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This is an unusual paper in that it does not address a particular research

topic or present a novel experimental method or a new theoretical result.

This paper addresses our basic understanding of the nature of the

evanescent wave, the wave that is the basis of the entire field of Attenuated

Total Reflection (ATR) spectroscopy. I recently had the opportunity to

reexamine the foundations of ATR spectroscopy and was surprised to have

had to change my own mental picture of the evanescent wave that I have

built over the last 25 years. Over the years I have had numerous

discussions with a large number of workers in the field as well as with my

former mentor, and one of the originators and the principal developer of

ATR spectroscopy, the late N.J. Harrick. Everything brought up in all

these discussions was perfectly consistent with my old mental picture of

the evanescent wave. Thus, I believe that the picture of the evanescent

wave that I had is virtually universally held by workers in the field. This

paper describes the new picture of the evanescent wave that emerged from

said reexamination process.

Index Headings: Evanescent wave; ATR spectroscopy; Total internal

reflection.

INTRODUCTION

Attenuated total internal reflection (ATR) has become the
most ubiquitous IR spectroscopic technique. The technique is
based on the absorption of the evanescent wave that, in total
internal reflection, forms on the low refractive index side along
a totally reflecting interface. This wave is of great significance
to ATR spectroscopy, and in this paper I hope to further clarify
some characteristics of the evanescent wave. For the sake of
specificity and consistent notation, in what follows, some of the
well known elementary facts about electromagnetic theory are
explicitly reiterated.

It is first demonstrated that electromagnetic theory demands
that the electromagnetic wave is a transverse wave and that it
propagates through a medium with speed c/n where c is the
speed of light in vacuum and n is the refractive index of the
medium. Then it is demonstrated that electromagnetic theory
predicts both total internal reflection and the existence of the
evanescent wave in total internal reflection.

What is puzzling is that the evanescent wave as provided by
electromagnetic theory appears not to be a transverse wave and
not to propagate through the medium by the speed demanded
by the theory.

Furthermore, a conceptual difficulty arises with how the
electromagnetic energy carried by the evanescent wave made it
through the totally reflecting interface in the first place. To
solve the mystery of where the electromagnetic energy in the
evanescent wave comes from, the picture of the evanescent
wave needs to be adjusted. This adjusted picture then removes
all the apparent puzzles posed by the structure of the expression
for the evanescent wave.

STANDARD ELECTROMAGNETIC THEORY

We start with the concept of the electromagnetic wave.
Maxwell equations in a homogeneous nonferromagnetic
medium, characterized by the dielectric constant e and without
sources, combine into the wave equation for both the electric
and the magnetic field.1–4 For the electric field of the
electromagnetic wave we have

]2

]x2
� e

c2

]2

]t2

� �
Eðx; tÞ ¼ 0 ð1Þ

where E(x,t) is the amplitude of the electric field vector at the
position x and time t and c is the speed of light in vacuum. The
solution to Eq. 1 is a plane wave:

Eðx; tÞ ¼ E0e2pinkx�ixt ð2Þ

where n =
ffiffiffi
e
p

is the refractive index of the medium.
The magnetic field of an electromagnetic wave can be

expressed in terms of its associated electric field as

B ¼ 2pcn

x
k 3 E ð3Þ

The wavevector k points in the direction of wave propagation
and has a magnitude (also known as wavenumber1) k given by

2pnk ¼ x
c
¼ 2pn

k
ð4Þ

Here x is the angular frequency and k is the wavelength of
light in vacuum.

The phase in the exponential term in Eq. 2 represents the
phase of oscillations of the electric field. For x in the direction
of k a constant phase w in the exponent is achieved when

2pnkx � xt ¼ w

This point of constant phase for the wave occurs when

x ¼ wþ xt

2pnk
¼ w

2pnk
þ c

n
t

In other words, the point of constant phase of the wave travels
at the speed c/n. This is one of the results of the
electromagnetic theory that I want to bring up.

As evident from Eq. 3 the two fields propagate together
and oscillate in phase in every point in space. From Eq. 3 it is
also evident that the two fields are mutually perpendicular,
and both are perpendicular to the wave vector k, which points
in the direction of propagation. Since the electric and
magnetic fields are both perpendicular to the direction of
propagation, the electromagnetic wave is a transverse wave.
This is another result of the electromagnetic theory that I
want to bring up.

Received 27 April 2012; accepted 19 September 2012.
E-mail: milan@mevtechnologies.com.
DOI: 10.1366/12-06707

126 Volume 67, Number 2, 2013 APPLIED SPECTROSCOPY
0003-7028/13/6702-0126/0

� 2013 Society for Applied Spectroscopy



Maxwell equations for empty space free of sources and
currents require that

]

]t
½ 1
8p
ðE2 þ B2Þ� þ r½ c

4p
ðE 3 BÞ� ¼ 0 ð5Þ

The interpretation of expression 5 is that it describes
conservation of energy associated with electromagnetic fields.
The term

u ¼ 1

8p
ðE2 þ B2Þ ð6Þ

is the energy density of the electromagnetic field. Since for
electromagnetic waves the electric and magnetic fields have the
same magnitudes, i.e., B2 = E2 , we have

u ¼ 1

4p
E2

The vector quantity

P ¼ c

4p
ðE 3 BÞ ¼ 2pc2

x
uk ð7Þ

is the so-called Poynting vector, which describes the flow of
energy contained in the electromagnetic field. Note that the
term 2pc/x in Eq. 7 is just the inverse of the wavenumber.
Thus the last expression in Eq. 7 is a vector whose magnitude
is the product of the speed of light and energy density and that
points in the direction of propagation. The Poynting vector thus
describes the flow of energy density u at the speed of light, just
as we would expect for energy carried by electromagnetic
waves. Therefore electromagnetic energy flows with the same
speed as the wave. This may sound as a tautology, but, as we
will see, nothing can be taken for granted.

The presence of an interface (i.e., discontinuity in the
medium) means that the solutions of Eq. 1 on one side of the
interface do not extend to the other side. We have different
solutions on the two sides. However, these solutions must
come together at the interface. That requirement gives us the
boundary conditions that then lead to not only Fresnel
equations, but also the laws of reflection and refraction. At
an interface between two media characterized by refractive
indices n1 and n2 incident light refracts through and reflects
from the interface. Thus we have incident, transmitted, and
reflected waves. The incident and reflected waves are in the
first (incident) medium, while the refracted (transmitted) wave
is in the second medium. All three waves are plane waves
described by Eq. 1. Each wave is of the form of Eq. 2 but has
its own amplitude and wave vector:

Einðx; tÞ ¼ E0ine2pin1kinx�ixt

Erðx; tÞ ¼ E0re
2pin1krx�ixt

Etðx; tÞ ¼ E0te
2pin2ktx�ixt ð8Þ

The three wave vectors kin, kr, kt of the incident, reflected, and
transmitted waves, respectively, lie in the same plane (plane of
incidence), and their directions are determined by the laws of
reflection and refraction. The field amplitudes E0in, E0r, E0t

are the amplitudes of oscillations of the electric fields of
incident, reflected, and transmitted waves, respectively. We

assume that the wave vector and the electric field amplitude of
the incident wave are known. That means that we know the
frequency and the direction of propagation of the incident
wave. The theory then provides the wave vectors and the
electric field amplitudes of both the reflected and transmitted
waves.

The reflected and transmitted amplitudes are related to the
incident amplitude through Fresnel equations. The ratios r and t
are the Fresnel reflection and transmission amplitude coeffi-
cients respectively defined as

r ¼ Er

Ein
ð9Þ

t ¼ Et

Ein

For s-polarized incident light,1–4

rs ¼
N1 cos h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q

N1 cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q

ts ¼ 2n1 cos h

n1 cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q ð10Þ

and similarly for p-polarized incident light,

rp ¼
N2

2 cos h� n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q

N2
2 cos h1 þ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q

tp ¼ 2n1n2 cos h

n2
2 cos hþ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q ð11Þ

For the reflected wave the cross section of the incident beam
stays the same. But for the refracted wave it changes as3

ct

cin
¼ cos u

cos h
ð12Þ

where Ct and Cin are the areas of the cross sections of
transmitted and incident beams, respectively, and angles h and
u are the angle of incidence and refraction, respectively.
Taking Eq. 12 into account the reflectance and transmittance of
the interface are

R ¼ Pr

Pin
¼ E2

r

E2
in

¼ jrj2 ð13Þ

T ¼ Pt

Pin
¼ E2

t

E2
in

n2C2

n1C1

¼ jtj2 n2 cos u
n1 cos h

ð14Þ

In Eqs. 13 and 14, Pin, Pr, Pt, are the power densities carried by
incident, reflected, and transmitted beams, respectively. By
using Eqs. 10 and 11 in Eqs. 13 and 14, it can be explicitly
shown that

T þ R ¼ 1
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for either polarization. This, of course, must be so for the
electromagnetic theory to comply with the law of conservation
of energy.

EVANESCENT WAVE

For internal reflection, light is incident from a material of
higher refractive index n1 onto an interface with a material of
lower refractive index n2. The angle of refraction, given by
Snell’s law, is

cos ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q
: ð15Þ

The angle of refraction exists only for angles of incidence h
smaller than the critical angle hc given by

sin hc ¼
n2

n1

ð16Þ

For angles of incidence above the critical angle the term under
the square root is negative, so Eq. 15 leads to an imaginary
angle of refraction:

cos u ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 sin2 h� n2
2

q
ð17Þ

For angles of incidence below the critical, internal reflection is
subcritical internal reflection, and above the critical angle, it is
supercritical internal reflection.

For subcritical internal reflection the waves on the two sides
of the interface are incident, reflected, and transmitted (Eq. 8),
just as for external reflection. However, when the angle of
incidence exceeds the critical angle, only incident and reflected
waves remain. The transmitted wave is transformed into a so-
called evanescent wave. To see how this comes about we select
the coordinate system where the reflecting interface is the xy
plane so that the z axis is normal to the interface, and we
choose the plane of incidence to be the xz plane. The three
wave vectors then have only x and z components. For the
transmitted wave the scalar product in the exponent of its
propagation factor can be evaluated as follows:

in2kðx sin uþ z cos uÞ ¼ ikxn1 sin h� kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 sin2 h� n2
2

q

ð18Þ

This leads to

Etðx; tÞ ¼ E0te�ixte2pin1kx sin he�2pkz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1
sin2 h�n2

2

p
ð19Þ

The first exponential term on the right-hand side of Eq. 19 is
the standard oscillatory term that expresses the time depen-
dence of the wave. The second term is just a standard term
describing the propagation of the wave along the interface.
These two terms look exactly the same as in the case of
subcritical internal reflection. The last term describes the
exponential decay with distance from the interface of the
amplitude of the wave propagating along the interface. The
wave is thus confined to the interface. The amplitude of the
wave is largest at the interface and decreases exponentially
with distance into the rarer medium. This surface wave, called
the evanescent wave, is a remnant of the transmitted wave that
lingers in the rarer medium at supercritical incidence.

It can be seen from Eq. 18 that the evanescent wave

propagates parallel to the interface with velocity c0 given by

c0 ¼ c

n1 sin h
ð20Þ

Since light propagates in medium 2 along the interface, it
appears that the electromagnetic wave and electromagnetic
energy propagate with the same speed, but that this speed is
unrelated to the medium (characterized by n2) in which it
propagates. Moreover, the speed of propagation can be fine
tuned by changing the angle of incidence. This is in a blatant
violation of what we found before, based on standard
electromagnetic theory, about the speed of propagation of
electromagnetic waves and electromagnetic energy.

Using the Fresnel equations 10 and 11 it is easy to express
the electric field of the transmitted wave:1–4

Et ¼ t12E0 ð21Þ

For the s-polarized incident beam in the coordinate system as
defined above this gives the electric field components as
follows:

Ex ¼ 0;Ey ¼
2n1 cos h

n1 cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q E0;Ez ¼ 0 ð22Þ

and for the p-polarized incident light:

Ex ¼
2n1 cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q

n2
2 cos hþ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q E0;Ey ¼ 0;Ez

¼ � 2n2
1 sin h cos h

n2
2 cos hþ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q E0 ð23Þ

Thus, there is a component of the electric field of the p-
polarized evanescent wave in the direction of propagation (x
axis), a no-no for transverse waves.

From Eq. 23 it follows that for the p-polarized beam

Ex ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q
n1 sin h

Ez ð24Þ

In the supercritical regime the square root in Eq. 24 is purely
imaginary implying (i [ eip/2) that Ex is oscillating 908 (p/2)
out of phase with Ez. When Ez is at maximum, Ex is at zero, and
vice versa. If we imagine the oscillations of the electric field
play out in time, the electric field vector rotates in the plane of
incidence. The tip of the electric field vector describes an
ellipse.3 The evanescent wave propagates along the interface
oscillating between a purely transverse wave (Ex = 0) and a
purely longitudinal (Ez = 0) wave.

How can this be when we explicitly demonstrated that the
electromagnetic wave must be transverse? It cannot be
longitudinal, not even momentarily. Why is it that the same
electromagnetic theory that earlier demanded strict trans-
versality of the electromagnetic wave is now leading us to
conclude that the p-polarized evanescent wave violates the
transverse nature of electromagnetic waves? And how can it be
that this unusual wave travels with a speed not related to the
material in which it propagates? The results that we just
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derived from the electromagnetic theory clearly contradict the
general results derived earlier from the same theory. Is the
electromagnetic theory internally inconsistent?

FLOW OF ELECTROMAGNETIC ENERGY
THROUGH TOTALLY REFLECTING INTERFACE

From the Fresnel formulae 10 and 11 for nonabsorbing
media 1 and 2 it follows that, for supercritical internal
reflection, the reflectance amplitude coefficient is of the form3

r ¼ X � iY

X þ iY
ð25Þ

Thus, since reflectance is the absolute value squared of the
reflection amplitude coefficient, the reflectance is total, i.e., R
= jrj2 = 1. This is true for both polarizations.

Therefore, for supercritical incidence, the amplitude reflec-
tion coefficients take a particularly simple form:

r ¼ eia ð26Þ

It is obvious from Eq. 9 that a is the phase shift between the
incoming and the reflected beam. Therefore, the totally
reflected and the incident beam do not oscillate in phase.
However, the intensity of a totally reflected beam is the same as
the intensity of the incident beam. If all the electromagnetic
energy is totally reflected at the interface, how is it then
possible that there is an evanescent wave behind the interface?
How did the electromagnetic energy make it through this
seemingly impenetrable barrier?

On the other hand, we know that Fresnel equations connect
fields on opposite sides of the interface, so Fresnel equations
demand that, if there is an electromagnetic field on the incident
side of the interface, there must be an electromagnetic field
(and thus electromagnetic energy as well) behind the interface.
Again we run into an apparent contradiction.

Imagine a beam of a laser pointer totally reflecting at an
interface. The beam illuminates a small spot on the interface.
Equation 19 apparently states that there is an evanescent wave
in the illuminated area on the other side of the interface
propagating along the interface with the speed (Eq. 20). What
happens to this evanescent wave when it reaches the edge of
the illuminated area? It cannot just continue propagating since
it would carry away with it some of the electromagnetic
energy. This energy would then be missing from the reflected
beam and the total reflection would not be total. This is yet

another seemingly contradictory result derived from the
standard electromagnetic theory.

RESULTS AND CONCLUSION

Let us start by explicitly expressing the flows of electro-
magnetic energy carried by the three beams that participate in
reflection. According to Eq. 7, with the help of Eqs. 6 and 9,
we can write

Pin ¼
cn1

4p
E2

o

Pr ¼
cn1

4p
ðrpÞ2E2

o

Pt ¼
cn2

4p
ðtpÞ2E2

o ð27Þ

Note the shape of the volume outlined with a heavier line in
Fig. 1. The incident beam enters through the left side, whereas
the reflected beam exits through the right side. The base of the
shape is in the interface, and any flow of energy through the
interface to and from the evanescent wave is given by the
component of Pt perpendicular to the interface f(Pt)z = Pt cos
ug. The cross-sectional areas of the incident and reflected
beam are indicated by letters C and the area of the interface
illuminated by the incident beam by C/cos h.

In order for the electromagnetic powers flowing in the
incident, reflected, and transmitted beams to balance, we must
have

Pin � Pr ¼ Pt
cos u
cos h

ð28Þ

Using Eqs. 27 and 11 it is straightforward to verify that Eq. 28
is indeed satisfied. Surprisingly, we did not even have to sort
out how to deal with the complex number values of the
variables in Eq. 28. Not surprisingly, energy is conserved
during total internal reflection. However, notice that in Eq. 28
we had to explicitly take into account that energy flows
through the totally internally reflecting surface. Thus, not only
does electromagnetic energy flow through the totally reflecting
interface, but we can see that the evanescent wave actually
serves as an energy ‘‘overflow tank’’ to allow for momentary
energy flow imbalances between the incoming and reflected
beams. An electric capacitor is an apt analog. In hindsight it is
obvious that some overflow handling mechanism must exist if
energy is to be conserved at every moment during total internal
reflection. Because incoming and reflected waves are shifted in
phase, there must be a mechanism in place that allows the
momentary energy flow imbalance between the two beams to
be taken away and supplied back as needed.

This vigorous energy flow through a totally internally
reflecting interface seems to be contradictory to our earlier
interpretation of the expression for the evanescent wave (Eq.
19). Then we concluded that energy flows parallel to the
interface, and now we find that the energy flow parallel to the
interface does not even enter into the energy balance (Eq. 28).
How can this be? Is our interpretation of energy carried by the
evanescent wave in some way wrong? And what about our
finding that the evanescent wave is not a transverse wave and
also that it does not travel with the proper speed for

FIG. 1. Geometry of energy flow for total internal reflection.
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electromagnetic waves in the medium? Let us now reanalyze
all these findings.

First, let us reevaluate the issue of the transversality of the
evanescent wave. Only the p-polarized wave causes prob-
lems, so we can calculate the scalar product of the electric
field vector (Eq. 23) and the wavevector kt = k(n1sin h, 0,
½n2

2 � n2
1 sin2 h�1=2

) of a p-polarized evanescent wave. Sur-
prisingly (or not), we find that it is exactly zero. Now, by
definition, two vectors are perpendicular if their scalar
product is zero. Our intuition was misled by complex
numbers appearing as magnitudes of the components of
these vectors. However, if everything is taken into account, it
all works out, and the evanescent wave reemerges as a
transverse wave. It is thus demonstrated that nontransversal-
ity of the p-polarized evanescent wave is not born out once it
is formally tested. So, although the p-polarized evanescent
wave looks like it is violating the transversality requirement,
it is not, and it is intellectually satisfying that this can be
explicitly demonstrated.

But what kind of a wave is then the evanescent wave? It
cannot be a propagating wave because its speed is wrong for a
propagating wave. Incidentally, the speed of propagation of the
evanescent wave is not just some abstract mathematical entity.
The ability to fine tune the speed of the evanescent wave is
used as a tool to excite so-called surface plasma waves
(plasmons). The plasma waves are collective excitations of free
electron charge density that are, like the evanescent wave,
confined to the surface of metal. These waves propagate with a
speed that is a function of their frequency. For the electric field
of the evanescent wave to excite plasma waves, the two not
only have to have the same frequency, but also have to travel
with the same speed. Otherwise they would quickly run out of
resonance. So how are all these facts mutually reconcilable?
The answer is that the propagation of the evanescent wave
parallel to the interface is a chimera. Nothing actually
propagates, but what mimics the propagation is that electro-
magnetic energy bobbing back and forth through the interface
is phase coordinated. The phase of these oscillations travels
along the interface with the speed c0 (Eq. 20). The picture of
this is not unlike a wave on the surface of water. The water
molecules move only up and down, but their phase is
coordinated so we perceive a wave traveling on the surface.
At the edge of the illuminated area the sustaining action of the
incoming wave stops, and, thus, the evanescent wave stops.
But nothing physical stops here because nothing physical
actually ever moved along the interface. Only the phase of
coordinated oscillations of energy through the interface stops
propagating. As referenced in Internal Reflection and ATR
Spectroscopy, a screw thread analogy is illustrative.3 As a
screw turns around its axis, the thread on top (or anywhere
else) of the screw appears as if traveling along the screw axis.
However, nothing really moves along the axis. Any point on
the screw undergoes purely rotational motion around the screw
axis. At the end of the screw, the apparent motion of the thread
just suddenly stops as does the evanescent wave at the edge of
the illuminated spot discussed above. It is interesting that a
textbook4 indeed recognizes the problem of how the energy
from an incident wave gets through a totally reflecting interface
and into an evanescent wave. These authors offered a solution
that invokes a finite duration of an actual electromagnetic
signal, which then necessitates the transitional interval from
‘‘no wave’’ to ‘‘wave’’ during which the expressions that we

derived are not valid and the transfer of energy through totally
reflecting interface is thus not forbidden. However, as shown
here, the problem is a chimera that goes away once we realize
that there is a vigorous back and forth flow of energy through
the interface at all times. There is, indeed, no need for any
explanation including the one offered by said textbook.

Finally, let us consider in some detail the speed of the
evanescent wave. The speed of a wave is by definition the ratio
of the wavelength k (distance traveled) and the period of
oscillations s (time it takes to travel the distance of one
wavelength):

c ¼ k
s
¼ kv ð29Þ

The second expression in Eq. 29 follows since the inverse of
the period of oscillations is, by definition, the frequency m of
oscillations. The angular frequency is x = 2pv. The inverse of
the wavelength is the wavenumber k. Thus,

x ¼ 2pck ð30Þ

For the incident wave kin = n1k, so the speed of the incident
wave is c/n1. For the evanescent wave the situation is again a
bit confusing since the wave vector (as indicated in Eqs. 18 and
19) has the imaginary z component (perpendicular to the
interface):

kt ¼ kðn2 sin u; 0; i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q
Þ

¼ kðn1 sin h; 0; i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 h

q
Þ

where we used Snell’s law to get to the second expression in
the above equation. Now, taking the scalar product of the wave
vector with itself yields

k2
t ¼ k2ðn2

1 sin2 h� n2
1 sin2 hþ n2

2Þ ¼ ðn2kÞ2 ð31Þ

which, interestingly, gives for the speed of the evanescent wave
c/n2, the correct speed for light in medium 2, not Eq. 20. Thus,
there is formally no discrepancy between the properties of the
evanescent wave and other propagating electromagnetic waves.

In conclusion we can say that, in the end, the electromag-
netic theory is vindicated. It does not contradict itself in its
description of the evanescent wave. The impression that it does
stems from misconceptions about its nature, i.e., the inaccurate
mental picture of what the evanescent wave is. When
everything is worked out consistently, the evanescent wave
emerges as a transverse wave whose nominal speed of
propagation is correct, although it actually does not propagate
through the medium in which it exists. It also emerges that the
flow of electromagnetic energy through a totally internally
reflecting interface is not only vigorous but also essential to
enabling the conservation of energy at any instant during total
internal reflection. The evanescent wave is not a propagating
wave in the usual sense, but it does formally retain all the
standard characteristics of a propagating electromagnetic wave.
These characteristics are inherited from the transmitted wave
and survive the transition from the subcritical to the
supercritical regime of internal reflection. The confusion comes
about from the fact that, in that transition, some of the
quantities that describe and define the electromagnetic wave
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flip from having real to having imaginary magnitudes, which
induces confusion into the interpretation of what these
quantities now mean. A standard textbook1 describes the
evanescent wave as propagating along the interface. The
leading optics textbook4 simply accepts the apparent non-
transversality of the evanescent wave, labels the evanescent
wave as inhomogeneous, gives no justification for exempting
inhomogeneous waves from the requirements of electromag-
netic theory, and proceeds on to other issues. As demonstrated
in this paper, the evanescent wave is not a propagating wave
despite its appearing as if it is propagating along the interface.
If it were a propagating wave, it would be subject to scattering
in those cases where medium 2 is powder, and, therefore, the
supercritical internal reflection of a nonabsorbing powdered
sample would not be total. It is. Finally, when formally
calculated, the ‘‘speed’’ of propagation of the evanescent wave
was shown to be c/n2, which is as required by electromagnetic
theory. The impression left by the textbooks is that the
evanescent wave is indeed unusual, even a strange kind of
electromagnetic wave, but they do not go into sufficient detail

to fully illuminate its nature. Also, since total internal reflection
is an old and well-known phenomenon, it is not seen as a
promising area of research, so the nature of the evanescent
wave does not receive much attention. No new and unknown
phenomena are expected in the familiar territory of electro-
magnetic theory. Although no new phenomena were uncovered
in this reanalysis, we see that there was indeed something left
to be learned about the evanescent wave.
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