
1 Light-electron interaction

In the description of matter by an “index of refraction” or a “polarization”, one tends
to forget that the nature of light-matter interaction is simply re-radiation of electrons
driven by the optical field. Electrons are accelerated by a combination of the applied
electromagnetic field of the light and the field of other particles, and follow trajectories
dependent on the light polarization. The moving electrons radiate a field that adds to
that of the light, resulting in phase and amplitude changes of the optical field. This
situation is traditionally described by an isotropic, polarization independent, polariza-
bility, or index of refraction of a plasma. It is shown in the next subsection that this
description does not match the response of free electrons created by tunnel ionization.
It will be shown next how this case of free electrons connects to the conventional steady
state response of a plasma.

1.1 Free electrons after tunnel ionization

Free electrons can be produced by ionization of a molecule under a high optical field.
There are two channels of strong field ionization: multiphoton or tunneling. The two
regimes are distinguished by the Keldysh parameter γ [1]:

γ =

√
Ip
2Up

, (1)

where Ip is the ionization potential, and Up is the ponderometive energy or the average
kinetic energy of a free electron oscillating in the laser field. If e and me are the charge
and mass of the electron; ω the (angular) frequency of the light field of amplitude E :

Up =
e2E2

4meω2
. (2)

Up expressed in eV as a function of the light intensity Iℓ in W/cm2 and the wavelength
λ in microns is:

Up = 9.33 · 10−14Iℓλ
2 (3)

In the “quasistatic limit” of γ < 1 the dressed Coulomb barrier is essentially static
as seen by the electrons and the method of releasing the electrons is dominated by
tunneling. For γ > 1 the electron release is most likely described by photon absorption,
and multiphoton features are more dominant [2]. The difference between tunneling and
multiphoton is easily recognized in measurements of velocity mapping imaging (VMI)
where the electron momentum distribution following ionization is measured [3]. We
consider here as an example the case of ionization by a fs pulse at 800 nm where a
tunneled electron leaves its parent atom/molecule instantaneously along the direction
of light polarization, at the moment of ionization, with zero velocity [4]. The electrons
leave the atom from a Rydberg state that typically has an orbit radius one order of
magnitude larger than the atomic radius. Formulae can be found in the literature for
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the tunneling rate and the ratio of electron production for various polarization [5, 6].
We are here just interested in following the motion of the electron, subjected to the
force F due to a combination of the optical field E and a Coulomb field Fc:

F = −qE + Fc = ma, (4)

where a is the acceleration of the electron of mass m and charge q. In this classical
approach, we neglect the magnetic force on the electron. The tunneled electron is
released at time t0 in the optical field given by:

E =
E(t, r)√
1 + ε

[cosω(t− t0)x⃗+ ε sinω(t− t0)y⃗] , (5)

where ε defines the light polarization (ε = 0 for linear polarization) and E(r, t) is the
envelope of the field. At any time t ≥ t0, the velocity of the electron is given by:

v =
qE(t, r)
mω

(sinωt x⃗− ε cosωt y⃗) + y⃗ε
qE(t0, r0)

mω
. (6)

In circular polarization (ε = 1), the electron acquires a drift velocity vd = qE(t0, r0)/(mω)
along y⃗, long after the laser pulse is gone. At the moment of ionization t0 = 0, the
electron velocity is zero, hence there must be a drift term to fulfill the initial condi-
tion. Let us consider a pulse of intensity of 2.8·1014 W/cm2 as is realized in a light
filament in air (see Section ??). To this circularly polarized pulse corresponds a field
peak amplitude of 4.62 × 108 V/cm, the drift velocity of the electron ionized by this
field is 3.45 · 104 cm/s or 1.6 atomic units.

The position of the electron is

r =
qE0

mω2
(− cosωtx⃗− y⃗ϵ sinωt) + y⃗ϵ

qE0

mω
t+ r0 +

qE0

mω2
x⃗. (7)

It means that the electron having the negative charge will oscillate in the same direction
and phase of the laser field. Consistently with neglecting the magnetic forces, we ignore
the motion out of the polarization plane “xy plane”. The coordinates of the electron
are:

x =
qE0

mω2
(− cosωt) + x0 +

qE0

mω2
(8)

y = ϵ
qE0

mω
t(−sinωt

ωt
+ 1). (9)

The initial position is taken to be 10 times the atomic radius of nitrogen which is 65
picometers or 0.65/0.52918 = 1.22 atomic units. The amplitude of the oscillation is
qE0/(mω2) = 1.4 nm corresponding to 27.7 atomic units. Within the 200 femtosecond
of a circularly circularly polarized pulse, the electron ionized at the peak has moved
qE0/(mω)t which is 1.23·102 nm or 6.52 ·103 atomic units in 100 fs.
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The radiation of a non-relativistic moving charge [7] is expressed as

∆E =
q

ϵ0c

n⃗× (n⃗× ⃗̇β)

R
+

qd

ϵ0R3
. (10)

where β = v/c , ϵ0 is the vacuum permittivity, n⃗ = R⃗/R is the unit vector of the

observation point R⃗ and “d” is the displacement of the charge that can be calcula-
ted at time t from the position equations (9). Note that there are two terms in the
electron response: the first one is the “radiation term”, and is only relevant at very
high intensities. In our example of 2.8·1014 W/cm2 considered here, it is two orders of
magnitude smaller than the second term. Since the latter involves the distance from
the parent ion to the electron, it is called the “dipole term”. The classical definition
of the polarization relates to this dipole term, generally defined as P = Nqd, where N
is the density of electrons. This definition relates to the second term of Eq. (10) in an
homogeneous medium where R−3 = N , and the field of the electron cloud reacting to
the applied field is ∆E = P/ϵ0.

The electron trajectories in the first ps after ionization and their emission into the
applied field is a deterministic problem that can only be solved by numerical calcu-
lations. Some calculations of the transient response of the electron cloud in linear
polarization were reported by Romanov and Levis [8]. An example of the transient
response is reproduced in Fig. 1.

Figure 1: The cumulative polarization response of a medium that is being tenuously ionized
by a laser pulse with rectangular envelope. The laser electric field oscillations are shown for
comparison, not to scale. (from [8]) REQUEST PERMISSION

For mixed gases the contribution of each material (in the absence of interaction)
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can be calculated separately. The distance between electrons changes with time and
position. The response of the electrons is a field ∆E, calculated for each point in space
as a function of time, which modifies the applied field: E(z +∆z) = E(z) + ∆E. The
radiated field ∆E is related to the traditional notion of index of refraction n(z, t) (no
longer a constant) by the propagation equation written in the slowly varying envelope
approximation and in retarded time:

∆E

E
= −ik∆z = −i

2πn

λ
∆z (11)

Note that this approach is not restricted to a particular motion. If the medium is
excited by multiple laser frequencies or existing nuclear and electromagnetic fields,
they all contribute in the motion of the electron and therefore its radiation.

The response due to the dipole radiation of the electrons at position r is calculated
by time integration of Eq. (6) and inserted in the dipole term of radiation equation
Eq. (10).

∆Ep(t, r) =
qd(t, r)

R(t, r)3ϵ0
=

q2E(t, r)
2mω2R(t, r)3ϵ0

, (12)

in which Ẽ(t, r) is the pulse envelope. Note that the dipole radiation exists only during
the laser pulse. In this particular case the radiation of the moving electron agrees with
the Drude model, which is detailed in Section 1.2 that follows. It leads to an index of
refraction

∆n = −ωp
2

ω2
= − Nq2

2ϵ0mω2
, (13)

where ωP is a time dependent plasma frequency that depends on the density of electrons
N at each instant. Note that in a general case the motion of an electron is influenced
by existing electromagnetic fields, collisions and Coulomb forces, and therefore the
refractive index of electrons can not be defined solely by the density. Tunneled electrons
with circularly polarized light withhold a drift velocity [Eq. (6)] that is determined by
the field value at the moment of ionization. The spiral motion of the tunneled electrons
results in generating an expanding sphere in time. The electromagnetic fields in the
presence of moving matter are related through Maxwell’s equations, suitably modified
to include the effects of motion upon the electric and magnetic properties of matter [9].
We assume that the expanding electron sphere in time has the constituent parameters
of free space (µ = µ0 and ϵ = ϵ0). Let us assume that the expanding electron sphere is
a perfect conductor with the field zero for r < b , where b is the radius of the sphere.
One relation is necessary to complete the set of basic equations, which is Ohm’s law
for a perfect moving conductor

E + v × µ0H = 0. (14)

Here v is the velocity of a macroscopic element of volume of the moving conductor.
The solutions of Maxwell’s equations inside and outside the expanding sphere have to
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be matched across a moving surface. Due to the requirement of regularity at infinity,
the problem is defined only by the magnetic vector potential ’ A .

H = − 1

µ0

∇× A (15)

E = −∂A

∂t
(16)

and is the solution of

∇2A− 1

c2
∇A2

∇t2
= −µ0J, (17)

where J is the electric current density. Using the Green’s function, the field at distance
r from the center of a sphere moving with constant velocity [10] is

E = −µ0

c2
3Hv3

(1− v/c)2(1 + 2v/c)

[
T

rc
+

T 2

2r2

]
, (18)

where T = t − r/c . In the case of tunneled electrons with circularly polarized light
r = R is the distance between the electrons , v is the expansion velocity of the sphere
(the drift velocity qE(t0, r0)/(mω) in Eq. (6) and T = a/v − R/c where “a“ is the
radius of the sphere at a given time.

.

1.2 Steady state limit: the Drude model

It is easy to associate a characteristic resonant frequency to an oscillator with a positive
and negative charge. Associating the resonant frequency of Eq. (13) with a homogene-
ous electron plasma may seem less obvious. If an electron moves in the plasma from its
equilibrium position, there will be a restoring force. The larger the number of surroun-
ding electrons, the larger the restoring force, which explains the density dependence of
the resonant frequency.

Let us consider a volume of electrons, of density n0. The equation of motion of
electrons under the influence of an electric field, neglecting collisions and magnetic
forces, is:

me
dv

dt
= −eE + e[v ×B]−meνcv (19)

Note that in the equation of motion of the electron, the electric field can be the Coulomb
field from the surrounding electrons. Let us consider a perturbation δne from the
equilibrium density of the electrons n0. We will for simplicity neglect collisions and the
magnetic force in the following derivation. Expressing that the change in the number
of electrons per unit time in a infinitesimal volume is equal to a source term, minus
the current of particles out of that volume, leads to the conservation equation for the
electrons: (

∂n

∂t
+∇nv = Source terms

)
. (20)
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Figure 2: a) Radiation field of expanding spherical conductors b) Dipole radiation c)
Difference between Dipole radiation and radiation due to the drift motion

with n = n0 + δne and δne ≪ n0. In the velocity v = v0 + δv, we assume no drift
velocity (δv = 0. The conservation equation (without source term – the plasma is at
equilibrium), neglecting the second order product δnδv, leads to:

∇ · δv =
−1

n0

∂n

∂t
. (21)

Taking the divergence of Gauss law, and using the equation of motion (19):

∇ · eE =
ne2

ϵ0
= me∇ · dv

dt
≈ me

d

dt
∇ · δv = me

d

dt

(
−1

n0

∂n

∂t

)
(22)

which leads to the differential equation for the plasma density:

∂2n

∂t2
= −

(
n0e

2

meϵ0

)
n = −ω2

pn, (23)
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which shows that indeed, density fluctuations in a plasma of electron have a resonant
frequency.

The fluctuation of the density (position) of electrons gives rise to an electric field.
Considering that there is no other electric field (no applied field), using Ampere law:

∇×H = J +
∂D

∂t
D = ϵE

J = −nqv

∂

∂t

(
ϵ
∂E

∂t
= nqv

)
∂2E

∂t2
=

n0q

ϵ0

∂v

∂t

where we have set the magnetic field to zero. Since ∂v/∂t = −qE/me from the equation
of motion,

∂2E

∂t2
= −

(
n0q

2

mϵ0

)
E (24)

we see that the density fluctuation themselves give rise to the emission of a field at the
plasma frequency ωp.

The classical treatment of electron in plasma is not very different from the bound
electron: it a is stationary solution of a driven oscillator, based on a fundamental
assumptions that the medium response is isotropic and stationary. In particular, the
density term that defines the plasma frequency is never a constant when dealing with
fs pulses.

2 Transitions with bound electrons

2.1 Introduction: the classical oscillator and Maxwells equa-
tions

The classical approach is to calculate the motion of the bound electron, modeled as
a dipole. The electron is at a (small) distance d from the positive ion. It oscillates
with the applied electric field. This is the classical oscillator model. The Coulomb
field produces a restoring force, which leads to a resonance frequency. One introduces
a damping term. A similar model is used for the plasma. The result is that, away from
resonance, under the influence of an optical oscillating field at ω, the motion of the
electron follows the frequency of the applied field, in phase, and is thus d = d0 cosωt.
At a point of observation at a distance R from the dipole, the field due to the dipole
is:

∆E =
q2

4πR2

[
1− R2

(R + d)2

]
≈ 2q2d

4πR3
(25)
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Putting that in Maxwell’s propagation equation:

∂2E

∂z2
− 1

c2
∂2(E +∆E)

∂t2
= 0 (26)

or
∂2E

∂z2
− 1

c2
∂2E

∂t2
=

1

c2
∂2∆E

∂t2
=

ω2

c2
∆E. (27)

Using:

E =
1

2
Eei(ωt−kz)

∆E =
1

2
∆Eei(ωt−kz)

we find:

−2ik
∂E
∂z

− 2i
ω

c2
∂E
∂t

=
ω2

c2
∆E , (28)

and
∂E
∂z

+
1

c

∂E
∂t

= −i
ω

2c
∆E , (29)

Even though we started from a ∆E in phase with the applied field, after insertion in
the propagation equation it appears that its envelope is adding 90 degrees out of phase
with the applied field, as is the case of an index of refraction.

It appears as if, by the time the electron re-radiates, the wave has already moved
by a distance of λ/4.
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