
1 The Driving term in Maxwell’s propagation equation

1.1 Index of refraction due to electron

The index of refraction seems a trivial subject that we had been introduced to since our high
school studies through a Snell’s law. In the middle of twentieth century there were a few attempts
to have a better understanding of the index of refraction. With a classical mechanics picture
in mind the derivation of index was a combination of the principle of least action and Fermat’s
principle. (Reference:The Refractive Index in Electron Optics and the Principles of Dynamics
1949 Proc. Phys. Soc. B 62 8, http://iopscience.iop.org/0370-1301/62/1/303). Often the index
of refraction is only associated with bond electrons and treated as it was introduced in Chapter
IV of ”theory of electrons” by Lorentz.1

In textbooks like Klein and Furtak (chapter one, or attached hw1.pdf, part (b)), the index of
refraction is calculated by solving the damped harmonic oscillator of electron motion with applied
electric field “E”. The position and momentum are calculated. At this point one approach is
taking the position “∆r” of the electron motion and claim that the dipole is simply “e∆r and by
multiplying the dipole with the density of the electrons the polarization “P = χϵ0E = Ne∆r”
is known and the index is simply n =

√
1 + χ Another approach, generally applied to plasma,

is looking at the current density (from the velocity of the electron) and inserting “Nev” as “J”
in Maxwells’ equation

∇×H = Jf +
∂D

∂t
= J + ϵ0

∂E

∂t
. (1)

In the absence of magnetization and free current M = 0 and Jf = 0, the velocity of the electron
“v” gives the current density “J”. Here is a unspoken trick , the “ϵ” is considered a property of
the medium and constant over the changes of the electromagnetic field. There are situations in
physics where this does not apply anymore, when ϵ itself is a function of time and changes over
the applied light signal.

1.2 The bound electron

The classical approach is to calculate the motion of the bound electron, modeled as a dipole.
The electron is at a (small) distance d from the positive ion. It oscillates with the applied electric
field. This is the classical oscillator model. The Coulomb field produces a restoring force, which
defines a resonance frequency. One introduces a damping term. A similar model is used for the
plasma. The result is that, away from resonance, under the influence of an optical oscillating
field at ω, the motion of the electron follows the frequency of the applied field, in phase, and is
thus d = d0 cosωt. At a point of observation at a distance R from the dipole, the field due to
the dipole is:

∆E =
q2

4πR2

[
1− R2

(R+ d)2

]
≈ 2q2d

4πR3
(2)

Putting that in Maxwell’s propagation equation:

∂2E

∂z2
− 1

c2
∂2(E +∆E)

∂t2
= 0 (3)

1An interesting review of the index with application to mixed gases can be found in “The Refractive In-
dex of an Ionized Medium. Author(s): C. G. Darwin, Reviewed work(s); Source: Proceedings of the Royal
Society of London., Vol. 146, No. 856 (Aug. 1, 1934), pp. 17-46 Published by: The Royal Society URL:
http://www.jstor.org/stable/2935475 .Accessed: 06
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or
∂2E

∂z2
− 1

c2
∂2E

∂t2
=

1

c2
∂2∆E

∂t2
=

ω2

c2
∆E. (4)

Using:

E =
1

2
Eei(ωt−kz)

∆E =
1

2
∆Eaei(ωt−kz)

we find:

−2ik∂E
∂z
− 2i

ω

c2
∂E
∂t

=
ω2

c2
∆E , (5)

and
∂E
∂z

+
1

c

∂E
∂t

= −i ω
2c

∆E , (6)

We started with ∆E in phase with the applied field. After insertion in the propagation equation,
it appears that its envelope is adding 90 degrees out of phase with the applied field, as is the
case of an index of refraction.

1.3 Other approach: source polarization in Maxwell’s equation

For a propagating wave along z, the propagation of any function f(z − ct) would be solution of
a first order differential equation: (

∂

∂z
+

1

c

∂

∂t

)
f = 0. (7)

[which amount to f ′
z − (1/c)f ′

t = 0.] Maxwell’s wave equation is a bit different: it could be seen
as the product of two wave equations along +z and −z: (right propagation)×(left propagation)

∂

∂z
− 1

c

∂

∂t
× ∂

∂z
+

1

c

∂

∂t
=

∂2

∂z2
− 1

c2
∂2

∂t2
. (8)

The right hand side of Maxwell’s equations refers to local sources – not propagating ones, hence
no ∂/∂z associated with them. Magnetic field effects are neglected in the derivation of plasma
frequencies, polarization, approximation incompatible with propagation. Indeed, the magnetic
field is an integrant part of Maxwell’s propagation equation.

Recalling the derivation of Maxwell’s propagation equation :

∇× E = −∂B

∂t

∇×B = µ0J + µ0
∂(ϵ0E + P )

∂t

∇×∇× E = −∂(∇×B

∂t
= − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
(9)

Another way to look at it: instead of P , we are adding the local electric field ∆E from the
radiation of the electron. Either of:
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1. say ∆E = P/ϵ0 hence
∂2E

∂z2
− 1

c2
∂2E

∂t2
=

1

c2
∂2∆E

∂t2

,

2. The local electric field adds to the applied field only in the time derivative:

∂2E

∂z2
− 1

c2
∂2(E +∆E)

∂t2
= 0

∆E may be in phase with the applied field, but, as a function of z, and in the retarded frame
of reference, ∆Ẽ is π/2 out of phase with ∂Ẽ/∂z. The standard propagation equation for the
envelope

∂Ẽ
∂z

= −iΩ
c
∆Ẽ (10)

comes from making the substitution:

E =
1

2
Ẽei(ωt−kz)

∆Ẽ =
1

2
∆Ẽei(ωt−kz)

The left side of Maxwell’s propagation equation becomes zero to first order by making ω2/c2 =
k2, while the right hand side becomes either µ0ω

2P or ω2/c2∆Ẽ .(
−2ik ∂

∂z
− 2

ω

c2
i
∂

∂t

)
Ẽ = −ω2

c2
∆Ẽ(

∂

∂z
+

∂

∂t

)
Ẽ = − iω

2c
∆Ẽ ,

or, going to the retarded frame t← t− z/c and z ← z:

∂Ẽ
∂z

=
iω

2c
∆Ẽ . (11)

It appears as if by the time the electron re-radiates, the wave has already moved by a distance
of λ/4.
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