
Chapter 1

Fundamentals

1.1 Characteristics of femtosecond light pulses

Femtosecond light pulses are electromagnetic wave packets and as such are fully

described by the time and space dependent electric field. In the frame of a semi-

classical treatment the propagation of such fields and the interaction with matter are

governed by Maxwell’s equations with the material response given by a macrosco-

pic polarization. In this first chapter we will summarize the essential notations and

definitions used throughout the book. The pulse is characterized by measurable

quantities which can be directly related to the electric field. A complex represen-

tation of the field amplitude is particularly convenient in dealing with propagation

problems of electromagnetic pulses. The next section expands on the choice of

field representation.

1.1.1 Complex representation of the electric field

Let us consider first the temporal dependence of the electric field neglecting its

spatial and polarization dependence, i.e., E(x,y,z, t)= E(t). A complete description

can be given either in the time or the frequency domain. Even though the measured

quantities are real, it is generally more convenient to use complex representation.

For this reason, starting with the real E(t), one defines the complex spectrum of the

field strength Ẽ(Ω), through the complex Fourier transform (F ):

Ẽ(Ω) = F {E(t)} =
∫ ∞

−∞
E(t)e−iΩtdt = |Ẽ(Ω)|eiΦ(Ω) (1.1)

In the definition (1.1), |Ẽ(Ω)| denotes the spectral amplitude andΦ(Ω) is the spectral

phase. Here and in what follows, complex quantities related to the field are typi-

cally written with a tilde.
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Since E(t) is a real function, Ẽ(Ω) = Ẽ∗(−Ω) holds. Given Ẽ(Ω), the time

dependent electric field is obtained through the inverse Fourier transform (F −1):

E(t) = F −1
{
Ẽ(Ω)

}
=

1

2π

∫ ∞

−∞
Ẽ(Ω)eiΩtdΩ (1.2)

The physical meaning of this Fourier transform is that a pulse can be created by

adding a number of waves of different frequency. Figure 1.1 sketches an ultrashort

pulse created by adding continuous waves (cw). The waves are shown to be in

phase at the time t = 0, and add constructively at that point, while destructive inter-

ference defines the temporal extension of the pulse. A single isolated pulse in time

domain is constructed if the frequency difference between two successive waves is

infinitesimal. In the example shown in Fig. 1.1, the frequencies are chosen to be

spaced at equal frequency interval Δω, which implies that the same destructive in-

terference takes place at equal time intervals 2π/Δω. In this picture, the frequency

spectrum is composed of a finite number of δ−functions, to which correspond an

infinite number of pulses in the time domain.

Figure 1.1: Representation of a pulse as a series of cosine waves equally spaced in fre-

quency.

For practical reasons it may not be convenient to use functions which are non-

zero for negative frequencies, as needed in the evaluation of Eq. (1.2). Frequently

a complex representation of the electric field, also in the time domain, is desired.

Both aspects can be satisfied by introducing a complex electric field as

Ẽ+(t) =
1

2π

∫ ∞

0

Ẽ(Ω)eiΩtdΩ (1.3)
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and a corresponding spectral field strength that contains only positive frequencies:

Ẽ+(Ω) = |Ẽ(Ω)|eiΦ(Ω) =

{
Ẽ(Ω) for Ω ≥ 0

0 for Ω < 0
(1.4)

Ẽ+(t) and Ẽ+(Ω) are related to each other through the complex Fourier transform

defined in Eq. (1.1) and Eq. (1.2), i.e.

Ẽ+(t) =
1

2π

∫ ∞

−∞
Ẽ+(Ω)eiΩtdΩ (1.5)

and

Ẽ+(Ω) =

∫ ∞

−∞
Ẽ+(t)e−iΩtdt. (1.6)

The real physical electric field E(t) and its complex Fourier transform can be ex-

pressed in terms of the quantities derived in Eq. (1.5) and Eq. (1.6) and the cor-

responding quantities Ẽ−(t), Ẽ−(Ω) for the negative frequencies. These quantities

relate to the real electric field:

E(t) = Ẽ+(t)+ Ẽ−(t) (1.7)

and its complex Fourier transform:

Ẽ(Ω) = Ẽ+(Ω)+ Ẽ−(Ω) (1.8)

It can be shown that Ẽ+(t) can also be calculated through analytic continuation of

E(t)
Ẽ+(t) = E(t)+ iE′(t) (1.9)

where E′(t) and E(t) are Hilbert transforms of each other. In this sense Ẽ+(t) can be

considered as the complex analytical correspondent of the real function E(t). The

complex electric field Ẽ+(t) is usually represented by a product of an amplitude

function and a phase term:

Ẽ+(t) =
1

2
E(t)eiΓ(t) (1.10)

In most practical cases of interest here the spectral amplitude will be centered

around a mean frequency ω� and will have appreciable values only in a frequency

interval Δω small compared to ω�. In the time domain this suggests the conve-

nience of introducing a carrier frequency ω� and of writing Ẽ+(t) as:

Ẽ+(t) =
1

2
E(t)eiϕeeiϕ(t)eiω�t =

1

2
Ẽ(t)eiω�t (1.11)
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where ϕ(t) is the time dependent phase, Ẽ(t) is called the complex field envelope

and E(t) the real field envelope, respectively. The constant phase term eiϕe is most

often of no relevance, and can be neglected. There are however particular circum-

stances pertaining to very short pulses where the outcome of the pulse interaction

with matter depends on ϕe, often referred to as “carrier to envelope phase” (CEP).

The measurement and control of ϕ0 can therefore be quite important. Figure 1.2

Figure 1.2: Electric field of two extremely short pulses, E(t) =

exp
[
−2ln2(t/τp)2

]
cos(ω�t+ϕ0) with ϕ0 = 0 (solid line) and ϕ0 = π/2 (dashed line).

Both pulses have the same envelope (dotted line). The full width of half maximum of the

intensity envelope, τp, was chosen as τp = π/ω�.

shows the electric field of two pulses with identical E(t) but different CEP ϕe = 0

(left) and ϕe = π/2 (right). It is obvious that the difference can be important in the

case of highly nonlinear processes, such as for instance a seven’s harmonic genera-

tion creating a field proportional to the seventh power of the original field (dotted

green lines).

The electric field can formally be represented in a form similar to Eq. (1.11),

as illustrated by Fig. 1.2, but the mathematical entity does not always correspond

to a physically possible propagating ultrashort pulses. Since the laser pulse repre-

sents a propagating electromagnetic wave packet the dc component of its spectrum

vanishes. Hence the time integral over the electric field is zero.

∫ ∞

−∞
E(t)dt =

∫ ∞

−∞
E(t)e−i(Ω=0)tdt = F {E(t)}Ω=0 = 0. (1.12)

This not the case of the pulse with null CEP (ϕe = 0) and even less for its seventh

harmonic. The convenience of representing pulse envelopes by a Gaussian or Lo-

rentzian or secant hyperbolic envelope fails to be physical for few cycle pulses.

This is illustrated in Fig. 1.3. The Fourier transform of a pulse with real electric

field E(t)cos(ω�t) can be constructed by shifting by ± the carrier frequency the
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Fourier transform of the envelope. Since the spectrum of a Gaussian has an infinite

extension, the two shifted spectra will overlap at zero frequency, a non physical

situation. A pulse of a few optical cycles does exist, but its representation should

start with a real spectrum that has no component near zero frequency. We will

Figure 1.3: A typical pulse representation by, for instance, a Gaussian envelope at a car-

rier frequency ω�. The Fourier transform is constructed by shifting the Fourier transform

of the envelope by ±ω�, resulting in un-physical components at and near zero frequency.

discuss the carrier to envelope phase in more detail in Chapters ?? and ??.

While the description of the field given by Eqs. (1.9) through (1.11) is quite ge-

neral, the usefulness of the concept of an envelope and carrier frequency as defined

in Eq. (1.11) is limited to the cases where the bandwidth is only a small fraction of

the carrier frequency:
Δω

ω�
� 1 (1.13)

For inequality (1.13) to be satisfied, the temporal variation of E(t) and ϕ(t) within

an optical cycle T = 2π/ω� (T ≈ 2 fs for visible radiation) has to be small. The

corresponding requirement for the complex envelope Ẽ(t) is

∣∣∣∣∣ d
dt
Ẽ(t)

∣∣∣∣∣� ω�
∣∣∣Ẽ(t)

∣∣∣ (1.14)

Keeping in mind that today the shortest light pulses contain only a few optical

cycles, one has to carefully check whether a slowly varying envelope and phase can

describe the pulse behavior satisfactorily. If they do, the theoretical description of

pulse propagation and interaction with matter can be greatly simplified by applying

the slowly varying envelope approximation (SVEA), as will be evident later in this

chapter.

Given the spectral description of a signal, Ẽ+(Ω), the complex envelope Ẽ(t) is

simply the inverse transform of the translated spectral field:

Ẽ(t) = E(t)eiϕ(t) =
1

2π

∫ ∞

−∞
2Ẽ+(Ω+ω�)eiΩtdΩ; (1.15)
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Figure 1.4: (a) Electric field, (b) time dependent carrier frequency, (c) spectral amplitude

and (d) spectral phase of a linearly upchirped pulse.
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where the modulus E(t) in Eq. (1.15) represents the real envelope. The optimum

“translation” in the spectral domain ω� is the one that gives the envelope Ẽ(t) with

the least amount of modulation. Spectral translation of Fourier transforms is a

standard technique to reconstruct the envelope of interference patterns, and is used

in Chapter ?? on diagnostic techniques. The Fourier transform of the complex

envelope Ẽ(t) is the spectral envelope function:

Ẽ(Ω) =

∫ ∞

−∞
Ẽ(t)e−iΩtdt = 2

∫ ∞

−∞
Ẽ+(t)e−i(Ω+ω�)tdt. (1.16)

The choice of ω� is such that the spectral amplitude Ẽ(Ω) is centered about the

origin Ω = 0.

Let us now discuss more carefully the physical meaning of the phase function

ϕ(t). The choice of carrier frequency in Eq. (1.11) should be such as to minimize

the variation of phase ϕ(t). The first derivative of the phase factor Γ(t) in Eq. (1.10)

establishes a time dependent carrier frequency (instantaneous frequency):

ω(t) = ω� +
d
dt
ϕ(t). (1.17)

While Eq. (1.17) can be seen as a straightforward definition of an instantaneous

frequency based on the temporal variation of the phase factor Γ(t), we will see in

Section 1.1.5 that it can be rigourously derived from the Wigner distribution. For

dϕ/dt = b = const., a non-zero value of b just means a correction of the carrier

frequency which is now ω′� = ω�+b. For dϕ/dt = f (t), the carrier frequency varies

with time and the corresponding pulse is said to be frequency modulated or chirped.

For d2ϕ/dt2 < (>)0, the carrier frequency decreases (increases) along the pulse,

which then is called down(up)chirped.

From Eq.(1.10) it is obvious that the decomposition of Γ(t) into ω and ϕ(t) is

not unique. The most useful decomposition is one that ensures the smallest dϕ/dt
during the intense portion of the pulse. A common practice is to identify ω� with

the carrier frequency at the pulse peak. A better definition — which is consistent

in the time and frequency domains — is to use the intensity weighted average
frequency:

〈ω〉 =
∫ ∞
−∞ |Ẽ(t)|2ω(t)dt∫ ∞
−∞ |Ẽ(t)|2dt

=

∫ ∞
−∞ |Ẽ+(Ω)|2ΩdΩ∫ ∞
−∞ |Ẽ+(Ω)|2dΩ

(1.18)

The various notations are illustrated in Fig. 1.4 where a linearly up-chirped

pulse is taken as an example. The temporal dependence of the real electric field is

sketched in the top part of Fig 1.4. A complex representation in the time domain

is illustrated with the amplitude and instantaneous frequency of the field. The
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positive and negative frequency components of the Fourier transform are shown in

amplitude and phase in the bottom part of the figure.

1.1.2 Power, energy, and related quantities

Let us imagine the practical situation in which the pulse propagates as a beam

with cross section A, and with E(t) as the relevant component of the electric field.

The (instantaneous) pulse power (in Watt) in a dispersionless material of refractive

index n can be derived from the Poynting theorem of electrodynamics [1] and is

given by

P(t) = ε0cn
∫

A
dS

1

T

∫ t+T/2

t−T/2
E2(t′)dt′ (1.19)

where c is the velocity of light in vacuum, ε0 is the dielectric permittivity and
∫

A dS
stands for integration over the beam cross section. The power can be measured by

a detector (photodiode, photomultiplier etc.) which integrates over the beam cross

section. The temporal response of this device must be short as compared to the

speed of variations of the field envelope to be measured. The temporal averaging is

performed over one optical period T = 2π/ω�. Note that the instantaneous power as

introduced in Eq. (1.19) is then just a convenient theoretical quantity. In a practical

measurement T has to be replaced by the actual response time τR of the detector.

Therefore, even with the fastest detectors available today (τR ≈ 10−13 − 10−12s),

details of the envelope of fs light pulses can not be resolved directly.

A temporal integration of the power yields the energy W (in Joules):

W =

∫ ∞

−∞
P(t′)dt′ (1.20)

where the upper and lower integration limits essentially mean “before” and “after”

the pulse under investigation.

The corresponding quantity per unit area is the intensity (W/cm2):

I(t) = ε0cn
1

T

∫ t+T/2

t−T/2
E2(t′)dt′

=
1

2
ε0cnE2(t) = 2ε0cnẼ+(t)Ẽ−(t) =

1

2
ε0cnẼ(t)Ẽ∗(t) (1.21)

and the energy density per unit area (J/cm2):

W =

∫ ∞

−∞
I(t′)dt′ (1.22)
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Sometimes it is convenient to use quantities which are related to photon numbers,

such as the photon flux F (photons/s) or the photon flux density F (photons/s/cm2):

F (t) =
P(t)
�ω�

and F(t) =
I(t)
�ω�

(1.23)

where �ω� is the energy of one photon at the carrier frequency.

The spectral properties of the light are typically obtained by measuring the

intensity of the field, without any time resolution, at the output of a spectrometer.

The quantity, called spectral intensity, that is measured is:

S (Ω) =| η(Ω)Ẽ+(Ω) |2 (1.24)

where η is a scaling factor which accounts for losses, geometrical influences, and

the finite resolution of the spectrometer. Assuming an ideal spectrometer, |η|2 can

be determined from the requirement of energy conservation:

|η|2
∫ ∞

−∞
| Ẽ+(Ω) |2 dΩ = 2ε0cn

∫ ∞

−∞
Ẽ+(t)Ẽ−(t)dt (1.25)

and Parseval’s theorem [2]:

∫ ∞

−∞
|Ẽ+(t)|2dt =

1

2π

∫ ∞

0

| Ẽ+(Ω) |2 dΩ (1.26)

from which follows |η|2 = ε0cn/π. The complete expression for the spectral inten-

sity [from Eq. (1.24)] is thus:

S (Ω) =
ε0cn
4π

∣∣∣Ẽ(Ω−ω�)
∣∣∣2 . (1.27)

Figure 1.5 gives examples of typical pulse shapes and the corresponding spectra.

The complex quantity Ẽ+ will be used most often throughout the book to

describe the electric field. Therefore, to simplify notations, we will omit the su-

perscript “+”whenever this will not cause confusion.

1.1.3 Pulse duration and spectral width

Unless specified otherwise, we define the pulse duration τp as the full width at

half maximum (FWHM) of the intensity profile, |Ẽ(t)|2, and the spectral width

Δωp as the FWHM of the spectral intensity |Ẽ(Ω)|2. Making that statement is an

obvious admission that other definitions exist. Precisely because of the difficulty of

asserting the exact pulse shape, standard waveforms have been selected. The most
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Figure 1.5: Temporal pulse profiles and the corresponding spectra (normalized).

———— Gaussian pulse E(t) ∝ exp
[
−1.385(t/τp)2

]
– – – – – – – sech - pulse E(t) ∝ sech[1.763(t/τp)]

· · · · · · · · · Lorentzian pulse E(t) ∝ [1+1.656(t/τp)2]−1

———- asymm. sech pulse E(t) ∝ [exp
(
t/τp

)
+ exp

(
−3t/τp

)
]−1

commonly cited are the Gaussian, for which the temporal dependence of the field

is:

Ẽ(t) = Ẽ0 exp{−(t/τG)2} (1.28)

and the secant hyperbolic:

Ẽ(t) = Ẽ0 sech(t/τs). (1.29)

The parameters τG = τp/
√

2ln2 and τs = τp/1.76 are generally more convenient to

use in theoretical calculations involving pulses with these assumed shapes than the

FWHM of the intensity, τp.

Since the temporal and spectral characteristics of the field are related to each

other through Fourier transforms, the bandwidth Δωp and pulse duration τp can-

not vary independently of each other. There is a minimum duration-bandwidth

product:

Δωp τp = 2πΔνpτp ≥ 2πcB. (1.30)

cB is a numerical constant on the order of 1, depending on the actual pulse shape.

Some examples are shown in Table 1.1. The equality holds for pulses without

frequency modulation (unchirped) which are called “bandwidth limited” or “Fou-

rier limited”. Such pulses exhibit the shortest possible duration at a given spectral

width and pulse shape. We refer the reader to Section 1.1.5, for a more general
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Shape Intensity τp Spectral Δωp cB 〈τp〉〈ΔΩp〉
profile I(t) FWHM profile S (Ω) FWHM MSQ

Gauss e−2(t/τG)2
1.177τG e−

(ΩτG )2

2 2.355/τG 0.441 0.5

sech sech2(t/τs) 1.763τs sech2 πΩτs
2 1.122/τs 0.315 0.525

Lorentz [1+ (t/τL)2]−2 1.287τL e−2|Ω|τL 0.693/τL 0.142 0.7

asym.
[
et/τa + e−3t/τa

]−2
1.043τa sech πΩτa2 1.677/τa 0.278

sech

square 1 for |t/τr | ≤ 1 τr sinc2(Ωτr) 2.78/τr 0.443 3.27

, 0 elsewhere

Table 1.1: Examples of standard pulse profiles. The spectral values given are for unmo-

dulated pulses. Note that the Gaussian is the shape with the minimum product of mean

square deviation (MSQ) of the intensity and spectral intensity.

discussion of the uncertainty relation between pulse and spectral width based on

mean-square deviations.

The shorter the pulse duration, the more difficult it becomes to assert its de-

tailed characteristics. In the femtosecond domain, even the simple concept of pulse

duration seems to fade away in a cloud of mushrooming definitions. Part of the pro-

blem is that it is difficult to determine the exact pulse shape. For single pulses, the

typical representative function that is readily accessible to the experimentalist is

the intensity autocorrelation:

Aint(τ) =

∫ ∞

−∞
I(t)I(t−τ)dt (1.31)

The Fourier transform of the correlation (1.31) is the real function:

Aint(Ω) = Ĩ(Ω)Ĩ∗(Ω) (1.32)

where the notation Ĩ(Ω) is the Fourier transform of the function I(t), which should

not be confused with the spectral intensity S (Ω). The fact that the autocorrelation

function Aint(τ) is symmetric, hence its Fourier transform is real [2], implies that

little information about the pulse shape can be extracted from such a measurement.

Furthermore, the intensity autocorrelation (1.31) contains no information about the

pulse phase or coherence. This point is discussed in detail in Chapter ??.
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1.1.4 Gaussian pulses

Having introduced essential pulse characteristics, it seems convenient to discuss an

example to which we can refer to in later chapters. We choose a Gaussian pulse

with linear chirp. This choice is one of analytical convenience: the Gaussian shape

is not the most commonly encountered temporal shape. The electric field is given

by

Ẽ(t) = E0e−(1+ia)(t/τG)2

(1.33)

with the pulse duration

τp =
√

2ln2 τG. (1.34)

Note that with the definition (1.33) the chirp parameter a is positive for a downchirp

(dϕ/dt = −2at/τ2G). The Fourier transform of (1.33) yields

Ẽ(Ω) =
E0

√
πτG

4√
1+a2

exp

{
iΦ− Ω2τG

2

4(1+a2)

}
(1.35)

with the spectral phase given by:

φ(Ω) = −1

2
arctan(a)+

aτG2

4(1+a2)
Ω2 (1.36)

It can be seen from Eq. (1.35) that the spectral intensity is the Gaussian:

S (ω� +Ω) =
|η|2πE2

0
τ2G√

1+a2
exp

{
− Ω2τG

2

2(1+a2)

}
(1.37)

with a FWHM given by:

Δωp = 2πΔνp =
1

τG

√
8ln2(1+a2) (1.38)

For the pulse duration-bandwidth product we find

Δνpτp =
2ln2

π

√
1+a2 (1.39)

Obviously, the occurrence of chirp (a � 0) results in additional spectral compo-

nents which enlarge the spectral width and lead to a duration bandwidth product

exceeding the Fourier limit (2 ln2/π ≈ 0.44) by a factor
√

1+a2, consistent with

Eq. (1.30). We also want to point out that the spectral phase given by Eq. (1.36)

changes quadratically with frequency if the input pulse is linearly chirped. While

this is exactly true for Gaussian pulses as can be seen from Eq. (1.36), it holds

approximately for other pulse shapes. In the next section, we will develop a con-

cept that allows one to discuss the pulse duration-bandwidth product from a more

general point of view and independent of the actual pulse and spectral profile.
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1.1.5 Wigner distribution, second order moments, uncertainty relati-
ons

Wigner distribution

The Fourier transform as defined in Section 1.1.1 is a widely used tool in beam and

pulse propagation. In beam propagation, it leads directly to the far field pattern of

a propagating beam (Fraunhofer approximation) of arbitrary transverse profile. Si-

milarly, the Fourier transform leads directly to the pulse temporal profile, following

propagation through a dispersive medium, as we will see at the end of this chap-

ter. The Fourier transform gives a weighted average of the spectral components

contained in a signal. Unfortunately, the exact spatial or temporal location of these

spectral components is hidden in the phase of the spectral field, which is most often

not readily available. It is not straightforward to look at the electric field in time

and make a statement about the spectral components (and vice versa) without ac-

tually taking a Fourier transform. The Wigner function tries to solve this problem

by creating a mathematical entity which describes the time and spectral compo-

nents at the same time, fullfilling the need for new two-dimensional representation

of the waves in either the plane of space–wave vector, or time–angular frequency.

Such a function was introduced by Wigner [3] and applied to quantum mechanics.

The same distribution was applied to the area of signal processing by Ville [4].

Properties and applications of the Wigner distribution in Quantum Mechanics and

Optics are reviewed in two recent books by Schleich [5] and Cohen [6]. A clear

analysis of the close relationship between Quantum Mechanics and Optics can be

found in ref. [7]. In the time–angular-frequency domain, the Wigner distribution

of a function Ẽ(t) is defined by1:

WE(t,Ω) =

∫ ∞

−∞
Ẽ
(
t+

s
2

)
Ẽ∗

(
t− s

2

)
e−iΩsds

=
1

2π

∫ ∞

−∞
Ẽ
(
Ω+

s
2

)
Ẽ∗

(
Ω− s

2

)
eitsds (1.40)

One can see that the definition of the Wigner function is a local (i.e. at a given

time) representation of the spectrum of the signal, since time integration yields the

spectral amplitude: ∫ ∞

−∞
WE(t,Ω)dt =

∣∣∣Ẽ(Ω)
∣∣∣2 . (1.41)

1t and Ω are conjugated variables as in Fourier transforms. The same definitions can be made in

the space–wavevector domain, where the variables are then x and k.



16 CHAPTER 1. FUNDAMENTALS

It is also a local (i.e. at a given spectral component) representation of the signal,

since frequency integration yields the temporal intensity:

∫ ∞

−∞
WE(t,Ω)dΩ = 2π

∣∣∣Ẽ(t)
∣∣∣2 (1.42)

In the notation WE , the subscript E refers to the use of the instantaneous complex

electric field Ẽ in the definition of the Wigner function, rather than the electric field

envelope Ẽ = Eexp
[
iω�t+ iϕ(t)

]
defined at the beginning of this chapter. There is a

simple relation between the Wigner distribution WE of the instantaneous field Ẽ,

and the Wigner distribution WE of the real envelope amplitude E:

WE(t,Ω) =

∫ ∞

−∞
E
(
t+

s
2

)
ei[ω�(t+s/2)+ϕ(t+s/2)]

× E∗
(
t− s

2

)
e−i[ω�(t−s/2)+ϕ(t−s/2)]e−iΩsds

=

∫ ∞

−∞
E
(
t+

s
2

)
E∗

(
t− s

2

)
e−i[Ω−(ω�+ϕ̇(t))]sds

= WE{t, [Ω− (ω� + ϕ̇)]}. (1.43)

We will drop the subscript “E” and “E” for the Wigner function when the dis-

tinction is not essential.

The intensity and spectral intensities are directly proportional to frequency

and time integrations of the Wigner function. In accordance with Eqs. (1.21) and

Eq. (1.27):

1

2
√
μ0/ε

∫ ∞

−∞
WE(t,Ω)dΩ = I(t) (1.44)

1

2
√
μ0/ε

∫ ∞

−∞
WE(t,Ω)dt = S (Ω). (1.45)

Figure 1.6 shows the Wigner distribution of an unchirped Gaussian pulse ((a),

left) versus a Gaussian pulse with a linear chirp (quadratic phase modulation) ((b),

right). The introduction of a quadratic phase modulation leads to a tilt (rotation)

and flattening of the distribution. This distortion of the Wigner function results

directly from the relation (1.43) applied to a Gaussian pulse. We have defined in

Eq. (1.33) the phase of the linearly chirped pulse as ϕ(t) = −at2/τ2G. If Wunchirp

is the Wigner distribution of the unchirped pulse, the linear chirp transforms that

function into:

Wchirp =Wunchirp(t,Ω− 2at
τ2G

), (1.46)
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Figure 1.6: Wigner distribution for a Gaussian pulse. Left (a), the phase function ϕ(t) =
ϕ0 is a constant. On the right (b), Wigner distribution for a linearly chirped pulse, i.e. with

a quadratic phase modulation ϕ(t) = αt2. The elliptical curves are lines of equal Wigner

function intensity. The intensity is graded from 0 (black) to the peak (white).

hence the tilt observed in Fig. 1.6. Mathematical tools have been developed to pro-

duce a pure rotation of the phase space (t, Ω). We refer the interested reader to the

literature for details on the Wigner distribution and in particular on the fractional

Fourier transform [8, 9]. It has been shown that such a rotation describes the propa-

gation of a pulse through a medium with a quadratic dispersion (index of refraction

being a quadratic function of frequency) [10].

Moments of the electric field

It is mainly history and convenience that led to the adoption of the FWHM of

the pulse intensity as the quantity representative of the pulse duration. Sometimes

pulse duration and spectral width defined by the FWHM values are not suitable

measures. This is, for instance, the case in pulses with substructure or broad wings

causing a considerable part of the energy to lie outside the range given by the

FWHM. In these cases it may be preferable to use averaged values derived from

the appropriate second–order moments. It appears in fact, as will be shown in

examples of propagation, that the second moment of the field distribution is a better

choice.

For the sake of generality, let us designate by f (x) the field as a function of the

variable x (which can be the transverse coordinate, transverse wave vector, time or

frequency). The moment of order n for the quantity x with respect to intensity is
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defined as:

〈xn〉 =
∫ ∞
−∞ xn| f (x)|2dx∫ ∞
−∞ | f (x)|2dx

(1.47)

The first order moment, 〈x〉, is the “center of mass” of the intensity distribution,

and is most often chosen as reference, in such a way as to have a zero value. For

example, the center of the transverse distribution will be on axis, x = 0, or a Gaus-

sian temporal intensity distribution E0 exp
[
−(t/τG)2

]
will be centered at t = 0. A

good criterium for the width of a distribution is the mean square deviation (MSQ):

〈Δx〉 =
√
〈x2〉− 〈x〉2. (1.48)

The explicit expressions in the time and frequency domains are:

〈τp〉 = 〈Δt〉 =
⎡⎢⎢⎢⎢⎢⎣ 1

W

∫ ∞

−∞
t2I(t)dt− 1

W2

(∫ ∞

−∞
tI(t)dt

)2
⎤⎥⎥⎥⎥⎥⎦

1
2

(1.49)

〈Δωp〉 = 〈ΔΩ〉 =
⎡⎢⎢⎢⎢⎢⎣ 1

W

∫ ∞

−∞
Ω2S (Ω)dΩ− 1

W2

(∫ ∞

−∞
ΩS (Ω)dΩ

)2
⎤⎥⎥⎥⎥⎥⎦

1
2

(1.50)

where S (Ω) is the spectral intensity defined in Eq. (1.24). Whenever appropriate

we will assume that the first-order moments are zero, which yields 〈Δx〉 = √〈x2〉.
The second moments can also be defined using the Wigner distribution [Eq. (1.40)]:

〈t2〉 =

∫ ∫ ∞
−∞ t2WE(t,Ω)dtdΩ∫ ∫ ∞
−∞WE(t,Ω)dtdΩ

=

∫ ∞
−∞ t2|Ẽ(t)|2dt∫ ∞
−∞ |Ẽ(t)|2dt

(1.51)

〈Ω2〉 =

∫ ∫ ∞
−∞Ω

2WE(t,Ω)dtdΩ∫ ∫ ∞
−∞WE(t,Ω)dtdΩ

=

∫ ∞
−∞Ω

2|Ẽ(Ω)|2dΩ∫ ∞
−∞ |Ẽ(Ω)|2dΩ

(1.52)

While the above equations do not bring anything new, the Wigner distribution lets

us define another quantity, which describes the coupling between conjugated vari-

ables:

〈t,Ω〉 =
∫ ∫ ∞

−∞(t−〈t〉)(Ω−〈Ω〉)WE(t,Ω)dtdΩ∫ ∫ ∞
−∞WE(t,Ω)dtdΩ

. (1.53)

A non-zero 〈t,Ω〉 implies that the center of mass of the spectral intensity evolves

with time, as in Fig. 1.6. One can thus define an instantaneous frequency:

ω(t) =

∫ ∞
−∞ΩWE(t,Ω)dΩ∫ ∞
−∞WE(t,Ω)dΩ

. (1.54)
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By substituting the definition of the Wigner distribution Eq. (1.40) in Eq. (1.54), it

is possible to demonstrate rigourously the relation (1.17). Indeed, substituting the

definition (1.43) in Eq. (1.54) leads to:

ω(t) =

∫ ∞
−∞ΩWE[t,Ω− (ω� + ϕ̇)]dΩ∫ ∞

−∞WE(t,Ω)dΩ

=

∫ ∞
−∞[Ω′+ω� + ϕ̇(t)]WE[t,Ω′]dΩ′∫ ∞

−∞WE(t,Ω)dΩ
= ω� + ϕ̇(t), (1.55)

where we used the fact that
∫
Ω′WE(t,Ω′)dΩ′ = 0.

There is a well known uncertainty principle between the second moment of

conjugated variables. If k is the Fourier-conjugated variable of x, it is shown in

Appendix A that:

〈x2〉〈k2〉 = M4

4
≥ 1

4
, (1.56)

where we have defined a shape factor “M2”, which has been extensively used to

describe the departure of beam profile from the “ideal Gaussian” [11]. This relation

can be applied to time and frequency:

〈t2〉〈Ω2〉 = M4

4
≥ 1

4
. (1.57)

Equality only holds for a Gaussian pulse (beam) shape free of any phase modu-

lation, which implies that the Wigner distribution for a Gaussian shape occupies

the smallest area in the time/frequency plane. It is also important to note that

the uncertainty relations (1.56) and (1.57) only hold for the pulse widths defined

as the mean square deviation. For a Gaussian pulses defined by its electric field

E(t) = E0 exp
[
−(t/τG)2

]
:

〈t2〉 =
τ2G
4

〈Ω2〉 =
1

τ2G
. (1.58)

The product of the two numbers is indeed 1/4, the minimum of the inequality (1.57).

while for the products of the full width at half maximum (FWHM) of the inten-

sity and spectral intensity (generally referred to as the “time-bandwidth product”

cB = τpΔνp = 0.441. In fact, the pulse time-bandwidth product product is not mi-
nimum for a Gaussian pulse, as illustrated in Table 1.1, which gives the value of
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cB for various pulse shapes without phase modulation. It remains that, for a given

pulse shape, cB is the smallest for pulses without frequency modulation (unchirped)

which are called “bandwidth limited” or “Fourier limited”. Such pulses exhibit the

shortest possible duration at a given spectral width and pulse shape.

If there is a frequency variation across a pulse, its spectrum will contain additi-

onal spectral components. Consequently, the modulated pulse possesses a spectral

width which is larger than the Fourier limit given by column five in Table 1.1.

Relation to Quantum Mechanics

The Heisenberg uncertainty relation is contained directly in Eqs (1.56) and (1.57),

when taking into account particle wave duality. Indeed, a moving particle with

energy W = p2/2m has an associated wave packet centered at the frequency ω =

W/�. This is where the Plank constant enters into the uncertainty relation (1.57).

The wave packet has a frequency distribution of second moment 〈Ω2〉, related by

inverse Fourier transform to the temporal distribution, with a second moment in

time 〈t2〉, leading to the relation:

〈t2〉〈W2〉 = M4

4
≥ �

2

4
. (1.59)

In space, the wave packet representing the particle has a momentum k = p/�.
Hence, Equation (1.56) applied to the wave representation of a particle is the Hei-

senberg uncertainty relation in space:

〈x2〉〈k2〉 = M4

4
≥ �

2

4
, (1.60)

Chirped pulses

A quadratic phase modulation plays an essential role in light propagation, be it in

time or space. Since a spherical wavefront can be approximated by a quadratic

phase (ϕ(x) ∝ x2, where x is the transverse dimension) near any propagation axis

of interest, imparting a quadratic spatial phase modulation will lead to focusing or

de-focusing of a beam. The analogue is true in time: imparting a quadratic phase

modulation (ϕ(t) ∝ t2) will lead to pulse compression or broadening after propaga-

tion through a dispersive medium. These problems relating to pulse propagation

will be discussed in several sections and chapters of this book. In this section

we attempt to clarify quantitatively the relation between a quadratic chirp in the

temporal or frequency space, and the corresponding broadening of the spectrum

or pulse duration, respectively. The results are interchangeable from frequency to

temporal space.
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Let us first assume that a laser pulse, initially unchirped, propagates through a

dispersive material that leaves the pulse spectrum, |Ẽ(Ω)|2, unchanged but produces

a quadratic phase modulation in the frequency domain. The pulse spectrum is cen-

tered at the average frequency 〈Ω〉 = ω�. The average frequency does not change,

hence the first nonzero term in the Taylor expansion of φ(Ω) is

φ(Ω) =
1

2

d2φ

dΩ2

∣∣∣∣∣∣
0

〈Ω2〉, (1.61)

where φ(Ω) determines the phase factor of Ẽ(Ω):

Ẽ(Ω) = E(Ω)eiφ(Ω). (1.62)

The first and second order moments are, according to the definitions (1.47):

〈t〉 =
∫ ∞
−∞ tẼ(t)Ẽ(t)∗dt∫ ∞
−∞ |Ẽ(t)|2dt

=

∫ ∞
−∞

dẼ(Ω)
dΩ Ẽ∗(Ω)dΩ∫ ∞

−∞ |Ẽ(Ω)|2dΩ
=

〈
dφ
dΩ

〉
(1.63)

and

〈t2〉 =

∫ ∞
−∞ tẼ(t)tẼ(t)∗dt∫ ∞
−∞ |Ẽ(t)|2dt

=

∫ ∞
−∞

∣∣∣∣dẼ(Ω)
dΩ

∣∣∣∣2 dΩ∫ ∞
−∞ |Ẽ(t)|2dt

=

∫ ∞
−∞

[
dE(Ω)

dΩ

]2
dΩ∫ ∞

−∞ |Ẽ(Ω)|2dΩ
+

〈(
dφ
dΩ

)2〉
. (1.64)

It is left to a problem at the end of this chapter to derive these results. Since the

initial pulse was unchirped and its spectral amplitude is not affected by propagation

through the transparent medium, the first term in Eq. (1.64) represents the initial

second order moment 〈t2〉0. Substituting the expression for the quadratic phase

Eq. (1.61) into Eq. (1.47) for the first order moment, we find from Eq. (1.64):

〈t2〉 = 〈t2〉0+
[

d2φ

dΩ2

∣∣∣∣∣∣
0

]2

〈Ω2〉. (1.65)

The frequency chirp introduces a temporal broadening (of the second order mo-

ment) directly proportional to the square of the chirp coefficient,
[

d2φ

dΩ2

∣∣∣∣
0

]2

.

Likewise we can analyze the situation where a temporal phase modulation

ϕ(t) = dϕ
dt

∣∣∣∣
0

t2 is impressed upon the pulse while the pulse envelope, |Ẽ(t)|2, re-

mains unchanged. This temporal frequency modulation or chirp, characterized by



22 CHAPTER 1. FUNDAMENTALS

the second derivative in the middle (center of mass) of the pulse, leads to a spectral

broadening given by:

〈Ω2〉 = 〈Ω2〉0+
[

d2ϕ

dt2

∣∣∣∣∣∣
0

]2

〈t2〉 (1.66)

where 〈Ω2〉0 refers to the spectrum of the input pulse and 〈t2〉 is the (constant)

second-order moment of time.

Equations (1.65) and (1.66) demonstrate the advantage of using the mean square

deviation to define the pulse duration and bandwidth, since it shows a simple rela-

tion between the broadening in the time or spectral domain, due to a chirp in the

spectral or time domain, respectively independent of the pulse and spectral shape.

For the two different situations described by Eqs. (1.65) and (1.66), we can apply

the uncertainty relation, Eq. (1.57),

〈t2〉〈Ω2〉 = M4

4
κc ≥ 1

4
. (1.67)

We have introduced a factor of chirp κc, equal to

κc = 1+
M4

4〈t2〉2
0

[
d2φ

dΩ2

∣∣∣∣∣∣
0

]2

(1.68)

in case of a frequency chirp and constant spectrum, or

κc = 1+
M4

4〈Ω2〉2
0

[
d2ϕ

dt2

∣∣∣∣∣∣
0

]2

(1.69)

in case of a temporal chirp and constant pulse envelope.

In summary, using the mean square deviation to define the pulse duration and

bandwidth:

• the duration—bandwidth product
√〈t2〉〈Ω2〉 is minimum (0.5) for a Gaus-

sian pulse shape, without phase modulation.

• For any pulse shape, one can define a shape factor M2 equal to the minimum

duration—bandwidth product for that particular shape.

• Any quadratic phase modulation — or linear chirp — whether in frequency

or time, increases the bandwidth duration product by a chirp factor κc. The

latter increases proportionally to the second derivative of the phase modula-

tion, whether in time or in frequency.
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1.2 Pulse propagation

So far we have considered only temporal and spectral characteristics of light pulses.

In this subsection we shall be interested in the propagation of such pulses through

matter. This is the situation one always encounters when working with electromag-

netic wave packets (at least until somebody succeeds in building a suitable trap).

The electric field, now considered in its temporal and spatial dependence, is again

a suitable quantity for the description of the propagating wave packet. In view

of the optical materials that will be investigated, we can neglect external charges

and currents and confine ourselves to nonmagnetic permeabilities and uniform me-

dia. A wave equation can be derived for the electric field vector E from Maxwell

equations (see for instance Ref. [12]) which in Cartesian coordinates reads

(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(x,y,z, t) = μ0

∂2

∂t2
P(x,y,z, t) , (1.70)

where μ0 is the magnetic permeability of free space. The source term of Eq. (1.70)

contains the polarization P and describes the influence of the medium on the field

as well as the response of the medium. Usually the polarization is decomposed into

two parts:

P = PL +PNL. (1.71)

The decomposition of Eq. (1.71) is intended to distinguish a polarization that varies

linearly (PL) from one that varies nonlinearly (PNL) with the field. Historically, PL

represents the medium response in the frame of “ordinary” optics, e.g., classical

optics [13], and is responsible for effects such as diffraction, dispersion, refraction,

linear losses and linear gain. Frequently, these processes can be attributed to the

action of a host material which in turn may contain sources of a nonlinear polariza-

tion PNL. The latter is responsible for nonlinear optics [14, 15, 16] which includes,

for instance, saturable absorption and gain, harmonic generation and Raman pro-

cesses.

As will be seen in Chapters 3 and ??, both PL and in particular PNL are often

related to the electric field by complicated differential equations. One reason is that

no physical phenomenon can be truly instantaneous. In this chapter we will omit

PNL. Depending on the actual problem under consideration, PNL will have to be

specified and added to the wave equation as a source term.

1.2.1 The reduced wave equation

Equation (1.70) is of rather complicated structure and in general can solely be

solved by numerical methods. However, by means of suitable approximations and
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simplifications, one can derive a “reduced wave equation” which will enable us to

deal with many practical pulse propagation problems in a rather simple way. We

assume the electric field to be linearly polarized and propagating in the z-direction

as a plane wave, i.e., the field is uniform in the transverse x,y direction. The wave

equation has now been simplified to:

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = μ0

∂2

∂t2
PL(z, t) (1.72)

As known from classical electrodynamics [12] the linear polarization of a medium

is related to the field through the dielectric susceptibility χ. In the frequency dom-

ain we have

P̃L(Ω,z) = ε0 χ(Ω)Ẽ(Ω,z) (1.73)

which is equivalent to a convolution integral in the time domain

PL(t,z) = ε0

∫ t

−∞
dt′χ(t′)E(z, t− t′). (1.74)

Here ε0 is the permittivity of free space. The finite upper integration limit, t,
expresses the fact that the response of the medium must be causal. For a non-

dispersive medium (which implies an “infinite bandwidth” for the susceptibility,

χ(Ω) =const.) the medium response is instantaneous, i.e., memory free. In gene-

ral, χ(t) describes a finite response time of the medium which, in the frequency

domain, means nonzero dispersion. This simple fact has important implications

for the propagation of short pulses and time varying radiation in general. We will

refer to this point several times in later chapters — in particular when dealing with

coherent interaction.

The Fourier transform of (1.72) together with (1.73) yields

[
∂2

∂z2
+Ω2ε(Ω)μ0

]
Ẽ(z,Ω) = 0 (1.75)

where we have introduced the dielectric constant

ε(Ω) = [1+χ(Ω)]ε0. (1.76)

For now we will assume a real susceptibility and dielectric constant. Later we will

discuss effects associated with complex quantities. The general solution of (1.75)

for the propagation in the +z direction is

Ẽ(Ω,z) = Ẽ(Ω,0)e−ik(Ω)z, (1.77)
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where the propagation constant k(Ω) is determined by the dispersion relation of

linear optics

k2(Ω) = Ω2ε(Ω)μ0 =
Ω2

c2
n2(Ω), (1.78)

and n(Ω) is the refractive index of the material. For further consideration we ex-

pand k(Ω) about the carrier frequency ω�

k(Ω) = k(ω�)+δk, (1.79)

where

δk =
dk
dΩ

∣∣∣∣∣
ω�

(Ω−ω�)+ 1

2

d2k
dΩ2

∣∣∣∣∣∣
ω�

(Ω−ω�)2+ . . . (1.80)

and write Eq. (1.77) as

Ẽ(Ω,z) = Ẽ(Ω,0)e−ik�ze−iδk z, (1.81)

where k2
� = ω

2
� ε(ω�)μ0 = ω

2
�n

2(ω�)/c2. In most practical cases of interest, the Fou-

rier amplitude will be centered around a mean wave vector k�, and will have ap-

preciable values only in an interval Δk small compared to k�. In analogy to the

introduction of an envelope function slowly varying in time, after the separation of

a rapidly oscillating term, cf. Eqs. (1.11)– (1.14), we can define now an amplitude

which is slowly varying in the spatial coordinate

Ẽ(Ω,z) = Ẽ(Ω+ω�,0)e−iδk z. (1.82)

Again, for this concept to be useful we must require that∣∣∣∣∣ d
dz
Ẽ(Ω,z)

∣∣∣∣∣� k�
∣∣∣Ẽ(Ω,z)

∣∣∣ (1.83)

which implies a sufficiently small wave number spectrum∣∣∣∣∣Δk
k�

∣∣∣∣∣� 1. (1.84)

In other words, the pulse envelope must not change significantly while travelling

through a distance comparable with the wavelength λ� = 2π/ω�. Fourier transfor-

ming of Eq. (1.81)) into the time domain gives

Ẽ(t,z) =
1

2

{
1

π

∫ ∞

−∞
dΩ Ẽ(Ω,0)e−iδk zei(Ω−ω�)t

}
ei(ω�t−k�z) (1.85)

which can be written as

Ẽ(t,z) =
1

2
Ẽ(t,z)ei(ω�t−k�z) (1.86)
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where Ẽ(t,z) is now the envelope varying slowly in space and time, defined by the

term in the curled brackets in Eq. (1.85).

Further simplification of the wave equation requires a corresponding equation

for Ẽ utilizing the envelope properties. Only a few terms in the expansion of k(Ω)

and ε(Ω), respectively, will be considered. To this effect we expand ε(Ω) as series

around ω�, leading to the following form for the linear polarization (1.73)

P̃L(Ω,z) =

⎛⎜⎜⎜⎜⎜⎝ε(ω�)− ε0+
∞∑

n=1

1

n!

dnε

dΩn

∣∣∣∣∣
ω�

(Ω−ω�)n

⎞⎟⎟⎟⎟⎟⎠ Ẽ(Ω,z). (1.87)

In terms of the pulse envelope, the above expression corresponds in the time dom-

ain to

P̃L(t,z) =
1

2

{
[ε(ω�)− ε0]Ẽ(t,z)

+

∞∑
n=1

(−i)n ε
(n)(ω�)

n!

∂n

∂tn Ẽ(t,z)
}
ei(ω�t−k�z), (1.88)

where ε(n)(ω�) =
∂n

∂Ωn ε
∣∣∣
ω�

. The term in the curled brackets defines the slowly va-

rying envelope of the polarization, P̃L. The next step is to replace the electric field

and the polarization in the wave equation (1.72) by Eq. (1.85) and Eq. (1.88), re-

spectively. We transfer thereafter to a coordinate system (η,ξ) moving with the

group velocity �g =
(

dk
dΩ

∣∣∣
ω�

)−1
, which is the standard transformation to a “retarded”

frame of reference:

ξ = z η = t− z
�g

(1.89)

and
∂

∂z
=
∂

∂ξ
− 1

�g

∂

∂η
;

∂

∂t
=
∂

∂η
. (1.90)

A straightforward calculation leads to the final result:

∂

∂ξ
Ẽ− i

2
k′′�
∂2

∂η2
Ẽ+D = − i

2k�

∂

∂ξ

(
∂

∂ξ
− 2

�g

∂

∂η

)
Ẽ (1.91)

The quantity

D = − iμ0

2k�

∞∑
n=3

(−i)n

n!

[
ω2
� ε

(n)(ω�)−2nω�ε(n−1)(ω�)

+ n(n−1)ε(n−2)(ω�)
] ∂n

∂ηn Ẽ (1.92)
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contains dispersion terms of higher order, and has been derived by taking directly

the second order derivative of the polarization defined by the product of envelope

and fast oscillating terms in Eq. (1.88). The indices of the three resulting terms have

been re-defined to factor out a single derivative of order (n) of the field envelope.

The second derivative of k:

k′′� =
∂2k
∂Ω2

∣∣∣∣∣∣
ω�

= − 1

�2g

d�g
dΩ

∣∣∣∣∣∣
ω�

=
1

2k�

⎡⎢⎢⎢⎢⎣ 2

�2g
−2μ0ε(ω�)−4ω�μ0ε

(1)(ω�)−ω2
�μ0ε

(2)(ω�)

⎤⎥⎥⎥⎥⎦ (1.93)

is the group velocity dispersion (GVD) parameter. It should be mentioned that the

GVD is usually defined as the derivative of �g with respect to λ, d�g/dλ, related to

k′′ through

d�g
dλ

=
Ω2�2g

2πc
d2k
dΩ2
. (1.94)

So far we have not made any approximations and the structure of Eq. (1.91) is

still rather complex. However, we can exploit at this point the envelope proper-

ties (1.14) and (1.83), which, in this particular situation, imply:∣∣∣∣∣∣
1

k�

(
∂

∂ξ
− 2

�g

∂

∂η

)
Ẽ
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1

k�

(
∂

∂z
− 1

�g

∂

∂t

)
Ẽ
∣∣∣∣∣∣�

∣∣∣Ẽ∣∣∣ (1.95)

The right–hand side of (1.91) can thus be neglected if the prerequisites for introdu-

cing pulse envelopes are fulfilled. This procedure is called slowly varying envelope

approximation (SVEA) and reduces the wave equation to first–order derivatives

with respect to the spatial coordinate.

If the propagation of very short pulses is computed over long distances, the

cumulative error introduced by neglecting the right hand side of Eq. (1.91) may be

significant. In those cases, a direct numerical treatment of the second order wave

equation is required.

Further simplifications are possible for a very broad class of problems of practi-

cal interest, where the dielectric constant changes slowly over frequencies within

the pulse spectrum. In those cases, terms with n ≥ 3 can be omitted too (D = 0),

leading to a greatly simplified reduced wave equation:

∂

∂ξ
Ẽ(η,ξ)− i

2
k′′�
∂2

∂η2
Ẽ(η,ξ) = 0 (1.96)

which describes the evolution of the complex pulse envelope as it propagates through

a loss-free medium with GVD. The reader will recognize the structure of the one–

dimensional Schrödinger equation.
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1.2.2 Retarded frame of reference

In the case of zero GVD [k′′� = 0 in Eq. (1.96)], the pulse envelope does not change

at all in the system of local coordinates (η,ξ). This illustrates the usefulness of

introducing a coordinate system moving at the group velocity. In the laboratory

frame, the pulse travels at the group velocity without any distortion.

In dealing with short pulses as well as in dealing with white light (see Chap-

ter 2) the appropriate “retarded frame of reference” is moving at the group rather

than at the wave (phase) velocity. Indeed, while a monochromatic wave of fre-

quency Ω travels at the phase velocity �p(Ω) = c/n(Ω), it is the superposition of

many such waves with differing phase velocities that leads to a wave packet (pulse)

propagating with the group velocity. The importance of the frame of reference mo-

ving at the group velocity is such that, in the following chapters, the notation z and

t will be substituted for ξ and η, unless the laboratory frame is explicitly specified.

Some propagation problems — such as the propagation of coupled waves in

nonlinear crystals discussed in Chapter 3 — are more appropriately treated in the

frequency domain. As a simple exercise, let us derive the group velocity directly

from the solution of the wave equation in the form of Eq. (1.81)

Ẽ(Ω,z) = Ẽ(Ω,0)e−ik�ze−iδk z. (1.97)

The Fourier transform amplitude amplitude E(Ω,0) represented on the top left of

Fig. 1.7 is not changed by propagation. On the top right, the time domain repre-

sentation of the pulse, or the inverse transform of E(Ω,0), is centered at t = 0 (solid

line). We assume that the expansion of the wave vector k(Ω), Eq. (1.79), can be

terminated after the linear term, that is

δk =
dk
dΩ

∣∣∣∣∣
ω�

(Ω−ω�) (1.98)

The inverse Fourier-transform of Eq. (1.97) now yields

Ẽ(t,z) = e−ik�z
∫ ∞

−∞
Ẽ(Ω,0)exp

[
−i

dk
dΩ

∣∣∣∣∣
ω�

(Ω−ω�)z
]
eiΩtdΩ (1.99)

= ei(ω�t−k�z)

∫ ∞

−∞
Ẽ(Ω′+ω�,0)exp

[
i
(
t− dk

dΩ

∣∣∣∣∣
ω�

z
)
Ω′

]
dΩ′

where we substituted Ω = Ω′+ω� to obtain the last equation. This equation is just

the inverse Fourier-transform of the field spectrum shifted to the origin (i.e., the

spectrum of the envelope Ẽ(Ω), represented on the lower left of Fig. 1.7) with the

Fourier variable ”time” now given by t− dk
dΩ

∣∣∣
ω�

z. Carrying out the transform yields

Ẽ(t,z) =
1

2
Ẽ(t,z)ei(ω�t−k�z) =

1

2
Ẽ
(
t− dk

dΩ

∣∣∣∣∣
ω�

z,0
)
ei(ω�t−k�z). (1.100)
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Figure 1.7: The Fourier transform amplitude (E(Ω,0) is sketched in the upper left, and the

corresponding field in the time domain on the upper right (solid line). The lower part of the

figure displays the field amplitudes, E(Ω) on the left, centered at the origin of the frequency

scale, and the corresponding inverse Fourier transform E(t). Propagation in the frequency

domain is obtained by multiplying the field at z = 0 by the phase factor exp(−iτdΩ), where

τd = z/�g is the group delay. In the time domain, this corresponds to delaying the pulse by

an amount τd (right). The delayed fields |E(z, t)| and E(z, t) are shown in dotted lines on the

right of the figure.
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We have thus the important result that, in the time domain, the light pulse has

been delayed by an amount (τd =
dk
dΩ

∣∣∣
ω�

z) proportional to distance. Within the

approximation that the wave vector is a linear function of frequency, the pulse is

seen to propagate without distortion with a constant group velocity �g given by

either of the three expressions:

1

�g
=

dk
dΩ

∣∣∣∣∣
ω�

(1.101)

1

�g
=

n0

c
+
ω�
c

dn
dΩ

∣∣∣∣∣
ω�

(1.102)

1

�g
=

n0

c
− λ

c
dn
dλ

∣∣∣∣∣
λ
. (1.103)

The first term in Eqs. (1.102) and (1.103) represent the phase delay per unit length,

while the second term in these equations is the change in carrier to envelope phase

per unit length. We note that the dispersion of the wave vector (dk/dΩ) or of

the index of refraction (dn/dλ) is responsible for a difference between the phase

velocity �p = c/n0 and the group velocity �g. In a frame of reference moving at

the velocity �g, Ẽ(z, t) remains identically unchanged. Pulse distortions thus only

result from high order (higher than 1) terms in the Taylor series expansion of k(Ω).

For this reason, most pulse propagation problems are treated in a retarded frame of

reference, moving at the velocity �g.

Forward/Backward propagating waves

We consider an ultrashort pulse plane wave propagating through a dielectric me-

dium. Before the arrival of the pulse, there are no induced dipoles, and for the index

of refraction we assume that of a vacuum (n = 1). As the dipoles are driven into

motion by the first few cycles of the pulse, the index of refraction changes to the

value n of the dielectric. One consequence of this causal phenomenon is the “pre-

cursor” predicted by Sommerfeld and Brillouin, see for example [12]. One might

wonder if the discontinuity in index created by a short and intense pulse should

not lead to a reflection for a portion of the pulse? This is an important question

regarding the validity of the first order approximation to Maxwell’s propagation

equations. If, at t = 0, a short wave packet is launched in the +z direction in a ho-

mogeneous medium, is it legitimate to assume that there will be no pulse generated

in the opposite direction?

The answer that we give in this section is that, in the framework of Max-

well’s second order equation and a linear polarization, there is no such “induced

reflection”. This property extends even to the nonlinear polarization created by the

interaction of the light with a two-level system.



1.2. PULSE PROPAGATION 31

If we include the non-resonant part of the linear polarization in the index of

refraction n (imaginary part of n), the remainder polarization P including all non-

linear and resonant interaction effects, adding a phenomenological scattering term

σ leads to the following form of the second order wave equation:(
∂2

∂z2
Ẽ− n2

c2

∂2

∂t2

)
Ẽ = μ0

∂2

∂t2
P̃+

nσ
c
∂

∂t
Ẽ (1.104)

The polarization appearing in the right hand side can be instantaneous, or be the

solution of a differential equation as in the case of most interactions with resonant

atomic or molecular systems. Resonant light-matter interactions will be studied in

detail in Chapters 3 and ??. The wave equation Eq. (1.104) can be written as a

product of a forward and backward propagating operator. Instead of the variables t
and z, it is more convenient to use the retarded time variable corresponding to the

two possible wave velocities ±c/n:

s = t− n
c

z

r = t+
n
c

z. (1.105)

In the new variables, Maxwell’s equation (1.104) becomes:

∂2

∂s∂r
Ẽ =

c2

n2

⎧⎪⎪⎨⎪⎪⎩
μ0

4

(
∂

∂s
+
∂

∂r

)2

P̃+
nσ
c

(
∂

∂s
+
∂

∂r

)⎫⎪⎪⎬⎪⎪⎭ Ẽ. (1.106)

We seek a solution in the form of a forward and a backward propagating field of

amplitude ẼF and ẼB:

Ẽ =
1

2
ẼFeiω� s+

1

2
ẼBeiω�r. (1.107)

Substitution into Maxwell’s Eq. (1.104):

eiω� s
[
2iω�

∂

∂r
+
∂2

∂s∂r
+

cσ
2n

(
∂

∂s
+
∂

∂r
+2iω�

)]
1

2
ẼF

+ eiω�r
[
2iω�

∂

∂s
+
∂2

∂s∂r
+

cσ
2n

(
∂

∂s
+
∂

∂r
+2iω�

)]
1

2
ẼB

= −μ0c2

4n2

(
∂

∂s
+
∂

∂r

)2

P̃,

(1.108)

which we re-write in an abbreviated way using the differential operators L and M
for the forward and backward propagating waves, respectively:

LẼFeiω� s+MẼBeiω�r = −μ0c2

4n2

(
∂

∂s
+
∂

∂r

)2

P̃. (1.109)
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In the case of a linear medium, the forward and backward wave travel indepen-

dently. If, as initial condition, we choose ẼB = 0 along the line r+ s = 0 (t = 0),

there will be no back scattered wave. If the polarization is written as a slowly

varying amplitude:

P̃ =
1

2
P̃Feiω� s+

1

2
P̃Beiω�r, (1.110)

the equations for the forward and backward propagating wave also separate if P̃F is

only a function of ẼF , and P̃B only a function of ẼB. This is because a source term

for P̃B can only be formed by a “grating” term, which involves a product of ẼBẼF .

It applies to a polarization created by near resonant interaction with a two-level sy-

stem, using the semi-classical approximation, as will be considered in Chapters 3

and ??. The separation between forward and backward travelling waves has been

demonstrated by Eilbeck [17, 18] outside of the slowly-varying approximation.

Within the slowly varying approximation, we generally write that the second deri-

vative with respect to time of the polarization as −ω2
� P̃, and therefore, the forward

and backward propagating waves are still uncoupled, even when P̃ = P̃(ẼF , ẼB),

provided there is only a forward propagating beam as initial condition.

1.2.3 Dispersion

For nonzero GVD (k′′� � 0) the propagation problem (1.96) can be solved either

directly in the time or in the frequency domain. In the first case, the solution is

given by a Poisson-integral [19] which here reads

Ẽ(t,z) =
1√

2πik′′
�

z

∫ t

−∞
Ẽ(t′,z = 0)exp

(
i
(t− t′)2

2k′′
�

z

)
dt′ (1.111)

As we will see in subsequent chapters, it is generally more convenient to treat linear

pulse propagation through transparent linear media in the frequency domain, since

only the phase factor of the envelope Ẽ(Ω) is affected by propagation.

It follows directly from the solution of Maxwell’s equations in the frequency

domain [for instance Eqs. (1.77) and (1.82)] that the spectral envelope after propa-

gation through a thickness z of a linear transparent material is given by:

Ẽ(Ω,z) = Ẽ(Ω,0)exp
(
− i

2
k′′� Ω

2z− i
3!

k′′′� Ω
3z− . . .

)
. (1.112)

Thus we have for the temporal envelope

Ẽ(t,z) = F −1
{
Ẽ(Ω,0)exp

(
− i

2
k′′� Ω

2z− i
3!

k′′′� Ω
3z− . . .

)}
. (1.113)
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If we limit the Taylor expansion of k to the GVD term k′′� , we find that an initi-

ally bandwidth-limited pulse develops a spectral phase with a quadratic frequency

dependence, resulting in chirp.

We had defined a “chirp coefficient”

κc = 1+
M4

4〈t2〉2
0

[
dφ
dΩ

∣∣∣∣∣
ω�

]2

when considering in Section 1.1.5 the influence of quadratic chirp on the uncer-

tainty relation Eq. (1.67) based on the successive moments of the field distribution.

In the present case, we can identify the phase modulation:

dφ
dΩ

∣∣∣∣∣
ω�

= −k′′� z (1.114)

Since the spectrum (in amplitude) of the pulse | Ẽ(Ω,z) |2 remains constant [as

shown for instance in Eq. (1.112)], the spectral components responsible for chirp

must appear at the expense of the envelope shape, which has to become broader.

At this point we want to introduce some useful relations for the characterization

of the dispersion. The dependence of a dispersive parameter can be given as a

function of either the frequency Ω or the vacuum wavelength λ. The first, second

and third order derivatives are related to each other by

d
dΩ

= − λ
2

2πc
d

dλ
(1.115)

d2

dΩ2
=

λ2

(2πc)2

(
λ2 d2

dλ2
+2λ

d
dλ

)
(1.116)

d3

dΩ3
= − λ3

(2πc)3

(
λ3 d3

dλ3
+6λ2 d2

dλ2
+6λ

d
dλ

)
(1.117)

The dispersion of the material is described by either the frequency dependence

n(Ω) or the wavelength dependence n(λ) of the index of refraction. The deriva-

tives of the propagation constant used most often in pulse propagation problems,

expressed in terms of the index n, are:

dk
dΩ

=
n
c
+
Ω

c
dn
dΩ

=
1

c

(
n−λdn

dλ

)
(1.118)

d2k
dΩ2

=
2

c
dn
dΩ

+
Ω

c
d2n
dΩ2

=

(
λ

2πc

)
1

c

(
λ2 d2n

dλ2

)
(1.119)

d3k
dΩ3

=
3

c
d2n
dΩ2

+
Ω

c
d3n
dΩ3

= −
(
λ

2πc

)2 1

c

(
3λ2 d2n

dλ2
+λ3 d3n

dλ3

)
(1.120)
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The second equation, Eq. (1.119), defining the group velocity dispersion (GVD)

is the frequency derivative of 1/�g. Multiplied by the propagation length L, it des-

cribes the frequency dependence of the group delay. It is sometimes expressed in

fs2 μm−1.

A positive GVD corresponds to

d2k
dΩ2

> 0 (1.121)

1.2.4 Gaussian pulse propagation

For a more quantitative picture of the influence that GVD has on the pulse propa-

gation we consider the linearly chirped Gaussian pulse of Eq. (1.33)

Ẽ(t,z = 0) = E0e−(1+ia)(t/τG0)2

= E0e−(t/τG0)2

eiϕ(t,z=0)

entering the sample. To find the pulse at an arbitrary position z, we multiply

the field spectrum, Eq. (1.35), with the propagator exp
(
−i 1

2
k′′� Ω

2z
)

as done in

Eq. (1.112), to obtain

Ẽ(Ω,z) = Ã0e−xΩ2

eiyΩ2

(1.122)

where

x =
τ2G0

4(1+a2)
(1.123)

and

y(z) =
aτ2G0

4(1+a2)
− k′′� z

2
. (1.124)

Ã0 is a complex amplitude factor which we will not consider in what follows and

τG0 describes the pulse duration at the sample input. The time dependent electric

field that we obtain by Fourier transforming Eq. (1.122) can be written as

Ẽ(t,z) = Ã1 exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−
(
1+ i

y(z)

x

)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t√

4
x [x2+ y2(z)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (1.125)

Obviously, this describes again a linearly chirped Gaussian pulse. For the “pulse

duration” (note τp =
√

2ln2 τG) and phase at position z we find

τG(z) =

√
4

x
[x2+ y2(z)] (1.126)


