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What is the Confocal Parameter?

STUART D. BRORSON

Absll"IU'l-A novel route to Gaussian bums IJ presented. We start
from spberical soludoDll to tbe tbl'ft-ilimeusionaJ Helmholtz equation.
In this case, the usual substitution t: - t + jb elegantly yields a DeW
wave with ellipsoidal phase froats. 1Jl the paruial limit, thiJ wave
asymptotically approaches a Gaussian. Using this formulation. we re-
cast resonator stability theory ia a particuJarly straightforward way.

I

1. INTRODUCTION

THE Gaussian beam is a useful representation of a fo-
.1 cused wave of finite transverse dimensions. Although

it has been extensively studied. many questions about the
Gaussian remain active areas of research. A recent pub-
lication [I) illustrates one such open question: what is the
re lation of the Gaussian beam to the solutions of the three-
dimensional wave equation? Discussed in this letter is a
novel and enlightening method to derive the Gaussian as
a limit of the solution to the full wave equation. As shall
be seen. the confocal parameter takes on particular geo-
metrical significance in this formulation.

Usually, the functional form of the Gaussian is found
by way of a two-step process. First. one identifies the
Green's function of the paraxial wave equation

( j <ik: ( - jk, 2)h x. y, z ) = t..z e J exp 2Z (x- + y) .

Then, since the paraxial wave equation is invariant under
translation z -+ z + zo' replacing z with z + jb in ( 1) must
also yield a legitimate solution [2]. The resulting solution
is the familiar Gaussian beam

(2)

where w2(z) = (2b!k)( 1 + z2jb2) is the beamwidth,
and 1/ R (z ) = z/ (z + b2) is the radius of curvature of
the phase fronts (2). An alternate route to (2) is the intro-
duction of a complex q-parameter [3]. or "complex radius
of curvature" [4] into (1). All of these approaches are
equivalent.

Unfortunately, the physical meaning of translating the
z axis by the imaginary distance jb is not at all clear (at
least to this author). In fact, most authors regard this pro-
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cedure as a purely formal mathematical exercise which
(fortuitously) yields the correct answer. Here. it is shown
for the first time that a deeper interpretation exists. We
arrive at Gaussian beams by starting with a solution of the
full three-dimensional Helmholtz equation in spherical
coordinates. Then. performing the transformation z -- z
+ jb corresponds physically to causing the phase fronts
of the solution to become ellipsoids. (A similar geometry
was used by Marcatili and Someda [1] to describe a fo-
cusing mode.) The separation of the foci of the ellipsoids
is 2b, where b is the confocal parameter of the beam. In
the paraxial limit the new ellipsoidal solution becomes a
Gaussian beam. Finally, we show that adopting this ap-
proach to Gaussian beams allows a simple, geometrical
interpretation of the optical resonator stability criterion.

(1)

II. ELUPSOIDAL PHASE FRONTS

We begin by investigating the free-s~ace solutions to
the scalar Helmholtz equation. V2Vt + k Vt = 0, in spher-
ical coordinates. In analogy to the paraxial wave equa-
tion. we desire the solution which corresponds to a source
at the origin-that is, the Green's function. The Helm-
holtz equation is separable in these coordinates. and we
have Vt"(r, fJ. cp) = h~I)(kr) Y1.",(fJ, q,), where h~')(kr)
is the spherical Hankel function of the first kind. Since r
:::; ../x2 + y2 + Z2, h~I)(kr) possesses spherical sym-
metry. Replacing z -+ z + jb breaks this symmetry. ren-
dering spherical coordinates inappropriate for describing
h ~l) (kr). Now choose a new coordinate system defined
by

x = b cosh u cos u sin q,
y=bcoshucosvcoscp

Z = b sinh u sin v. (3)

This is the definition of the oblate spherical coordinate
system [5]. [See Fig. l(a).] This coordinate system is
symmetric with respect to rotations around the z axis.
Since we are interested in describing axially symmetric
Gaussian beams, we may ignore the angular coordinate ¢
by only considering Vt on a plane containing the z axis.
We take z as the axial coordinate. and p = ../x2 + y2 as
the radial coordinate, as depicted in Fig. l(b). On this
plane, transformation (3) describes a coordinate system
consisting of a set of confocal ellipsoids parameterized by
u (where U E {O, 00 } ), onhogonal at every point to a set
of confocal parabaloids parameterized by v. (where v E

{O, ~}) [5]. The foci of the ellipsoids lie at p .; ±v
[Fig. 1(b).]
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Fig. I. Coordinate systems used in describing ellipsoidal phase fronts.
(a) Oblate spherical coordinates. parameterized by u (confocal ellipses).
II (confocal hyperbolas). and 4>(angular coordinate). The two dots on
the y axis are the focal points of the ellipses and hyperbolas on the y~
plane. The beam propagates in the + z direction. (b) Elliptic coordinate
system obtained by making a cross-sectional cut through (a) including
the z axis. In this case. p '" ~. The foci lie at p = xb. The
arrow indicates the direction of the beam propagation.

With this transformation, we may write

51)

inary components of the argument of h~I)(kf). Whereas
previously r was a real number, now points given by v *"
o or 1r give complex Vclluesof f. In this sense, fixing a
value of u and varying u away from v ;;;;;0 corresponds'
to analytic continuation of h ~I) (k f).

In two dimensions. the lines of constant phase of the
wave must be found by studying the behavior of h ~I) (k f)
in the complex r plane. For simplicity, we investigate
h ~I) (k r ), although the results obtained in this panicular .
case carry through for all n. Recall the expression for
h~I)(kf) [5]

(5)

We may ignore the small phase factor introduced by the
prefactor 1/k f. Then. the lines of constant phase are those
for which

Re {k f} = constant.

Clearly, since k is real. and the real part of f is parame-
terized by u, we immediately have that varying v-the
imaginary part of f-does not change the phase of the
wave. Since fixing u and varying v corresponds to walk-
ing along an ellipse in the (u, v) plane, we see that in
three dimensions the surfaces of constant phase are el-
lipsoids parameterized by u. Similar logic is true for all
n.

ill. WAVE EQUATION SOLUTIONS

Because the solution (5) has been obtained from a sim-
ple displacement of the origin, Z -- Z + jb, lj;(kf) must
still obey the Helmholtz equation. However, since the
phase fronts of the wave are parameterized by the set of
confocal ellipsoids. we see that lj; (k f) is no longer a so-
lution in spherical coordinates, but must instead be a so-
lution in oblate spheroidal coordinates. The nature of this
solution is quite interesting.

We rewrite the transformation (3) using new variables

x = b~'1 sin cP

y = bh cos q,

Z = b J(E2 - 1)(1 - '12) (6)

= b "/cosh2 U cos2 V + sinh2 u sirr' v-I + 2j sinh u sin u,

Recalling cosh/ u - sinh2 u = I. and sirr' u + cos2
V =

I, we may rewrite this expression as

f = b (sinh u + j sin v).

Thus we find that u and v correspond to the real and imag-

(4)

where ~ E {I, oo} parameterizes the ellipses. and » E

{ - 1. I} parameterizes the hyperbolas [5]. In these co-
oblate spheroidal symmetry as long as '" satisfies (10).
i.e., lj; is a spherical Bessel (or Hankel) function.
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IV. RELA TrONSHIP TO GAUSSlAN BEAMS

h is irnponam \0 \mow the relationship of our solution
(5) to the usual Gaussian beam. Not surprisingly, we find
that under the paraxial approximation. (5) approaches a
Gaussian beam. The derivation proceeds as follows. Using
the coordinate system defined by (6), we can express (4)
as

r = b(../~2 - 1 + j ../1 - 1/2). (11)

If we assume paraxial rays. then ~ » I and 11/ I « L
In this situation. (6) becomes

p = b~1/

z = bH 1 - !1/2)

where p := ../x2 + y2. Similarly, we get for (11)

(12)

( 13)

Now solving (12) approximately for b~ and (1 - ~ 1/2),

we get

I p2
b~ ::::z + --2 z

1 2 I p2- 21/ :::: I - 2 Z2'

Inserting these into (13) gives r, from which we obtain
ordinates. the Helmholtz equation may be written [5]

../e ~ i. [~../~2 _ 1 al/t] + ../1 - 112 i.
~; a~ a~ 11 a11
r 2 al/;] (~2 - 112) a21/;
l11 .Jl - 11 aT/ + ~2112 Ocp2

+ b2e(e - 7]2) I/; = O. (7)

Utilizing the fact that l/t can be written l/t (bk .Je 1 +
jbk ../1 - 112 ) allows us to write (7) as

-j .Jl - 111) l/t'

(8 )

b2e(~2 - 112) v;" + 2bk( .J~2 -

+ k2b2(~2 - 712) I/; = O.

If we define
t = bk ../~ 2 I + jbk ../I - 11 2

we can express (8) as

t*tl/t"(t) + 2t*l/t'(t) + t*tl/t(t) = O. (9)

Dividing out by t*t gives the equation for the zeroth-order
spherical Hessel (or Hankel) function [5]:

2
1/;" (t) + - 1/;' (t) + w(e) = O. (10)

t

Thus. we have shown that the replacement z -+ Z + jb
yields a solution for the Helmholtz equation possessing
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the new wave

(
bk 1) ( ")p . JK,

1/;0(P. z) cc exp -2 Z2 exp -;kz - 2z p- . ( 14 )

As can be seen. (14) is identical to (2) in the limit Z »
b. Thus, we have shown that the Green's function
h ~1) (k i) asymptotes to the Gaussian beam in the paraxial
limit.

A great advantage of starting with the full Helmholtz
equation to obtain Gaussian beams is that one may avoid
using functions possessing singularities for finite z like
(I). This is not possible when starting from the paraxial
wave equation. Specifically, the solution 1/;0 = io(kf) also
reduces to (14) in the paraxial limit, but provides a su-
perior description of a standing wave in a resonator since
i; (k f) is analytic for all finite f.

V. RESONATOR STABILITY

Typically. the stability of an optical resonator with
curved mirrors is determined by fitting a Gaussian beam
into the resonator. and matching the radius of curvature
of the beam with the mirror radius of curvature [2]. If
such a beam exists, and its confocal parameter is real.
then the resonator is stable. Otherwise, the resonator is
unstable. Using this approach, expressing b in terms of
the resonator parameters RI and R2 (mirror radii of cur-
vature). and d (mirror separation) is a nonenlightening ex-
ercise in algebra. Happily, recognizing that the phase
fronts of the beam are ellipsoidal allows a very simple.
geometrical interpretation of the resonator stability crite-
rion, achieving a considerable simplification in its deri-
vation.

Since the beam phase fronts are ellipsoidal, the problem
of building a stable resonator is equivalent to that of find-
ing an elliptical coordinate system on which the mirrors
have the same radii of curvature as the ellipses along the
z axis. and are separated by the distance d. (See Fig. 2.)
With these conditions, the only free parameters are the
placement of the origin of the coordinate system. and the
focal separation 2 b. The positions of the mirrors are ex-
pressible as

z, = b sinh UI

(15 )

while the radii of curvature of the mirrors along the z axis
are

RI
cosh'' UI

=b
sinh U\

Rz
== b cosh/ u2 (16 )

sinh Uz

Our task is to solve (15) and (16) for b subject 1O the
constraint

d = ZI + Z2' ( 17)
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Fig. 2. Fitting a coordinate system to the resonator mirrors (R, and Ro).
The two free parameters are the placement of the origin (fixing :, and
z,). and the focal separation 2b. The constraints are the mirror curva-
tures R, and Ro must match the curvature of the ellipses along the: axis.
and the mirror separation d = z, + '2 is fixed.

Solving for sinh u\ in (16), we obtain

(RI) ~sinh UI = 2b ± ~4b'2 - I

and similiarly for sinh U2' Imposing constraint (17) leads
directly to the expression

( 18)

This must be satisfied by real b in order for the resonator
to be stable. This expression is precisely the usual reso-
nator stability criterion, and may be found in any under-
graduate laser test [2), [4]. Remaricably, we have derived
(18) without the usual algebraic clutter. in a manner that

51.5

leaves the geometrical nature of resonator stability clearly
revealed.

VI. SUMMARY

To recapitulate, we have demonstrated that the trans-
formation z -+ z + jb in a spherically symmetric solution
of Helmholtz's equation breaks the spherical symmetry,
yielding a solution possessing oblate spheroidal symme-
try. The phase fronts of the resulting wave are ellipsoids.
The new wave is a solution of Helmholtz's equation in
oblate spherical coordinates, although the functional form
of the solution is that of a wave in spherical coordinates.
In the limit z » b, the zeroth order solution h ~t) (k f )
approaches a Gaussian beam. Finally, using this new co-
ordinate system we can derive the usual resonator stability
condition in a particularly elegant way. It is our hope that
these results lay bare the essentially geometrical nature of
the transformation z -+ Z + jb. To conclude, we may an-
swer the question: what is the confocal parameter? It is
simply one half the distance between focal point" in the
elliptic coordinate system describing the phase fronts of
the Gaussian beam!
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