac{\partial \tilde{\mathcal{E}}}{\partial t} & =\frac{\partial \tilde{\mathcal{E}}}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial t}+\frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial t} \\
& =\frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}} .
\end{align*}
$$

Which means,

$$
\begin{align*}
\frac{\partial \tilde{\mathcal{E}}}{\partial z}+\frac{1}{v} \frac{\partial \tilde{\mathcal{E}}}{\partial t} & =\frac{\partial \tilde{\mathcal{E}}}{\partial z^{\prime}}-\frac{1}{v} \frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}}+\frac{1}{v} \frac{\partial \tilde{\mathcal{E}}}{\partial t^{\prime}} \\
& =\frac{\partial \tilde{\mathcal{E}}}{\partial z^{\prime}} \tag{29}
\end{align*}
$$

Using the change of coordinates of Eq. 29 in Eq. 26 leads to,

$$
\begin{equation*}
\frac{\partial \tilde{\mathcal{E}}}{\partial z^{\prime}}=\frac{\beta}{2} \tilde{\mathcal{E}} \tag{30}
\end{equation*}
$$

[^0]: ${ }^{1}$ There is a shortcut that can be used by noticing that the LHS of Eq. 16 can be decomposed into left and right propogating waves: $\frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\left(\frac{\partial E}{\partial z}-\frac{1}{c} \frac{\partial E}{\partial t}\right)\left(\frac{\partial E}{\partial z}+\frac{1}{c} \frac{\partial E}{\partial t}\right)$. This significantly simplifies the math and leads to the same Eq. 26.

