
Analogy between pulse and beam propagation
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1 Time analogy of the paraxial approximation

Comparing the paraxial wave equation and the reduced wave equation describing pulse propagation through
a GVD medium we notice an interesting correspondence. Both equations are of similar structure. In terms
of the reduced wave equation the transverse space coordinates x,y seem to play the role of the time variable.
This space-time analogy suggests the possibility of translating simply the effects related to dispersion into
beam propagation properties. For instance, we may compare the temporal broadening of an unchirped pulse
due to dispersion with the change of beam size due to diffraction. In this sense free-space propagation plays
a similar role for the beam characteristics as a GVD medium does for the pulse envelope. The field spectrum
at a distance z is:

Ẽ (kx,z) = Ẽ (kx,z = 0)ei(k2
x+k2

y )z/(2kℓ). (1)

In time, the spectral envelope after propagation through a thickness z of a linear transparent material is given
by:

Ẽ (Ω,z) = Ẽ (Ω,0)e−
i
2 k′′ℓ Ω2z (2)

The exponential phase factor (k2
x + k2

y)z/(2k) which describes transverse beam diffraction in space, cor-
responds to the exponential phase factor −k′′Ω2z/2 which describes pulse dispersion in time. There is a
correspondence −k′′ → 1/k. A difference that brings some complication is the dimensionality: 2 dimensi-
ons in space versus one dimension in time.

Since Eq. (1) corresponded to the paraxial approximation, the analogy can be carried over to successive
subsets of that approximation. It will thus apply also to Gaussian optics, and the time equivalent of the
Fraunhofer and geometric approximations.

2 Gaussian beams and Gaussian pulses

An important particular solution of the wave equation within the paraxial approximation is the Gaussian
beam (see, e.g., [1]). In order to understand better the space-time analogy for Gaussian beams/pulses, the
derivation is reproduced below.

2.1 Gaussian beams

We look for a solution to the wave equation:

∂ Ẽ

∂ z
+

i
2k

(
∂ 2Ẽ

∂x2 +
∂ 2Ẽ

∂y2

)
= 0 (3)

of the form:
Ẽ = E0e−i[P+ k

2q (x
2+y2)] (4)

Substituting (only the coefficients of the common exponentials are written below):

∂ Ẽ

∂ z
=−i

dP
dz

+ i
kr2

2q2
dq
dz

, (5)

where we have written r2 for x2 + y2.
∂ Ẽ

∂x
=−i

kx
q
. (6)
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Taking the second derivative:
∂ 2Ẽ

∂x2 +
∂ 2Ẽ

∂y2 =−2i
k
q
− k2

q2 r2. (7)

The factor 2 in the first term of the right hand side is the main difference arise between the two dimensional
space and the one dimensional time situations. Substituting in the wave Eq. (3), and equating the terms of
same power in r:

i
dP
dz

=
1
q

(8)

dq
dz

= 1 (9)

The last equation gives us:
q = q0 + z (10)

We separate 1/q in a real and imaginary part:

1
q
=

1
R
− i

ρ
(11)

We choose the z axis such that at z = 0 q0 = iρ0 is purely imaginary (R = ∞). Separating real and imaginary
parts in Eq. (10):

R = R(z) = z+ρ2
0/z (12)

ρ = ρ0(1+ z2/ρ2
0 ) (13)

(14)

Equation (8) can be integrated, leading to

P =−i ln
(

q0 + z
q0

)
and

e−iP =
q0

q0 + z
=

1
1− i z

ρ0

=
1√

1+ z2

ρ2
0

e−Φ(z), (15)

where Φ is the Guoy phase shift,
Θ = Θ(z) = arctan(z/ρ0). (16)
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Up to Eq. (15), everything can be transposed to the time domain, with the parameters having the same
dimension.

2.2 Gaussian Pulses

We look for a solution to the wave equation:

∂ Ẽ

∂ z
− ik′′

2

(
∂ 2Ẽ

∂ t2

)
= 0 (17)

of the form:
Ẽ = E0e−i[Q+ 1

2p (t
2)] (18)

Substituting (only the coefficients of the common exponentials are written below):

∂ Ẽ

∂ z
=−i

dQ
dz

+ i
t2

2p2
d p
dz

, (19)

where we have now t2 instead of x2 + y2.
∂ Ẽ

∂ t
=−i

t
p
. (20)

Taking the second derivative:
∂ 2Ẽ

∂ t2 =− i
p
− t2

p2 (21)

The factor 2 in the first term of the right hand side is no longer there because of the difference in dimensio-
nality. Substituting in the wave Eq. (17), and equating the terms of same power in t:

dQ
dz

= i
k′′

2p
(22)

d p
dz

= −k′′ (23)

(24)

The last equation gives us:
p = p0 + |k′′|z (25)

There is here a fundamental difference between space and time optics. In vacuum and in a linear dielectric,
a beam can only expand by diffraction according to Eq. (10). In the time domain, dispersion can take a
positive (normal dispersion) or negative value. However, no matter the sign of dispersion, p0 (as well as q0
in space) is chosen to start at a minimum positive value at z = 0. Therefore, the term |k′′|z has to be chosen
positive. We separate 1/p in a real and imaginary part:

1
p
=

1
R
− i

σ
(26)

We choose the z axis such that at z = 0 p0 = iσ0 is purely imaginary (R = ∞). Separating real and imaginary
parts in Eq. (25):

R = |k′′|z+σ2
0 /(|k′′|z) (27)

σ = σ0[1+(|k′′|z)2/σ2
0 ] (28)

(29)
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Equation (22) can be integrated, leading to

2Q =−i ln
(

p0 + |k′′|z
p0

)
and

e−iQ =

√
p0

p0 + |k′′|z
=

1√
1+ i |k

′′|z
σ0

=
1(

1+ (|k′′|z)2

σ2
0

)1/4 e−Θ(z)/2 =

√
τG0

τG
e−Θ(z)/2, (30)

where Φ is the Guoy phase shift,
Θ = Θ(z) = arctan(|k′′|zσ0). (31)

Now we have to define R and σ in terms of the pulse duration and phase. If we choose:

σ =
τ2

G
2
, (32)

the propagation Eq. (25) is satisfied. σ is therefore a positive, with a minimum positive value, hence the
choice of sign in Eq. (25). For the focal distance associated with a phase modulation:

R =
1
φ̈
. (33)

Replacing Eq. (32) and (33) in Eq. (18) we find indeed the correct temporal dependence of the Gaussian
amplitude and phase.

2.3 “p” complex parameter, time correspondent of the spatial “q” parameter

A convenient quantity, labeled the q parameter, has been defined for Gaussian beams. It concatenates the
information on the beam radius w and the radius of curvature R in a single complex quantity defined by:

1
q
=

1
R
− i

λ
πw2 (34)

It has been observed that the modification of the q parameter by an optical element can be expressed in terms
of the elements of the ABCD matrix:

1
q2

=
C+D/q1

A+B/q1
(35)

where q1 and q2 represent the value of the q parameter before and after the optical element, respectively.
Equation (35) is often represented in the form:(

q2
1

)
=

(
A B
C D

)(
q1
1

)
. (36)

For equivalence with Eq. (35), a re-normalization of the ‘q’ vector is needed after the matrix multiplication.
An example of application of ABCD matrices in space is the study of cavity stability. For a cavity

characterized by an ABCD matrix, the evolution of the ‘q’ parameter over N round trips is given by:(
qN

1

)
=

(
A B
C D

)
·
(

qN−1
1

)
=

(
A B
C D

)N−1

·
(

q1
1

)
(37)

It can be shown [1] that, for the beam to be trapped in the cavity, there is a stability condition: −1 ≤
1
2(A+D)≤ 1.
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The time equivalent of the q parameter:

1
p
= φ̈ − 2i

τ2
G
, (38)

where φ̈ = ∂ 2φ
∂ t2 is the second derivative of the phase in the middle of the pulse, and τG [remembering that

τp =
√

2ln2τG] is the Gaussian pulse width. The matrices for dispersion and time lensing as defined in
Eq. (47) can be applied.

3 From spatial optics to temporal optics

3.1 ABCD matrix in space

An ABCD matrix [1] is a ray transfer matrix which describes the effect of an optical element on a laser beam.
It can be used both in geometrical optics and for propagating Gaussian beams. The paraxial approximation
is always required for ABCD matrix calculations. Tracing of a light path through an optical system can then
be performed by multiplying an element matrix by a vector representing the light ray:(

y2
α2

)
=

(
A B
C D

)
·
(

y1
α1

)
(39)

where y and α refer to transverse displacement and offset angle from an optical axis respectively. The
subscripts ‘1’ and ‘2’ denote the coordinates before and after an optical element. For example, a thin lens
with focal length f has the following ABCD matrix:(

1 0
− 1

f 1

)
, (40)

and propagation through free space over a distance d is associated with the matrix:(
1 d
0 1

)
(41)

3.2 Transition from space to time

Geometric optics can be seen as an approximation of Gaussian propagation, where the propagation distance
is much larger than the Rayleigh range. Therefore, the propagation in a linear medium is in a straight line
making an angle α with the optics axis:

w = w0

√
1+
(

z
ρ0

)2

≈ w0

ρ0
z = αz =

2
kℓw0

z. (42)

The same approximation can be made in the time domain to define the “optical inclination” αt :

τ = τ0

√
1+
(

z
Ld

)2

≈ τ0

Ld
z = αtz =

2|k′′|ℓ
τG0

z. (43)

Note that in contrast to the space domain where α is dimensionless, αt has the dimension of the inverse of
a velocity. The generic operation of Eq. (39) has its time domain equivalent:(

T2
αt,2

)
=

(
A B
C D

)
·
(

T1
αt,1

)
(44)
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where T , the correspondent of the transverse displacement y, is a temporal position. In the time equivalent
of the propagation matrix (41), the distance d is replaced by |k′′|ℓd, while the time equivalent of the lens
matrix (40) has the element −1/ f replaced by an imposed chirp Φ̈ which, for instance, in the case of Kerr
modulation, is equal to:

Φ̈ =
2πℓKerr

λ
n2

I
τ2

G
, (45)

where ℓKerr is the length of the nonlinear medium characterized by an intensity dependent index n2I. The
matrix representation of the imaging problem of a standard imaging problem in space, is:(

y′

α ′

)
=

(
1 d2
0 1

)(
1 0
− 1

f 1

)(
1 d1
0 1

)(
y
α

)
, (46)

while the time correspondent is:(
T ′

α ′

)
=

(
1 |k′′|2d2
0 1

)(
1 0

−Φ̈ 1

)(
1 |k′′|1d1
0 1

)(
T
α

)
(47)

The various level of approximation of space-time analogy are summarized in Table 1.

3.3 Beam widening by diffraction versus pulse broadening (in time) by dispersion

A quadratic phase factor in the propagation equation in a dispersive medium broadens an unchirped input
pulse and leads to a (linear) frequency sweep across the pulse (chirp) while the pulse spectral width (and
shape) remains unchanged. In an analogous manner we can interpret the beam profile widening due to
diffraction. A “bandwidth-limited” Gaussian beam means a beam without phase variation across the beam,
which requires a radius of curvature of the phase front R = ∞. Thus, a Gaussian beam is “bandwidth-
limited” at its waist where it takes on its minimum possible size (at a given spatial frequency spectrum).
Multiplication with a quadratic phase factor to describe the beam propagation leads to beam broadening
and “chirp.” The latter simply accounts for a finite phase front curvature. Roughly speaking, the spatial
frequency components which are no longer needed to form the broadened beam profile are responsible for
the beam divergence. Table 2 summarizes a comparison of the characteristics of Gaussian beam and pulse
propagation.
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Space Time

( ∂ 2

∂x2 −2ikℓ
∂
∂ z

)
E (x,z) = 0

( ∂
∂ z

+
n
c

∂
∂ t

)( ∂
∂ z

− n
c

∂
∂ t

)
E (Ω,z) = 0

( ∂
∂ z

− ik2
x

2kℓ

)
ũ(x,z) = 0 Fourier transform

( ∂
∂ z

+ ikℓ(Ω)
)

E (Ω,z) = 0

E (kx,z) = E (kx,0) exp
( i

2kℓ
k2

xz
)

E (Ω,z) = E (Ω,0) exp
(
− i|k′′|ℓ

2
Ω2z
)

k2
x

2kℓ
⇐⇒ −|k′′|ℓΩ2

2

ũ(x,z) ∝ Fraunhofer Ẽ (t,z) ∝∫ ∞

−∞
ũ(x0,0) exp

(
i
kℓx
L

x0

)
dx0 approximation

∫ ∞

−∞
Ẽ (t0,0) exp

(
i

t
|k′′|ℓz

t0
)

dt0

(
1 d
0 1

)
Displacement matrix

(
1 |k′′|ℓ d
0 1

)

(
1 0
− 1

f 1

)
Lens matrix

(
1 0
ϕ̈ 1

)

Table 1: Space-time equivalence, starting from the Fourier transform of Maxwell’s equation in space (left) and in
time (right).

3.3.1 Application to a simple mode-locked cavity – stability criterium

To further clarify the time-space analogy, we consider a simple mode-locked laser cavity as sketched in
Fig. 1. The time equivalent of the “flat mirror – curved mirror (radius R)” cavity of length L [Fig. 1 (a)],
is one that starts from a bandwidth limited pulse at one end, propagates through the dispersion (|k′′|L) of
the cavity, goes through a Kerr self phase modulation (Φ̈), then dispersion again to the starting point [Fig. 1
(b)]. The ABCD matrix for this cavity is, in space: 1− 2

R L 2L(1− 2
R L)

−4 L
R 1− 2

R L

 (48)
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Gaussian pulse Gaussian beam

bandwidth-limited pulse at z = 0 beam waist at z = 0
(unchirped pulse) (plane phase fronts)

Ẽ0(t) ∝ e−(t/τG0)
2

Ẽ0(Ω) ∝ e−(τG0Ω/2)2
ũ0(x) ∝ e−(x/w0)

2

ũ0(kx) ∝ e−(kxw0/2)2

Propagation through a medium of Free space propagation over
length L (dispersion) distance L (diffraction)

Ẽ (Ω,L) ∝ exp

[
−
(

τG0Ω
2

)2

− i
k′′ℓ LΩ2

2

]

Ẽ (t,L) ∝ exp

[
−(1+ iā)

(
t

τG

)2
]

∝ exp
[

i
t2

2 p̃(L)

]
ā = L/Ld

τG(L) = τG0

√
1+ ā2

ũ(kx,L) ∝ exp

[
−
(

w0kx

2

)2

+ i
Lkx

2

2kℓ

]
ũ(x,L) ∝ exp

[
−(1+ ib̄)

( x
w

)2
]

∝ exp
[
−ikℓ

x2

2q̃(L)

]
b̄ = L/ρ0

w(L) = w0

√
1+ b̄2

Chirp coefficient (slope)

φ̈ =
2ā

1+ ā2
1

τ2
G0

Wavefront curvature

1
R
=

b̄
1+ b̄2

1
ρ0

Characteristic (dispersion) length

Ld =
τ2

G0
2k′′ℓ

Characteristic (Rayleigh) length

ρ0 =
nπw2

0
λℓ

=
kℓw2

0
2

Complex pulse parameter Complex beam parameter

1
p̃(L)

= φ̈(L)+
2i

τ2
G(L)

1
q̃(L)

=
1

R(L)
+

iλℓ

πw2(L)

Table 2: Comparison of dispersion and diffraction
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Figure 1: Example of s simple laser cavity in space (a) and in time (b). The round-trip matrix start at the flat mirror
(before the dispersion in (b).

and in time: (
1+2|k′′|ℓΦ̈ 2|k′′|ℓ(1+ |k′′|ℓΦ̈)

2Φ̈ 1+2|k′′|ℓΦ̈

)
(49)

Stable operation of the laser requires that the q or p parameter is equal to itself after a round-trip [1] leading
to the solution:

1
p
=

D−A
2B

∓ i
2B

√
4− (A+D)2. (50)

For a real solution to exist, the stability criterium is:

(A+D)2 < 4 (51)

which for the space cavity implies R ≤ ∞ and R ≥ L. The latter limit gives the smallest beam waist at the
flat mirror (concentric cavity). For the time cavity, the stability criterium is −2 < Φ̈|k′′|L < 0, which implies
opposite sign for the phase modulation and dispersion. The minimum pulse in the time cavity is given by:

τ2
G = 4B

√
4− (A+D)2 = 16|k′′|L(1+ Φ̈|k′′|L)

√
2Φ̈|k′′|L− (Φ̈|k′′|L)2. (52)

The shortest pulse duration is achieved for the “time concentric” cavity with Φ̈|k′′|L =−2.

10



References
[1] H. W. Kogelnik and T. Li. Laser beams and resonators. Appl. Opt., 5:1550–1567, 1966.

11


