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The propagation of cylindrical dielectric waveguide modes near cutoff and far from cutoff are considered.
The relative amounts of En and H[, and the transverse components of the field are determined for both sets
of hybrid modes. With the radial dependence of the z components of the field in the central dielectric given by
J,, (urla), the transverse components far from cutoff are given by J,,+, (ur/a), where it is a parameter found
from the boundary conditions and which fixes the scale of the Bessel function relative to the boundary r =a.
The two values n+1 and n- 1 correspond to the two sets of modes. The designations of the hybrid modes
are discussed. Field plots for the lower order modes are given.

I. INTRODUCTION

IN a light pipe electromagnetic energy is propagated
down the pipe by reflection from the walls of the

structure. If the transverse dimensions are comparable
to the wavelength of the light only certain field distribu-
tions, or modes, will satisfy Maxwell's equations and
the boundary conditions. In this case the light pipe is
more appropriately considered as a waveguide. Even in
very large structures there are waveguide modes, but
there are so many of them, their number increasing as
the area, that in most cases a geometrical optics de-
scription is more fruitful.

Waveguides were first dealt with by Lord Rayleigh.'
Later the dielectric waveguide was investigated theo-
retically by Hondros and Debye2 and experimentally
by Schriever.'

The distinction between metallic and dielectric wave-
guides is in the reflection mechanism responsible for
confining the energy. The metallic guide does so by
reflection from a good conductor at the boundary. In
the dielectric waveguide, this is accomplished by total
internal reflection, which is gotten by having the central
dielectric made of a material of higher index of refrac-
tion than the surrounding dielectric. The two regions
will henceforth be referred to as the core and cladding.

* This work supported in part by the U. S. Air Force Cambridge
Research Center.

1 Lord Rayleigh, Phil. Mag. 43, 125 (1897).
2 D. Hondros and P. Debye, Ann. Physik 32, 465 (1910).

0 O. Schriever, Ann. Physik 63, 645 (1920).

In a metallic guide there are two sets of solutions, the
transverse electric and transverse magnetic modes. In
the dielectric guide all but the cylindrically symmetric
modes TEom and TMom are hybrid; i.e., they have
both electric and magnetic z components.4' 5 In general,
one would expect two sets of such hybrid modes,
because the boundary conditions give a characteristic
equation which is quadratic in the Bessel functions
describing the field in the central dielectric. Beam et al.6

gave the two sets for n= 1, and Abele7 arrived at the
two sets by a graphical solution of the characteristic
equation.

Until recently the main concern has been with the
three lowest-order modes, HE,,, TEol, and TMo0 . How-
ever, with the increased interest in end-fire antennas
and the observations of waveguide modes in the visible
region of the spectrum,8 the higher order modes assume
greater importance.

In this paper the two sets of solutions are given, in-
cluding cutoffs, field distributions, and conditions far
from cutoff. The designations of the hybrid modes are

4 J. R. Corson, S. P. Mead, and S. A. Schelkunoff, Bell System
Tech. J. 15, 310 (1936).

5 S. A. Schelkunoff, Electromnagnetic Waves (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1943), p. 425.

5 R. E. Beam, M. M. Astrahan, W. C. Jakes, H. M. Wachowski,
and W. L. Firestone, Northwestern University Report ATI
94929, Chap. V (1949).

7 M. Abele, Nuovo cimento 5, 274 (1948).
8 E. Snitzer and J. W. Hicks, J. Opt. Soc. Am. 49, 1128 (1959),

Abstract TB36; H. Osterberg, E. Snitzer, M. Polanyi, R. Hilberg,
and J. W. Hicks, ibid. 49, 1128 (1959), Abstract TB37.
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considered. Some properties of the propagating modes
are discussed.

II. BASIC EQUATIONS

The cylindrical dielectric waveguide consists of a core
of high dielectric constant e and radius a surrounded
by a cladding of lower dielectric constant 2. Both
regions are assumed to be perfect insulators with the
free-space magnetic permeability A. Such a structure
can have an infinite number of modes, but for given
values of el, e2, and a only a finite number of these are
waveguide modes which have their fields localized in the
vicinity of the core. The other "unbound" modes would
correspond for example to light striking the core from
the side, passing on through the core, and emerging from
the other side.

Choose a cylindrical coordinate system r, , z with
the z axis lying along the guide axis. A waveguide mode
is a coherent distribution of light, which is localized in
the vicinity of the core by total internal reflection, and
which propagates down the guide with a well-defined
phase velocity. That is, the z and time dependences are
given by exp{i(hlz-cot)), where is the angular fre-
quency and ht is the propagation constant which is
determined from the boundary conditions.

Because of the cylindrical symmetry the other com-
ponents of the field can be expressed in terms of E, and
H. The z components of the field satisfy the wave
equation in cylindrical coordinates. The solutions are

E,=A ,,J,, (Xlr) cos(n0+ qj) exp{i(hz-cwt)}, (1)

H.,=B,,J,,(Xjr) cos(nO+P,,,) expti(hz-wI)}. (2)

The field in the cladding is given by replacing the
constants A,, and B. by C,, and D, and by replacing
the Bessel function J(Xir) by the modified Hankel
function of the first kind K,,(X 2r). These particular
Hankel functions are required in the cladding, because
they are the only cylindrical functions that vanish
sufficiently rapidly as r increases to infinity to describe
a field bound to the central dielectric. With the definition
of the propagation constant k2 = 0,c4E, the X's are defined
by

X,2 =k 1
2 -11 2, X2

2
= 12 -k2

2 ;

At the boundary r= a, the continuity of the tangential
components of the field give the following four equa-
tions for the constants A,, B,, C,,, D,,. For simplicity
Xa and X2a have been replaced by u and w. The con-
tinuity of the tangential components of E gives

(8)

lilt
A ,,-J,,

10

sin(nO+ so,)+B,,-J,,' cos(I10+tj)
it

Ihs

= -C,,-K,, sin (nO+ ,,)
W 2

aew

and from the tangential components of H,

BJ,,,= D,,K,,,

k12 Ith
A,, J,,' cos(nG+ p.) - B,,-J,,, sin (n0+,t,,)

k22

= -C- K.' cos(n6+$°n)

ih
+D,-K,, sin (nO+Ikn).

Wa

(10)

(11)

The primes on J,, and K,, refer to differentiation with
respect to their arguments it and w, respectively.
Further, define al and 2 by

71 = [J( ot)/uJ. (u)], f72=: [K'(w)/wK. (w))]. (12)

For the four equations to be consistent, the determinant
of the coefficients must vanish, giving

('ql+-2) (2,q1+22q2)

It 2
1
2 (1/11

2
+ 1/W

2
)

2

sin (n0+ p) sin(n+Vln)

cos(nG+ (p,) cos(n6+,j)(3)
. (13)

both are real. The ,, and 4',, are phase factors, which
are related by the boundary conditions.

The transverse components of the field can be ex-
pressed9 in terms of E, and H, by

E,'= i (h/1k 2 _ )[(aE,/ar) + (o/h) (l/r) (aH,/aO)], (4)

Eoo= i (h/k 2 - h2 )[(1/r) (aE,/aO)-(,uw/h) (dH,/ar)], (5)

H,= i (lk2 -112 )E-(k 21A11) (11r) (E,1a0)
+ (dllI,/or)], (6)

Ho= i (h/k 2- h2) (k 2/,qW/h) (OE,/dr)

+ (1/r) (alh/J)] (7)

J. A. Stratton, Electromagnetic Theory (McGrav-Hill Book
Company, Inc., New York, 1941), Chap. V.

The left side of (13) is independent of angle; therefore,
the phases p,, and i/, must be related such as to make
the right side a constant. This will be the case if

(14)

Then (13) becomes

(fl1+72) (k12ni+k2
2 772) = n2h2(1/u2+ 1/W2 )2. (15)

Equation (15), together with Eqs. (3), determines the
value of hi. The quantity u enters (7) both explicitly and
as the argument of fl. However, al is a rapidly varying
oscillatory function of u. Hence, (15) can be considered
roughly as a quadratic equation in 7l. The two sets of
solutions are the two sets of hybrid modes.
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CYLINDRICAL DIELECTRIC WAVEGUIDE MODES

From the set of four boundary condition equations,
the relative amounts of E, and Hz in a hybrid mode can
be found in a straightforward way. The result is

JCOg Bn cos(n0+t'n) n(1/u2+l/W2)
P_ _ _ _ _ _-. (16)

h A.sin(nOp+,) 711+q2

The coefficient ,Aw/h in the definition of P has been
included for convenience in later use.

Expressed in terms of F, the field in the core becomes

E,= J(Xir)F,,
E= i (hjlx) [Jan'-P (nJ,/IX r)]Fc,

E i(h/ i 1c)PJ. -F8 ,J/\r)]F, (17)

Hz= -(hyco)PJnj,,
Hr -i (k121,uX 1)E[P(h2/k 12)j '- (nJn/X ir) IF,,

Ho = i (k 12/i.W*) EJJn' -P (h2/k 1
2) (nJ,/1Xr)]F8.

The prime indicates differentiation with respect to the
argument of the Bessel function and

F,=A, cos(nO+ 0n) exp(i(hz- ot)},
F, =A n sin(nO+SOn) exp{i(hz-Cwt)} (18)

III. CUTOFF CONDITIONS

The cutoffs for the various modes are found by solving
(15) in the limit of w2

-O 0.
Define new quantities 4j and 42 by

Jn-1

uJn
(19)

wKn

By using the Bessel and Hankel function identities,
Eqs. (A.4) and (A.6) in the Appendix, (15) can be
rewritten as

[k1 2
+k2

2
/2 k 1

2
+k2

2
1

412 41 2+l -+ - -
2 \u

2 k1
2 w

2
/

k22 (k2+k± 2
2

1 k2
2

1 \

+ 2
±2fl2 -- +2---- =0. (20)

Herek k12is 2 k1
2a f2c o

Here ~j is a function of it, but, as pointed out earlier ,j

varies so much more rapidly than u that where u
appears explicitly in (20) it can be considered a constant.
The two sets of cutoff values for different n can be
obtained by substituting for the limit of w2 -o 0.

Consider first the case of n>2. From Eq. (A.10) as
W

2
-0,

6 =1/[2 (- 1)].

The two sets of roots of (20) are

41= (1n- 1)-k2*/(k?+k22)],

(l = nE(k 12+k2 2)/k,2](1/W2) - -

(21)

(22)

(23)

Equation (23) is equivalent to J(u)=0.
The cutoff values from (22) are given by Schelkunoff. 5

Those from (23) were found by Abele9 by a graphical
solution of Eq. (15). Substituting for 4j in terms of the
Bessel functions and using (A.1) with n replaced by
(n-1) puts Eq. (22) in a more convenient form for
small differences in dielectric constant between core
and cladding. The result is

[uJn,2 ( U)/J. (u)]= - (n- I)[(el- 2)/E2]- (24)

For small differences in dielectric constant the cutoffs
are given approximately by Jn- 2 (") = 0. For n= 2, this
gives another set of modes whose cutoffs are close to
the TEom and TMom modes. The interesting effects
this has on optical waveguide modes are discussed in a
companion article in this Journal.

For n= 1, from Eq. (A.9) in the limit of w2
-* 0, the

two roots of (20) are

(1= Uk12 +k2 2) Ik 2](/W2) -

41= 2k2
2/ (k1

2+k2
2)] In (2/yw) -> .

Both of the above equations have cutoffs given by

J,(u) = 0.

(25)

(26)

(27)

The root of Eq. (27) at u=0 corresponds to the well-
known HE1 1 mode which does not have a cutoff.

Equation (27) specifies two sets of modes whose cutoff
conditions are identical. However, the HE1 mode is the
first mode of only one of the sets. This is because l/u2

in Eq. (20) cannot be considered as slowly varying
near u=0. In fact, 41 becomes 2/u2 near u=O, and the
quadratic term 41i drops out of the equation.

TABLE I. Summary of cutoff conditions. The Bessel function of order n and argument it is given by Jn(it), and el and 2 are the
dielectric constants for core and cladding. P gives the relative amount of H-. to E2 in a mode (see text for exact definition).

First set of solutions Second set of solutions
P at Suggested mode Cutoff P at Suggested mode

Cutoff condition cutoff designation condition cutoff designation

n =0 Jo (u) = 0 0 TiVon in = 1, 2 ... Jo (iu) = 0 xc TEo il = 1, 2.-
k12

n=1 Ji( )=O -1 HE,. in =1, 2 ... Ji(it)=0 - EH17 n m=1, 2 ..

1IJn..2 (2) el-6 k2
n>2 =-(n-1)--- -1 HEnm n = 1, 2 ** Jn(u)=0 - ElInm mi =l, 2-*-

Jnl () e2 k22
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The relative amounts of Ez and Hz in the hybrid
modes can be found by substituting in Eq. (16) the
limiting values of (l and 62 as w 0. The results
together with the cutoff conditions are summarized in
Table I.

Let uin.. be the value it assumes at cutoff for the mth
root of the cutoff condition involving the th order
Bessel function. The possible values of it.. are the roots
of the equations giving the cutoff conditions in Table I.
At cutoff, w=0 and z=k 2; hence, the first of Eqs. (3)
becomes

i,, = 2 (a/X) (}li
2
- 22) J' (28)

where X is the free-space wavelength and il and 12

are the indexes of refraction of core and cladding,
respectively.

The modes which can propagate are those for which
>a,,. are less than 27r(a/X) (n12-u2

2). Since itm forms
an increasing sequence for fixed n and increasing m or
for fixed m and increasing , the number of allowed
modes increases as the square of the radius a.

IV. CONDITIONS FAR FROM CUTOFF

The field in a mode far from cutoff can be found in
the same way as that near cutoff. Only now the asymp-
totic forms for large w are substituted for 62 in Eq. (20).
Table II summarizes the conditions far from cutoff.

V. MODE DESIGNATIONS

For cylindrical metallic waveguides the modes are
designated TEn,,, and TM.m. or in the older literature
these were Hnn and E.e modes, respectively. The trans-
verse electric mode TEnm can be derived from a single
field quantity, the z component of the magnetic field,
hence the alternative designation Hntn for this mode.

In the dielectric waveguide only the cylindrically
symmetric =0 modes are either transverse electric
(TEo.n) or transverse magnetic (TMo,). The other
modes are hybrid; i.e., they have nonzero values for
both E and H.

Following Wegner,' 0 Beam6 suggested a scheme for
the designation of the hybrid modes based on the
relative contributions of E and H to a transverse
component of the field at some reference point. If E,
makes the larger contribution, the mode is considered
E like and designated EHnm, etc. This method of desig-
nation is arbitrary, for it does depend on the particular
transverse component of the field chosen, the reference
point, and how far the wavelength is from cutoff. The
use of two letters, such as EH and HE, to designate the
hybrid modes is reasonable because it does imply the
hybrid nature of these modes.

It has become common usage in the microwave
literature to refer to the mode without a cutoff as the
HE,, mode. By referring to Table II, it is seen that this
mode has a value of P= -1 far from cutoff. It is

'0 H. Wegner, Air Material Command Microfilm ZWV/FB/RE/
2018, R8117F831.

TABLE II. Summary of conditions far from cutoff.

First solutions Second solutions
U P it P

n=O J1(?u)=O 0 (TM) Jf(u)=O o (TE)
1t> J_ () =O -1 (HE) Jn,1 (i)=O +1 (EH)

proposed that all the modes with P= -1 be designated
HEnm and the modes with P= + 1 be designated EHnm.
The basic physical difference between the HE and EH
modes will be discussed later in the section on field plots.

The subscripts on HEnm or EHnm refer to the nth
order and mth rank, where the rank gives the successive
solutions of the boundary condition equation involving
J.. It is customary to label these solutions in order
starting from m= 1; this procedure is followed here.
Notice that this makes the cutoff parameters for the
HE12 and EH1 mode the same, namely the root of
Jj(u)=O at =3.832. Table I summarizes the mode
designations suggested here.

VI. THE TRANSVERSE COMPONENTS
OF THE FIELD

By use of Eqs. (A.1), (A.2), and (17) the field in the
core can be written as

E,= Jn(Xir)F,

it 1-P _+P 1
Er = i- - J.+ Fs

Al 2 2 J

t[ 1-P 1+P 1
Ed=i- -- J- 1-- J + F8,

Xl 2 2

It
H= -- PJF.,

k1
2 r 1-P1 2/k 2 +PIt2 /k 2

Hr= - i I- Jn-l J
Lwxi 2 2

(29)

n+i IFa,

k 2- 1-Pl2 /kl 2 1 +ph 2 k?2

He=i - J.-_- Jn±' TjP.
iX 1L 2 2 I

The quantities F and F continue to be given by
Eqs. (18).

For small differences in refractive index between the
core and cladding k 2 /k2

2-1, h
2 /k1

2
-1 and from Tables

I and II, P= 4 1. The value P= + 1 is for the EH modes
and P = -1 goes with the HE modes. It is seen from
Eqs. (29) that the transverse components of the field
depend on r through J+, for the EH modes and have a
dependence of J, for the HE modes.

VII. ENERGY FLOW

The energy flow per unit area as a function of r and
a is given by the real part of the complex Poynting
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vector, S*= EXHt, where Ht is the complex conjugate
of H. Only the z component of S* is real and the power
per unit area is given by

Sz=2(ErHo-EoHr). (30)

Substitution from Eqs. (29) gives after some simplifica-
tion

1 - k1I [(1-P)(1-Ph2/k1
2)

2 lico 12 4

1-
(1+P) (l+P

2
/k 1

2
)

4

1- P2h2 /k1
2

- Jn-iJ.+1 cos2(nO+ p)J. (31)
2J

For small index differences P=-d-1 holds and the
term containing drops out. The energy flow is then
nearly circularly symmetrical with a radial depend-
ence of

Sc - JnT12 . (32)

The upper sign n-I is for the HE modes and the lower
for EH.

VIII. CHARACTERISTICS OF
PROPAGATING MODES

For a waveguide mode Xi and 2 must both be real.
Hence from Eq. (3)

k2 <fi <kl2. (33)

A guide wavelength X,, phase velocity Vph, and effective
refractive index eff can be defined for a mode at the
free space wavelength X by

Core
ni

Cladding
n, 2

FIG. 1. Construction to show the equivalence of the waveguide
condition that at cutoff Vh=C/fl2 with the geometrical optics
conditions that propagation occurs only if the angle of incidence
of the wave on the fiber wall exceeds the critical angle for total
internal reflection. The wave normal is given by p. Si and S2 are
two equiphase surfaces separated by /nl, and X, is the guide
wavelength.

But Snell's law gives for the critical angle for total in-
ternal reflection, nf2=fli sina. Hence at cutoff (37) be-
comes X,=X/n 2, or Vph= c/n2, which is the same as
Eq. (36).

Figure 2 gives the very useful plot of frequency
versus the inverse of the guide wavelength, that is
c/X vs 1/X, for the propagating modes. To obtain these
curves Eqs. (3) and (15) are solved for h as a function
of X and the parameters of the guide for each pro-
pagating mode. The mode lines shown in Fig. 2 are
only schematic. A number of machine computations of
these lines are available in the literature for the HE,,
and TEoi modes.',"

Propagation in the modes is such as to be confined to
the region between the lines whose slopes are c/ni and
c/n 2 . Each mode as a function of wavelength is repre-
sented by a line which approaches the c/nli line far from
cutoff and terminates at the c/n2 line at cutoff. All the

oh= Vph = VX0= C/neff, (34)

where c is the velocity of light in vacuum. With (34)
and the definition of the k's, Eq. (33) becomes

C/nl• Vph< C/n2. (35)
c/,

That is, the phase velocity is intermediate between the
velocities of propagation in bulk material of which the
core and the cladding are made. At cutoff h= k2 or

vph= C/n 2. (36)

Far from cutoff the other equality in (35) holds.
Equation (36) is the physical optics analog of the

geometrical optics condition that propagation in the
light pipe occurs when the angle of incidence on the
boundary exceeds the critical angle for total internal
reflection. Consider a plane wave incident on the side of
the core as shown in Fig. 1. The wave normal is in the
direction p, and Si and S2 are two equiphase surfaces
separated by /ni, the wavelength in a homogeneous
medium of refractive index n. The apparent wave-
length along the guide X is given by

X= X/ni sina. (37)

FIG. 2. Typical curves of the frequency v versus 1/X, for mode
propagation in a dielectric waveguide. Each mode is represented by
a line which is confined to the region between the lines whose
slopes are C/n2 and c/ni. At the frequency Iv' the TEoi mode has
a guide wavelength of X,', phase velocity Vh and group velocity
VgrouP.

11 S. P. Schlesinger and D. D. King, I.R.E. Trans. M.T.T.-6,
291 (1958).

Cladding
n2
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TE 0 2
x-. E

--- H

FIG. 3. Field plot in the core for the TE02 mode far from cutoff
and for a small difference in indexes of refraction of the core and
cladding.

modes which have cutoffs terminate sharply at the
c/112 line, but the HE,, mode, which does not have a
cutoff, approaches the c/n12 line slowly, finally merging
with it at the origin. The number of modes increases as
the square of the frequency.

The significance of a mode line can best be understood
by a specific example. Consider the TEo mode excited
at the frequency v'. Then 1/X, is the coordinate of the
intersection of the TEo line with the ordinate v'. The
slope of the line connecting this point with the origin
is c/noi(X), where no,(X) is the effective index of refrac-
tion of the TEo mode excited at the free space wave-
length ; c/noi(X) is the phase velocity, whereas the
slope of the mode curve at v' is the group velocity.

IX. FIELD PLOTS

The field distribution can be given in the usual way
by field lines in which the direction of the line at a
point gives the direction of the field and the density of
lines its magnitude. Only the field in the core will be
considered. The field in the cladding can be inferred
from the boundary conditions which require that the
tangential components of E and H, and the normal
components of EE and / be continuous. Since the field
components in the cladding depend on modified Hankel
function which monotonously go to zero with increasing
r, the density of field lines smoothly decreases with an
increase in the radial coordinate.

Figure 3 shows the field distribution in the core for
the TE02 mode far from cutoff. The field components
from which Fig. 3 was skeLched are given in Eqs. (17)
or (29). The distribution is the instantaneous values in
a transverse plane and in two longitudinal half-planes
of length Xg/2 in the z direction. In the transverse plane

the magnetic-field lines shown do not form closed
curves; this is done to imply that these field lines close
by going down the z direction. The dots and crosses in
the longitudinal planes specify that the electric field is
perpendicular to these planes. The field line enters
the plane at a dot and leaves it at a cross.

The z component of the magnetic field varies as
Jo(ur/a). From Table II far from cutoff u is the second
zero of J (t) = or lt= 7.02, and at cutoff u is the second
zero of Jo (u)= 0 or u= 5.52. Hence, as the cutoff wave-
length is approached the field distribution in the core
readjusts itself so as to make the boundary of the core
shift from the value u= 7.02 shown in Fig. 3 to the value
u= 5.52.

For the TEo1 mode the boundary r=a is at u=3.83
far from cutoff and at u= 2.41 at cutoff. The field dis-
tribution for the TM02 mode is obtained from Fig. 3
simply by interchanging the roles of E and H.

Since the Poynting vector is a function of the vector
product of the transverse components of the field, it is
clear from Fig. 3 that an image of the intensity distribu-
tion in the TE02 or TM02 modes should consist of two
concentric circles.

It is interesting to compare the field distribution for
the TEo,. and TMom modes with that obtained for the
metallic waveguide. 2 In the later case the electric field
is normal to the metallic boundary surrounding the
core and the magnetic field is parallel to it. Hence, the
metallic TEO,, modes look like the dielectric TEom far
from cutoff, but the metallic TMom. modes have the
field distribution of the dielectric TMom modes at cutoff.

For the hybrid modes (n> 1) the field distribution
simplifies-considerably for the case of a small index
difference between the core and the cladding. From
Eq. (29) for the z components given by

(E,,H) C: J. (urla) cosn6,

the transverse components of the electric field are

Eroc (±1)Jnsi(ur/a) cosn6,

Eo - J,+(ur/a) sinnO.

(38)

(39)

(40)

The proportionality constants are the same for Er and
Eo. The plus sign is for the EHnm modes and the minus
sign for the HE,,, modes.

A given field line will be contained on a surface whose
projection in the transverse r, 0 plane is the solution of

dr/rdO= Er/Eo. (41)

For a small difference in refractive indices between the
core and the cladding Eqs. (39) and (40) apply, and the
right side of (41) is a function of 0 only. The result is

(42)dr/rd0= i cosn0/sinno.

The above can be integrated to give

r= C(sinnO) 11/1', (43)
12 J. F. Reintzes and G. T. Coate, Principles of Radar (McGraw-

Hill Book Company, Inc., New York, 1952), 3rd ed., Chap. 8,
p. 609.
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where C is an integration constant. The plus sign in the
exponent is for the EHnm modes and the minus sign for
the HEnm modes. By assigning different values to C a
family of curves is obtained which gives the electric
field in a transverse plane. The magnetic field can be
found in the same way; it is the same as for the electric
field but with the pattern rotated by r/( 2 n).

For the HEm modes Eq. (43) becomes

r sinO= constant. (44)

This is the equation for a set of straight lines parallel
to the x axis. Figure 4 shows the field distribution for
the HE1 2 mode. Far from cutoff the boundary of the
core is at the second root of Jo(u)=O or u=5.52 and at
cutoff the boundary is at the zero of J (u) = 0 at
u=3.83. For the HE11 mode the boundary shifts from
u= 2.41 for short wavelengths to u= 0 with increasing
wavelength.

From Eq. (43) the electric field lines in a transverse
plane for the EH11 mode satisfy

r= C sinG, (45)
or

X2+ (y-C/2)2 = C2/4. (46)

By assigning different values to C, Eq. (46) gives a set
of circles that are all tangent to the x axis at the origin.
Figure 5 gives the field plot for the EH1 1 mode. Far from
cutoff the boundary of the core is at the first zero of
J2 () = 0 or u= 5.14 and at cutoff the boundary is at the
first zero of J(u)==O at u=3.83.

For the HE2 1 mode the electric field in a transverse
plane is

r= C (sin20)-l
or

(47)

(48)Xy= constant.

+ g/4

FIG. 4. Field plot in the core for the IE 1 2 mode far from cutoff
and for a small difference in indexes of refraction of the core and
cladding.

+Ag4
Z0

FIG. 5. Field plot in the core for the EHli mode far from cutoff
and for a small difference in indexes of refraction of the core and
cladding.

For various values of the constant Eq. (48) gives a set of
hyperbolas. The field lines are shown in Fig. 6. Far from
cutoff the boundary of the core is at the first root of
J (u) = or u=3.83 and at cutoff the boundary is at a
value of u somewhat larger than the first root of
Jo(u)=O or u=2.41.

To find a more precise value of u at cutoff for the case
of a small index difference the left side of Eq. (24) can
be expanded about the zero of Jn-2() = 0. To the first-
order terms the result is

n-1 n12-n22
UnmI Un-2, m+U-

Un-2, m n22

The prime on Unm' indicates that it is the cutoff param-
eter for the HEnm modes obtained from Eq. (24).

Where the field lines in Fig. 6 do not form closed
curves but end in a plane, the field lines close by moving
perpendicular to the indicated plane. The lower portion
of Fig. 6 shows the closed contours for the electric field
in a hyperbolic section bb'.

The field plots for the higher order modes are obtained
in the same way as those above.

The EHnm and HEnm modes both have roughly the
same r dependences for (Es, Hz), mainly Jn(ur/a). But
the transverse components depend on J+' (ur/a) for the
EH modes and on Ji(ur/a) for the HE modes. This
means that the field lines which are parallel to the guide
axis at z=0 tend to form closed contours by going to
larger radii in the region 0< zI < X,/4 for the EH
modes, but on the whole close by going to smaller radii
for the HE modes. Hence, for the Eff modes the peaks
in the Poynting flux are located further from the center
of the guide than the peaks in E, and H,; the reverse
is the case for the HE modes.
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APPENDIX. PROPERTIES OF BESSEL
AND HANKEL FUNCTIONS

The argument of the Bessel functions is u, and of the
modified Hankel functions w:

(A.1)

(A.2)

(A.3)J_,,= () nj.

From the first two equations above

Jn'/uJn= J,_/uJn-n/u'. (A.4)

For w real the modified Hankel functions K(w) are
defined by

(A.5)

where H.,(l) (iw) are the Hankel functions of the first
kind. The equation corresponding to (A.4) is

HYPERBOLIC SECTION b-b'

-K/wK = Kij/wK,+n/w'.

For small w,

Ko(w) = In (2/yw),

Kn(w)= (n-1)!2'-'w- for nl1,

(A.6)

(A.7)

(A.8)

where y is Euler's constant and equal to 1.781. Still in
the limit of w small,

Ko/wK,= ln(2/yw), (A.9)

Kn,/wK=[2(n-1)]-1 for n>2. (A.10)

The asymptotic expressions for large w are

K (w) = (r/2w)' exp - w, (A. 11)FIG. 6. Field plot in the core for the lIE21 mode far from cutoff
andifora small difference in indexes of refraction of the core and
cladding. Kn,,/wKn= 1/w.
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11j"/11= -1 (J.-,+J.+,),

K,, (w) = 7r/2 il+'H,,,(') (iw),

(A.12)


