Excerpts from “Handbook of nonlinear optics”
By Richard L. Sutherland

i, NONLINEAR OPTICS

In the nonlincar optics regime, the penlivear part of the polarization can 00
loager be ignored. Note by Eq. (12) that the nonfinear polarization scrves as a
sowrce for the gencration of new waves, and the wave equation bucomes an
inhomageneous differential equation, Hence an crpression for P 18 required.
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For most of the applications of aonlinear optics, this quantity ¢an be cxpressed
4% A power series eEpansion m the applied fields.

A. Nonlinear Susceptibilities

It is assmmed 1hat the nenlinear polanization can be written ux f4—6]

P S {30)
whera
pr Euxﬁ:l:EDE['} {40}
POR = ¢ T IRDECES (41)
cte.

These expressions are given in S1 wnits. For cEs miuls, £y — 1. In is importang
e acte fiat Lhe field o the equations above is the forgi applicd field, which can
be 2 superposition of many ficlds of different frequencies. x* is the ntb order
diglectric sespomse and §s 2 Lensor of rank 5 + 1.

When the {otal field is expanded in terms of its Fourer componens (t.g.,
its various laser frequencies), then the nonlinear polarization will conzist of
scveral e vseillating at vatious combination frequencigs, For example, if the
total ficld consists of two waves necillating at irequencies wy, and w-, e seomd
-order noniinear polarization will have compodents oscillating at 2w, 2i., w, +
Glze Wy~ wy, and de terms af zero trequency, Similarly, with three fields oscil-
lating at frequencies w,, o, and s, the thitd order pularization will oscillaic at
3oy, 3, R, iy ooy W, 0y + @ — w,, atr, '

it is comamom to write the Fogrier components of the nonlivear polarization
in the following wey. Consider a second order polatization osciliating at w, due
to the presence of flelds oscillating st frequencies ¢, and wy, With ay = », +
wy. Then the ith cartesian componenl of the complex polarization amplitade is
cxpressed as

F(w,) = 5,07 ; XS~ 55wy, 02)E; (0, )Eifuss) (42)

where

pe ol for indistinguishable ficlds (43)
“ {2 for distinguishable fields
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and X} —w;; w,, @) is The second arder {complex) Fourier-transformed dielec-
tric response, or the second order susceptibility. The form of BEq. (12) allows
for the possibility that the frequencies «w, and o, are equal, or equal in magniude
and opposite in sign. In this case, there may actuaily be only one field present,
and the degentracy factor D™ tukes this into account. Tt should be noted, how-
cver, that the deicrminatios of the degeneracy factor is whuther the fivids are
physicaily dislinguishable or ‘not. Two fields of the same Eequeney will be
physicatly distinguishable if they travel in ditfcrest directions, for example.
Also, the negative frequency part of the real field is considered to be distin-
guishabte from the positive frequency part, i.e., they have dificront frequencies.
For negative frequencies, it s important tn aote that E{—w) = E *{w), since the
rpidly varying ficld is a real mathematical quantity. Thus, for example, if w. =
0 and w; = =), then the second order polarization would be written as

PO©) = 28, ), X0 @, —w)E(0)E? (w) (49)

This polarization drives the phvnomenon known as aptical receification, wherein
an intense oplical wave creatcs a dc polarization in a wonlincar medium. It is
important to remember that in thesc equations, the field amplitude still contzins
the rapidly varying spatial part, i.c.. E(r) = A(r)exp(ik -r).

This notation is easily extznded to higher orders, When three frequencics
Oy, Wz, @y ate present, the third order polarization at wy = w, 1 w, + s is
given by

PE(0) = DY D XGH(—00; @1, a3, 003 )E (0 Ene0 ) Efenry) {45)

where the degeneracy factor in rhis case becomes

1 a)i fields indistingnishable
D¥ =493  two fields indistinguishablc (46)
6 all fields distinguishable
This foron of the third order polarization allows for various combination fre-
quencies even when only two fields are present, such as w, + 203, or 2w, —
un, efc. The degeneracy factor is just due to the number of different ways in
which cthe products of ibe fleld Fourier compnnents appear in the expansion of
the total ficld (v some power. For example, Lhere is only one way that the product
for the frequency 3w; appears: E(w, )E(en,)E(m,). However, there are three dif-
ferent ways that the product for the frequency 20. — @, appears:
L(n)E(w,)E™(w,), E(01)E*()E(03;), and E*(e1,)£ (0, }E(w,). The degeneracy
factor is thus rclated to the cocfficients of Pascal’s teiungle from algehrs, (The
use of a degencracy factor in these equations also ralies on 21 jurtinsic symmetry
of the susceplibility tensor, which is discussed below.)
The eyuations above are written in ST units. 1o obtain the form in ©gs units
let ey go to 1. Also, it is important o note that the nth order susceptibility is
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frequency dependent and complex, in general. The reason for wriling the Fre-
quency dependenct us shown in the equations above is lor fhe purpose of ux-
Dressitg symmetry relations of the susceptibility tensor, This is further desc: ihed

below.

B. Symmeiry Relations of the Nonlinear Susceptibiliy

The first symmetry apparent [rom the form of Bgs. (42) and (45) is due 1o the
lack of differeace physically in which erder the product of the field amplitudes
i8 given. Thus ap interchange in the order of the product E(m.)E (i) 'fe,
Ei(w)E(wy) + Eyfwa)E,(0,)] will not affect the value or sipn of the fth com-
ponent of the ncalincar polarization. The nenfinear susceptibility shouid reflect
Thid symmetry. But aote that o lhe above interchaoge, botl lrequencies and
subseripts for the cartesian coordingtes are interchanged simultaneously, This is
importent since, for cxample, exchanging the product E(0),)E,(w.) with the
product E(e:}E.(on) cowld chunye the nonfinear polarization, especially, lor
example, if the two ficlds are orthugonally polarized. Thus the Symmetry prop-
erty is expressed as (for third order susceptibiliticy)

K04, @y, 0z, ©3) = XP(—02e; @z, 0y, ) @7)
= X — 2 @, wy, @) = ste,

ln other words, if any of the subseripts {j&/} atc permuted, then the susceptibality
will remain unchanged as long as the cotresponding set of subscripts (123} arc
also permuted. This holds even if any of the frequencies are negative. Note that
this dows not hold for the subscript pair (i. 4). The same relation holds for second
order snd can be gencralized to sny order, This is called intrinsic permutation
symmelry and is the underlying reason why the nonlinew polarization can be
writlen compactly in terms of 8 degeneracy factor as in Egs. (42) and (45).

Al this point it Is fmportant to note another notation that is used in second
order ncmlinear optics. Often the suscepribility is represented as (he so-called
d-coefficicnt, where d is a tensar given by

dw‘: = F‘X-Ergii: (48)

Furthermore, the intrinsic permutation symmetry is used fo contract the last two
subscripts and write d,,. — d,. The subscripts are then written as nurgbers instead
of letters using the gchemec

rxljE x» &1

y2 oy 2

z3 o 3
seeey o “9)
XF=rr K
Y=m 6
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For example, d,,. = 4., =dyand &, =d,, etc. The utility of this notation is
that d-coefficients can be expressed as elements of a 3 X 6 matrix rather than
23 X 3 X 3 tensor. To usc these cocfficienls in the nonlinear polarization of
Fq. (42), just make the substitution X — 2y,

Another form of the permutation symmetry ean be shown when the non-
linear susceptibility is calculated quantum wechanicaily, This is usvally done
using the density matrix method, and cxpressions can be found in textbaoks
[4.5). It can be shown generally, for cxanmple in third order, thal

Xﬁ’r(‘<04; @y, G, ma) - J(}fgr*f_ml; Wy, —y, —U,) = e, (30)
First, it is noted that when the complex coujugate of the suscepiibility is taken,
1L just changes the sign of ali of the frequencics, This {s « consequence of the
Lact that the rapidly varying noniinear poiarization is a rea) mathematica qQitan-
lity. Then, for any permutation of the cartesian subscripts, (he new susceptibility
thus obrained is equal to the original susecptibifity i the corzesponding fre-
quency subscripls are also permuted, if all of the frequencies are changed hy
fuulliplying by — 1, and if the complex conjugate of susceptibility is taken. This
itoportant vesult stafes that the susceptibilitivs for diffcrent physical processes
are simply related. For example, Eq. (50) relates the susceptibilities for the third
order processes of sura-frequency generation (w, = w, - w; t «,) and diffes-
cuce-frequency generation (w, = w, — <2 = o). The relatives in Ey. {30) hold
for any permutation and are gencralized to ali orders. Thus, for cxample, in
second order,

X~ w53 s, w3} = XE* (—wz; =10y, w3) = et. (51)

Thc above expressions hotd generally when the susceptibilitics are com-
plex. This is cspecially important when any single frequency or any combination
frequency is near & natural respnance frequency of the material, However, it is
often the casc in muny applications that all frequencies and combination fre-
quencics are far from any material resonance. Then the susceptibilitics cau be
treated as rel quantities, and any susceptibility is thus equal to its complex
conjugatc, In this case, Eq {30) may be written as

Xt (=53 @y, 0, 05) = X V(=003 way —, —t3) (52)

= Xl ~©x ~wy. W, —ay) = efe,

Thus, under the condition that the susceptibililics are reai (all frequencies far
from any resonance), the Susceptibilities are unchanged for the sirmltaneocus
permutation of subscripts from the cartesian set {ijkd} and the corresponding
subscripts from the fraquency set 14123}, willi the stipulation that the fre-
quencies carry the proper sign. (Note: The first frequency in the Argument, that
13, the gererated frequency, carries a negative sign. The signs on the other
frequencies must be such that the algebraic sum of all frequencies is zero. For
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exsmple, —w, + w; + v, + w, =0 iraplies that ~w, — w, + w, — w; = 0.)
Thig 13 calicd full permutstion symmetry. This symmetry generalizes la all
orders.

Another symmetey follows when the susceptibilities exhibit negligible dis-
persion over the entire frequency range of interest. Thus, in sddition to all
frequencies being far from any material resonance, this symmetry requires that
there be no resonance betwezen any of the frequencies. This would #er be the
case if, for example, w, > w, and for some frequency benwveen w, and w, an
absorption line exisis in the material. When dispersion cau he ignored, the fre-
quencies can be freely permuted without permuting the corresponding cartesian
subsgeripts, and vice versa, and the susceptibility will remain unchanged. Thig is
known as Kleinman symmetry.

Nonlincar susceptibilitics also reflect (he structural symmetry of the mate-
rial. This is imporfant since in many cascs this grcully reduces the number of
nonzero, independent tensor componcats needed to describe the medium. One
immediate consequence of this is that for all materials that posscss a eonter of
inversion symmetry fe.g., isotropic liquids and crystals of symmetry class 432},
all eJlements of all even-order susceptibility tensors are identically equal to zero.
Hence no even-order nonlinear processes are possible in these types of materials.
(This is strictly true only when the susceptibility is derived uvsing the electric
dipole approximation in the perturbation Hamiltonian, For example, in a0 atomiy:
vapor a second order process may oveur when a transition matrix ¢lement be-
tween two equal parity states, which 1s forbidden in the clectric dipole approx
imation, is nonzero due to an electric quadrupole allowed transition, However,
such a fransition is generally very weak.)

Other simplifications of the sasceptibility tensors can be derived based on
specific symmetry properiies of the material, such as rotation axis and mirror
plane symmetries. The forms of the d-mairix for crystals of several different
symmetty classcs arc given in Table 1. Note that in meny cascs the clcments
arc zero or cyual to *1 times other elements. The form of the malrix when
Klcinman symmetry is valid is alse given. .

The specific form of third order susceptibilitics may also be given for each
symmetry class. These can be found in some textbooks [4,5]. In this book, third
order effects are considered primarily in centrosymmetric medis. The nonzero,
independent ¢lements of the third order suscephibility for malerials in this class
are shown in Table 2,

C. Coupled-Wave Propagation

The optical waves are coupled through the nonlinear polarization, and the nog-
linear polarization acts as a source term in the wave equation for cuch rmono-
clhiromatic, or quasi-moncchromalic, wave. As stated carlicr, because of the
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Table 1 Form of the d-Matrix for Different Symmeiry Classes

Symmetey
class Generul condifiops Kleinmana symmetty
Biaxial cxystals
4 {d';,, dn dyy Gha dis s dy Ay di: dg dys dye
oy day Ay doy dys @ tha thn @ ds Gy 5
\.d:". dfﬁ- d:ﬂ dﬂ- da: d!ﬁ dls d!ﬂ d!‘! dﬂ d?.‘% d:‘
£ [0 0 0de0 s [0 0 ¢ dy 0 d
&y dy dy 0 d 0 i iz @ O dyy O
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d‘)) d)! dﬂ ﬂ d..‘i U \d'l.S d& dnx 0 d‘m B
222 000d, 0 o) (nunduoo
D00 0 ds 0O D060 0 4. U
0000 0 af \ooo o 0 d
T 0 0 0 0 ds0 0 0 0 0 ds0
0 0 0 dy 00 0 0 0d.00
fi.'l'l d‘l? d‘l‘b U 0 0 d;s dza Jg,\. ﬂ 0 0
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¢
3 w1y _0’u 0 4. 1 —@a dn. —d o o dis —d
du d:z U d]_l; _d.l.il _d.l. _dg d:.g,r_ 'U dn, D _d;l
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—dy; dp 0G0 —4dy —dy dp 0060 —d,
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Table 1 Continued

Symmetry

¢class Genersl conditions Kleimman symmetry
Uniaxial crystals
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Table 2 Form of the Third Order Suscepfibility for Centrusvmmetric Media
X = X = = XL =X =

=Xl =X = A e

Xom = Xomm = Xk = X2, = 38 = 00

All other components are zero. There ure only lhrce nunzere independent companents,
and

x{\ﬁ-=?{?—;’y+?§ar+?@x

linearity of the wavc equation, each frequency component of the field satisfles
the wave equation independertly, with the source (erm being the Fouricr com-
ponent of the nonlinear polarization comesponding (w the frequency of that op-
tical feld.

In this section, the form of the coupled-wave equations is considered when
the waves propagate in an isotropic medium or alonyg one of the principal axes
in an snisotropic muediom, When the birefr Agence of a uniaxial medium is smaii,
which iy quitc otten true in applications, the fonns of these equations witl be
the same t0 a gnad approximation for propagation alung any axis in a uniaxial
medium,

Comnsider the interaction of m + 1 waves through an mth order nonlinear
polaiization. The frequency of the (m + 1jth wave is given by

Wnii = D 10, (53)
y-1

where the set {w, } may contain both positive and negative frequencies. For any
wave amplitude, A(-w) = 4*(w), and for any Wave yectof, A(—a) = —k{m).
The wave amplitudes sre assumed to vary pnmarily along the z-axis.

For practically every probiem in nonlincar optics, the slowly varying am-
plitude approximation may he used [4-6]. This agsumes that 1l magnitucde and
Phase of the wave amplitode vary slowly in space and time over an optical
wavelcogth and period, respectively, For any wave amplitude this implies that

|&*A| an

—_— k— s
|3z“| S5 oz 9
Voo

Al aA|

| < w = (35)
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and for the complex amplitude of the Fourie: component of the nomlinear
polarization.

7 et P "
L [ <« |o E—| o 0P (56)
a .
In all of the wave equations given helaw, the following definitions apply:
Xer‘J = ém-l-!. - X(M]{_mm- I ('}\s- W .- - 0’«] - é‘aé: o én [:57]

where &, is a unit vector pointing in the dircetion in space of the polarizition
of the pth ficld,

Ak = (E k, - km.l) 3 (58)

=l

.

el B
and

Buss = B{@p 1) (60}

®nay = O 14} (61)
arc the frequency dependent index of rofracticn and shsorption cocfficient,
respectively,

The fotlowing cquations are the form of the wave cquation for 4_,, en-
countered under various situations. The terms quasi-cw, short pulse, and ultre—
short pulse have the following meanings. Quasi-cw may refer to a true cw wave
or 1o 4 pulse with a full width at haltf-maxinmum {fre,,,) such that the physical
length of the medium is smail compared to the distance cferne/s. A short pulse
will have a width such that the physical length of the mediuom is compatuble to
or larger than ctryma/n. An ulira-short pulsc is ouly quasi-monochromatic and
hence 1s composed of suveral frequencies clustered about some center frequency.
When the frequency spread of the pulse is such that dispersion in the refractive
indux cannot be ignercd, the concept of a unique phase velovity is meanin rless.
The pulse is then treated as a superposition of monochromatic waves clustered
about the center frequeacy, which move as a group with group velocity v, =
(akfdw)™". This term is cncountered when the physicid length of the medium is
comparable {0 or larger than the distance v from,.

The wave equation is thus given by

1. Infinite plane waves, no absorption, quasi-cw, propagation primarily along
+z

dAM'l_ a-'K”“"m't'l

dz 2R.+1C

Do TT A expliok) (62)
[TE3



Table 1 Units of Tmportant Physica) Parametem Used in Frequency Conversion

Formulas

Faramercr ST uaits Lgs onits

Second urder polarization 2 = Ciw® [P¥] = sClem® = dyn*?lom
= (ergiem’y”

Tlevtric ficld [E] = Vi [E] = sVfom = (exgiem')™

Second order susceptibility [4] = m/V [d] = em¥sC = cmfdyn™*

Vacuum permittivity

Disteniczs, length El=Fl=[]l=m
Speed of Light [} = mis
Wavelength [Nl =m
Wave vector ixj =m "’
Absorplion coetlicient @] = m™
Intensity /1= w/m*
Power [F]=W

[f] =Fm=CV - m

= {em'forg)’ = esu

[Z=[rl=[f]=cm
[c] = cmis
[A] =cm
[#] = con”?
[a] = om™
[7] = ergfe/om*
[¥] = crg/s

al the inpuc of the nonlinear mediura at 2 = 0. The output intensitics of all waves
are then determincd at the 2ad of ibe noniincar mediim a1 z = £. Boundsry
eileets are igoored. When there are two pump waves, it will be understood that
1y, = Fp, and conversion cfficiencies will be in terms of the smaller pump power.,

A. Negligible Pump Depletion

As a first order of approximation, it is assumed that in the frequency conversion
process there is negligible deplefion of the pump heam(s) power. This means

Table 2 Conversion Formulas

PR (S = § X 107P®  {ogn)
E (STh=3 X 10°F {cis)
a (SI) = (3m/31 X 10 @ (cgs)
L (8 =107"L {rgs)
¢ (SI)=107% (cgs)

A (SD) = 107A (cgs)

k (S = 10% (cas)

a (SD =10 (cms)

I (SH=10" (cpm)

P (S =107 (cgs)




Table 3 Conversion Efficiency Formulas in the Infinitc Planc Wave, Nondepleted
Pump Approximation
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ligure 4 Plot of the sing’ Juncliun, which describes the ctfccts of phase mismateh in
fregguency convirsion processes.






