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The Fabry-Perot Cavity

1 Basics

We will consider for simplicity a symmetric Fabry-Perot cavity. The boundaries of the
Fabry-Perot are air (outside, medium 1) glass (inside, medium 2) interfaces. We will use
the following notations:

• t̃12 = transmission from outside (1) to inside (2)

• t̃21 = transmission from inside (2) to outside (1)

• r̃12 = reflection from outside (1) to inside (2)

• r̃21 = reflection from inside (2) to outside (1).

The incident field is a plane wave of amplitude unity.

1.1 Field transmission

T = t̃12t̃21e
−ikd

+t̃12t̃21
(
e−2ikd · r̃21r̃21

)
e−ikd

+t̃12t̃21e
−ikd

(
e−2ikd · r̃21r̃21

)2
+ . . .

= t̃12t̃21e
−ikd 1

1− r̃221e
−2ikd

. (1)

1.1.1 Interface properties

For an asymmetric interface:

t̃12t̃21 − r̃12r̃21 = 1 (2)

and
r̃12 = −r̃∗21 (3)

Equation (2) implies that we can do the following substitution in Eq. (1:

t̃12t̃21 = 1 + r̃12r̃21 = 1− |r12|2 = 1−R. (4)

The result for the field transmission is:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(5)

where
δ(Ω) = 2φr − 2k(Ω)d (6)
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1.2 Field reflection

R(Ω) =

√
R

(
eiδ − 1

)
1−Reiδ

.

(7)

One can easily verify that, if — and only if — kd is real:

|R|2 + |T |2 = 1 (8)

Equations (5) and (7) are the transfer functions for the Fourier transform of the field.
The dependence on the frequency argument Ω occurs through k = n(Ω)Ω/c.

1.3 Examples

Transmission for a train of pulses.
Fabry-Perot as a frequency filter.

1.4 Transfer functions

A transfer function is the mathematical representation of the relation be-
tween the input and output of a system.

R(Ω), T (Ω) are examples of transfer functions for the field Ẽ(Ω).
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2 Frequency Filter

Referring to Eq. (5), δ = −2k(Ω).d for normal incidence. For clarity, we will neglect the
phase shift on reflection.

One can use either angular or cyclic frequencies:

δ = −2nd

c
Ω (9)

δ = −4πnd

c
ν (10)

There are two important parts in the transmission: its periodicity, i.e. the transmission
takes the same value for increments of δ by 2Nπ. This is called the free spectral range.
In angular frequencies:

∆Ωfsr =
πc

nd
(11)

In cyclic frequencies:

∆νfsr =
c

2nd
(12)

The next important dependence is close to the peak transmission, which corresponds
to δ = 0 or 2Nπ. The best approach is to make the approximation of small δ in the
trigonometric function.

WARNING One cannot make the approximation of δ small in T̃ and thereafter cal-
culate T = |T̃ |2. One has to FIRST calculate T , and THEREAFTER make the approxi-
mation of small δ. The intensity transmission factor T is:

T =
1

1 + 2R
(1−R)2

cos δ
. (13)

The approximation cos δ ≈ 1− δ2/2 in Eq. (13) yields:

T ≈ 1

1 + R
(1−R)2

δ2
. (14)

Making the approximation of small δ in Eq. 5 first gives you a different result. The
FWHM of this Lorentzian is:

∆δres =
2(1−R)√

R
. (15)

This relation leads directly to the definition of the finesse, which is the ratio of the free
spectral range (2π) to the linewidth:

F =
π
√
R

1−R
. (16)
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For the use of the Fabry-Perot as a Filter, one can define the FWHM in angular frequency

or cyclic frequency:

∆Ωres =
c(1−R)

nd
√
R

(17)

∆νres =
c(1−R)

2πnd
√
R

(18)

2.1 Fabry-Perot Cascade

Let us assume that the thinnest practical Fabry-Perot to be of 100 µm thickness. The
corresponding free spectral range is ∆νfs1 = 1.5 · 1012 Hz. The bandwidth that needs to
be filtered is often much larger. Let us assume a “square” bandwidth that covers exactly
(2N + 1)∆νfs1 We dan arrange to have the transmission peak of index zero just outside
the band, the transmission peak of index 1 just inside, the transmission peak of index
N + 1 in the middle, index 2N + 1 just inside and index 2N + 1 just outside.

We want to built a filter that leaves only one peak transmitted in that range. Let us use
a Fabry Perot of approximately twice the thickness, and the same finesse. “Approximately
twice the thickness” implies a free spectral range of

∆νfs2 = ∆νfs1

(
1− ϵ

2

)
. (19)

Since the finesse is the same:

∆νres2 ≈
1

2
∆νres1. (20)

We look now for conditions that will tell us what the minimum ∆νres1 should be in
order to have only the central peak surviving in the superposition of the two Fabry-Perots.
The first condition is that the second peak from the center of the thicker FP does not
overlap with the first peak away from the center of the thinner one:

∆νfs1 − 2∆νfs2 ≥ ∆νres1

ϵ×∆νfs1 ≥ ∆νres1 (21)

The second condition is that the outer transmission peaks do not overlap:

(2N + 1)∆νfs2 −N∆νfs1 ≥ ∆νres1[
1

2
− (N +

1

2
)ϵ
]
∆νfs1 ≥ ∆νres1 (22)

which can be satisfied if ϵ < 1/(2N + 1).
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3 Transmission/reflection for a monochromatic Gaus-

sian beam

For a Gaussian beam:
E = E0e−r2/w2

(23)

The Fourier transform along the transverse dimension is:

E(∆k) =
∫ ∞

−∞
E(r)ei∆krdr ∝ e−(∆k)2w2/4. (24)

In the Fabry-Perot transmission function, we write k⃗ = k⃗0 + ∆⃗k, with the vector ∆⃗k
orthogonal to the vector k⃗0. In the Fabry-Perot transmission function:

δ = 2φr − 2k⃗0.d⃗− 2∆⃗k.d⃗ = 2φr − 2k0d cos θ + 2∆kd sin θ = δ0 + 2a∆k, (25)

with a = d sin θ To first order, we can neglect the variation of θ as compared to θ, putting
all the variation in ∆k.

The transmission of a Gaussian beam to a Fabry-Perot — in k − space is:

e−(∆k)2w2/4 × (1−R)e−i(k⃗0.d⃗+2a∆k)

1−Rei(δ0+2a∆k)
(26)

One can get a lot of information from this expression, without having to make the inverse
Fourier transform to the position space. The phase factor k⃗0.d⃗ + 2a∆k disappears when
on takes the absolute value square. The important phase factor is in the denominator:
δ0 + 2a∆k. ∆k varies essentially in the range ±1/w.

Near normal incidence

Depending on the exact angle of incidence, δ0 can be close to 0 or π. The term 2a∆k =
2∆kd sin θ varies between ±2(d/w) sin θ. Starting with no fringe, there will be one fringe
across the beam if 2(d/w) sin θ ≥ 2π, i.e. narrow beam (w small) and/or long FP (d
large).

4 Fabry-Perot – simplest case – geometric model

We will consider that the phase shift δ is real, and is only due to the propagation factor:
δ = −kd− ϕ. The intensity transmission of a Fabry-Perot is given by:

T =
1

1 + 4R
(1−R)2

sin2 ϕ
2

=
1

1 +
(
2F
π

)2
sin2 ϕ

2

≈ 1

1 + R
(1−R)2

ϕ2
. (27)
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where the approximation is valid for (1−R) ≪ 1, and ϕ ≪ 1. Within that approximation,
the transmission function is a Lorentzian of width (FWHM) ∆ϕt:

∆ϕt = 2

√
R

(1−R)
. (28)

In the above expressions, R =
√
R1R2, R1 and R2 being the (intensity) reflection coef-

ficients of the mirrors, and ϕ = k(2L) = 4πnL/λ = 4πνnL/c is the round-trip phase
shift. The free spectral range, or the frequency spacing between transmission peaks,
is ∆ν = c/(2nL). The finesse F is the ratio of the full width half maximum of each
transmission peak ∆νt to the free spectral range ∆νax = c/(2nL).

F =
π
√
R

1−R
(29)

Another form for the Fabry-Perot transmission is:

T =
(1−R)2

1 +R2 − 2R cosϕ
=

[
ϵ

D

]2
. (30)

The transmission of the Fabry-Perot can be determined by a simple geometrical con-
struction, as sketched in Fig. 1(b). The incident field is represented by a unit vector
OA with a phase angle ϕ. The quantity D =

√
1− 2R cosϕ+R2 is the side AB of the

triangle, where B is the point at ϵ = 1 − R from the intersection of the circle with the
ϕ = 0 axis. It is easily seen from the figure that the transmission factor [ϵ/D]2 varies
between unity and [(1−R)/(1 +R)]2.
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Figure 1: Fabry-Perot cavity (a) and geometrical representation of its transmission factor (b).

5 Fabry-Perot with gain

Phase factor δ: δ̃ = δ − ia,

δ(Ω) = 2φr − 2k(Ω)d (31)

The result for the field transmission is:

T (Ω) =
(1−R)ea/2e−ikd

1−Reaeiδ
(32)

At resonance (δ and kd = 0):

T (Ω) =
(1−R)ea/2

1−Rea

Substituting into the expressions for the transmission [Eq. (5)] and reflection [Eq. (7)]
and taking the absolute value squared to find the intensity transmission factor:

|R|2 =
(1−R)2

1 +Re2a − 2Rea cos δ

|T |2 =
R [e2a + 1− 2ea cos δ]

1 +Re2a − 2Rea cos δ
. (33)

The traditional approach to simplify these expression is to make the substitution cos δ =
1− 2 sin2(δ/2). The result is:
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|R|2 =
R (ea − 1)2

(1−Rea)2

[
1 + 4ea

(ea−1)2
sin2 δ

2

]
1 + 4Rea

(1−Rea)2
sin2 δ

2

(34)

|T |2 =
(1−R)2

(1−Rea)2
1

1 + 4Rea

(1−Rea)2
sin2 δ

2

(35)

For values of δ close to the resonance condition (Nπ), the shape of the transmission
function is a Lorentzian, of half width determined by the condition:

4Rea

(1−Rea)2
sin2 δ

2
= 1. (36)

As the gain a increases, the transmission at resonance increases, to reach infinity at
threshold (Rea = 1). The linewidth decreases to zero at the threshold gain.

The reflection at δ = 0 is:

|R|2 = R (1− ea)2

(1−Rea)2
(37)

For small a, this expression can be approximated as:

a2R

(1−Rea)2
(38)

which also tends to infinity at threshold.
Let us sent through this Fabry-Perot a probe beam, at a frequency tuned to the half

width (i.e. transmission of the intensity = 0.5) of the empty (no gain) Fabry-Perot. The
detuning for the empty cavity is given by the condition:

sin2 δ

2
=

(1−R)2

4R
. (39)

If this value is substituted in the expression for the transmission, we find:

|T |2 = x
[

1

1 + xea

]
(40)

The transmission is the limit for x → ∞ of this expression, where

x =
(1−R)2

(1−Rea)2
. (41)

The solution is
x

1 + xea
→ e−a ≈ 1. (42)

Thus, even though the linewidth tends to zero and the transmission to infinity, there is still
a transmission factor of unity at the optical frequency corresponding to 50% transmission
for the empty cavity.
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The intensity inside the resonator is simply the transmitted intensity divided by the
transmission coefficient of the second mirror:

Ii =
I0

|T |2
1

1−R
. (43)

The threshold condition Rea = 1 corresponds to the onset of laser oscillation. In the
considerations above, we have assumed the gain a to be a constant, independent of the
intensity. In reality, the gain a is itself a function of Ii:

a =
a0

1 + Ii
Is

, (44)

where a0 is the unsaturated absorption coefficient, and Is is the saturation intensity.
Given an unsaturated gain above threshold, and an input intensity I0, the intensity

will build up inside the cavity, and the gain will decrease, until reaching the equilibrium
condition that corresponds to the gain = loss:

Rea0/(1+Ii/Is) = 1 (45)

which is the threshold condition defined previously through Eqs. (34) and (35).

5.1 Absorbing Fabry-Perot

The absorbing Fabry-Perot equivalent to the Fabry-Perot with gain, except that the gain
factor a is negative.
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6 Impulse response of a Fabry-Perot

The transmission of any signal — cw, pulse, train of pulses — through a Fabry-Perot
can be calculated by taking the product of the Fourier transform of the pulse and the
transfer function Eq. (5). The result of this operation is the Fourier transform of the
transmitted pulse. For instance, cw radiation corresponds in the frequency domain to a
δ(Ω−ωℓ) function. The transmitted field through the Fabry-Perot is therefore simply the
value of the function (5) at the frequency ωℓ (×E0). For a very short pulse that covers
N modes of the Fabry-Perot, the Fourier transform of the transmission is a comb of N
Fabry-Perot transmission peaks. The Fourier transform of that frequency comb is a pulse
train. Because the envelope of these peaks has the same shape as the Fourier transform
of the incident pulse, the pulses of the sequence have the same shape and duration as
the incident pulse. The shape of the envelope of the pulse sequence is the inverse Fourier
transform of a Fabry-Perot transmission peak. Since the latter is a Lorentzian, the pulse
train follow a decaying exponential. The latter situation is easier to analyze in the time
domain. A single pulse, shorter than the mirror spacing, is sent to the Fabry-Perot. There
are no interferences. The pulse rattles inside the cavity, losing a fraction (1−R) at each
reflection.

We consider next the more complex problem of the transmission/reflection of a Fabry-
Perot to a train of pulses. Here again, the numerical approach would be to multiply
the Fourier spectrum of the pulse train by the transfer function Eq. (5) for transmis-
sion, or Eq. (7) for the reflection. The direct derivation in time however gives a better
understanding of the resonator response.

We consider the irradiation of a Fabry-Perot by the output of a mode-locked laser
of which the cavity is 4 × longer than the Fabry-Perot. Each pulse of the train has a
duration much smaller than the round-trip time of the Fabry-Perot.

Let us first derive an expression for the electric field of the transmitted pulse(s) through
this Fabry-Perot irradiated by the mode-locked laser. We will make step by step deri-
vation, following the pulse as it enters the resonator and travels back and forth in that
cavity, keeping in mind the ratio of cavity and pulse rates.

The field transmission factor is given by:

T = t̃12e
−ikdt̃21 + t̃12r̃

8
21e

−9ikdt̃21 + t̃12r̃
16
21e

−19ikdt̃21 . . .

=
t̃12t̃21e

−ikd

1− r̃821e
−i8δ

(46)

For the intensity transmission:

|T |2 = (1−R)2

1 +R8 − 2R4 cos 8δ
. (47)

If we make the standard replacement cos 8δ = 1−2 sin2 4δ, the equation for the transmitted
intensity becomes:

|T |2 =
(1−R)2

1 +R8 − 2R4(1− 2 sin2 4δ
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Figure 2: Fabry-Perot cavity irradiated by a mode-locked pulse train of 4 times lower repetition
rate than the round-trip rate of that Fabry-Perot.

=
1

(1 +R +R2 +R3)2 + 4R4

(1−R)2
sin2 4δ

=
1

(1 +R +R2 +R3)2
1

1 + 4R4

(1−R)2(1+R+R2+R3)2
sin2 4δ

(48)

This is to be compared to the transmission of the Fabry-Perot for cw light:

[
|T |2

]
cw

=
1

1 + 4R
(1−R)2

sin2 δ
2

. (49)

In the case of the cw FP, this represents near the resonance (for R close to unity) a
Lorentzian of full width at half maximum (FWHM):

∆δcw =
1−R√

R
=

T√
R
. (50)

For this case of mode-locked input, the FWHM of the Lorentzian is:

∆δml =
(1−R)(1 +R +R2 +R3)

8R2
≈ T

2R2
. (51)

where the approximation R ≈ 1 was made for the sum in the numerator. One could argue
that the Fabry-Perot is 4 times longer as seen by the mode-locked train, therefore the
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FWHM should be 4 times narrower. On the other hand, the losses due to the reflections
not synchronized with the feeding pulse contribute to a broadening of the transmission
peak (term in R2 instead of

√
R in Eq. (51).

The Fabry-Perot transmission at resonance is the expression Eq. (47) for δ = 0:

|T |2 =
(1−R)2

(1−R4)2

=
(

1

1 +R +R2 +R3

)2

≈ 1

16
, (52)

where the approximation applies to a high Q cavity (R ≈ 1).

6.0.1 Reflected and transmitted energy in the limit R → 1

Let W1 be the energy of each incident pulse. Since there are four transmitted pulses
for each incident pulse, the total transmitted energy is 4W1/16 = W1/4, where W1 is
the energy of incident light. The reflected energy should therefore be (3W1/4), which
comprises 3 pulses with energy W/16 and one pulse with energy W1× [(12/16)−(3/16)] =
9W1/16, in order to satisfy energy conservation. The reflected field of 3E1/4 results from
destructive interference of the incident field (amplitude E1) and the transmitted field from
the Fabry-Perot (amplitude E1/4).
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7 The nonlinear Fabry-Perot

7.1 Saturable gain of absorption off resonance

As we have seen, the laser can be seen as a nonlinear Fabry-Perot, where the linewidth and
tranmission factor are dependent on the gain, itself dependent on the intracavity intensity,
itself dependent on the transmission factor. If radiation is injected in such a Fabry-Perot
with gain off resonance, the index of refraction is also dependent on the intensity, hence
on the transmission, which is also dependent through δ on the index... One can feel that
this problem can become rather complex.

7.2 Nonlinear index of refraction

We will consider here the simplest nonlinearity, that of the Kerr effect, or an index of
refraction linearly dependent on the intensity:

n = n0 + n2Ii (53)

where the subscript i of the intensity indicates that we are concerned with the intracavity
intensity.
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7.3 A Fabry-Perot cavity as an ultrafast switch

Any change in cavity length, or change in index, will shift the resonance. Since the
resonance can be very narrow, one would see here an ideal opportunity to make an ultrafast
switch. Let us assume for simplicity that the two mirrors are identical, and that there is
no phase shift on reflection. The phase shift is then δ = 2φr − 2kd = 2φr + ϕ = ϕ. For
the transmitted intensity T given above, the intensity inside the device is T/(1 − R). If
the Fabry-Perot is filled with a medium with a nonlinear index (n = n0 +n2I), the phase
shift ϕ is a function of the transmission:

ϕ = ϕ0 +
4πn2TI0L

λ(1−R)
= ϕ0 +

TI0
a

. (54)

Equation (54) can be represented by straight lines on a graph of T versus ϕ:

T =
a

I0
(ϕ− ϕ0) . (55)

Starting from the situation sketched in Fig. 3, as the incident intensity increases from an
initial value of 0 [vertical line for Eq. (55)] the transmission become multivalued. The
Fabry-Perot has become a multistable element. The intersections of the straight lines in
Fig. 3 with the Fabry-Perot transmission curves are made to construct the transmission
characteristic of the bistable Fabry-Perot of Fig. 4.

Figure 3: Fabry-Perot transmission versus the phase factor ϕ (a), which has become itself a
linear function of transmission (straight lines of decreasing slope as the intensity I0 is increasing).
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Figure 4: Fabry-Perot transmission versus the input intensity, constructed graphically from the
previous figure. Corresponding points A, B, C and D are labeled on both figures.

7.4 Hidden approximation in the previous approach

The result of the previous section is that the output of the Fabry-Perot is multivalued,
and may switch from one value to another as the input is being varied. There is however
an inconsistency in that approach: we are assuming the input constant, but then make
conclusions as to the changes in output as the input is varied! The graphical derivation
of the nonlinear Fabry-Perot made in the previous section implicitly assumes that the
spectrum of the field is a δ− function. In other words, the variations of the field is
assumed to be slow compared to even the lifetime τc = τRT/(1−R) of the Fabry-Perot.

When the Fourier transform of the input electric field is not a δ− function, we have
to use the correct general expression for the transfer function of a Fabry-Perot:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(56)

which implies that the transmitted field is:

Ẽout = T (Ω)Ẽin (57)

where Ẽin is the field incident from the left on the Fabry-Perot, and Ẽout is the transmitted
field to the right. Equation (57) takes into account all the dynamics of the field and of
the Fabry-Perot.
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In the case of the nonlinear Fabry-Perot, the phase factor δ = 2φr+ϕ itself is a function
of the field Ẽ(Ω) inside the Fabry-Perot. As in the previous section, we will assume that
the phase shift upon reflection φr at the interfaces is zero, and δ = ϕ. Instead of Eq.(54),
we have to write:

ϕ = ϕ0 +∆δ

= ϕ0 +
2Ωn2|Ẽ(Ω)|2

π
√

µ0

ϵ

= ϕ0 +
2Ωn2|T (Ω)Ẽin(Ω)|2

(1−R)π
√

µ0

ϵ

ϕ = ϕ0 + aΩ|T (Ω)Ẽin(Ω)|2 (58)

To solve the problem of the nonlinear Fabry-Perot, we have so substitute Eq. (58) into
Eq. (56). The resulting equation can be solved for T for each value of Ω. A numerical
algorithm to solve the self-consistent Eq. (56) would be by successive iterations. As a first
iteration, one could take the zero-field solution for T0(Ω), insert this solution in Eq. (58)
to find the second iteration T1(Ω), etc . . .

7.5 Possible approximations

The most interesting situation is when R ≤ 1 is close to unity; the Fabry-Perot resonance
is narrow, and the input pulse has a spectral with of the order of the Fabry-Perot resonance
width. We will consider — even though this might be a coarse approximation — that
the phase shift δ is sufficiently small to make the approximation sin δ ≈ δ. For simplicity
also, let us assume that the phase shifts upon reflection can be neglected, and that the
nonlinear phase shift is small, hence kd ≈ δ/2 ≈ ϕ0/2. Therefore, the transfer function of
the Fabry-Perot, in the frequency range of interest, can be approximated as follows:

T (Ω) ≈ i(1−R)ei(ϕ0+π)/2

1−R(1 + iϕ0 + i∆δ)

=
i(1−R)ei(ϕ0+π)/2

1−R− iϕ0 − i∆δ

≈ −(1−R)ei(ϕ0+π)/2

ϕ0 +∆δ(Ω)

=
−(1−R)ei(ϕ0+π)/2

ϕ0 + aΩ|T (Ω)Ẽin(Ω)|2
(59)

In this equation, for each value of Ω, one can solve Eq. (59) to find the transmission
function y = T (Ω). The equation to solve for each value of Ω is:

ϕ0y + aΩẼin|y|2y + (1−R)ϕ0/2 = 0. (60)
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If the input field is a symmetrical function in time, Ẽin is a real function, and it is clear
from Eq. (60) that the imaginary part of the solution is zero. In this particular condition,
Eq. (60) can be written:

ϕ0y + aΩẼiny3 + (1−R)ϕ0/2 = 0. (61)

Once T (Ω) has been determined, the transmitted signal can be calculated by taking
the inverse Fourier Transform of Ẽout = T (Ω)Ẽin.

7.6 Other example of nonlinear Fabry-Perot

It is not only a nonlinear index that can provide a nonlinearity. A medium with saturable
gain makes the Fabry-Perot even more nonlinear, because of the gain narrowing with
intensity.

For instance, the medium inside the Fabry-Perot can be an homogeneously broadened
gain medium. The real and imaginary parts of the gain are:

α =
α0

1 + ∆ω2T 2
2 + I

Is

(62)

αi =
α0∆ωT2

1 + ∆ω2T 2
2 + I

Is

(63)

where ∆ω = ω0 − Ω.
The transmission function of the Fabry-Perot is:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(64)

with
δ = δ0 − αi − iα. (65)

In the transmission function, we can make the approximation that δ ≪ 1.

T (Ω) =
1

1− R(iα+αi)
1−R

≈ 1 +
R

1−R

α0
1 + i(ω0 − Ω)T2

1 + ∆ω2T 2
2 + I

Is

 (66)

The intracavity intensity is:

|Ẽ(Ω)|2 = |Ẽ0(Ω)T (Ω)|2

1−R
. (67)
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8 Fabry-Perot with moving end mirror

A laser cavity is generally a Fabry-Perot, operating at a resonance peak. If a mirror is
displaced by only a fraction of wavelength, the resonance peak moves. Thus all the light
should escape the Fabry-Perot, and the laser emission has to restart from noise. This
brings up the question: how can the emission of any laser — for instance a He-Ne laser —
be stable? Anytime a mirror position moves because of vibration or thermal expansion,
all the light should escape from the cavity?

Figure 5: At a point A of a ring cavity (top figure), any wave having made a round-trip should
constructively interfere with itself in order for the cavity to be resonant. The same argument
applies to a simple linear Fabry-Perot cavity (lower part of the figure). Can the resonance
condition be maintained if the end of the cavity moves with a velocity v/2?

Let us consider either a ring laser — the elongated rectangular cavity, sketched in the
upper Fig. 5, of perimeter P , or a linear cavity of length L = P/2 (lower part of the
figure).

The right reflector of the ring cavity is a corner cube moving away at a velocity v/2,
and the right mirror of the linear cavity is moving at the same velocity.

The resonance condition of that cavity is that the wave makes constructive interference
with itself at any point A. This does not imply a standing wave in the ring cavity, but
simply a round-trip condition:

kP =
ω0

c
P0 = 2Niπ or ω0 =

2Niπ

P0

c, (68)

19



where Ni is the mode index (integer). It is assumed that the index of refraction of the
medium is unity (or we simply would have to replace c by c/n)

Adiabatic motion of mirror M Mirror M (on the right) moves away at a velocity
v/2. That means that the cavity perimeter is now P (t) = P0+vt. The cavity mode drifts
according to:

ω(t) =
2Niπc

P0(1 + vt/P0)
≈ ω0(1−

v

P0

t). (69)

In one cavity round-trip time τRT = P0/c, the frequency shift is:

ω0
v

P0

τRT = ω0
v

c
. (70)

However, at each reflection on the mirror, there is a Doppler shift ωD = Ω0v/c. Thus, the
frequency change by Doppler shift keeps the cavity resonant, and therefore slow fluctuati-
ons in the cavity length do not result in light escaping from the cavity. Slow fluctuations
in cavity length therefore result in a frequency noise, and no amplitude noise of a laser
cavity. Note that the cavity length change can equivalently be made by modulating the
index of refraction in the cavity (for instance with a electro-optic modulator).

The basic assumption made above is not that the mirror M moves “slowly”, but that
the mirror velocity be constant over a round-trip time. This is essentially an acceleration
condition. The change in Doppler shift over one round-trip should be small compared
with the width of the resonance, which is ∆ν = 1/tc (where tc is the lifetime of the
cavity):

∆(ωD) = ω0
v(t+ τRT )− v(t)

c

=
ω0τRT

c

dv

dt
≪ 2π

tc
= 2π

c

P0F
=

2c(1−R)

P0

√
R

. (71)

The second line of Eq. (71) gives the most physical expression for the maximum accele-
ration:

dv

dt
≪ λ

tcτRT

. (72)

The mirror should not accelerate to a velocity of a wavelength/(cavity round-trip-time)
in less than a cavity lifetime. Substituting the value of the cavity lifetime:

dv

dt
≪ 1−R

π
√
R

λ

τ 2RT

. (73)
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9 Fabry-Perot with gain, laser and injection

Let us come back to the general expression for a Fabry-Perot transmission:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(74)

where
δ(Ω) = 2φr − 2k(Ω)d (75)

A laser is a Fabry-Perot with gain; complex in general, and function of frequency. We have
defined: δ̃ = δ − ia, where δ̃ is the previously defined complex phase factor, δ is the real
part of this phase factor, and a = a(Ω) . The gain factor/round-trip is G(Ω) = exp[a(Ω)].
Let us assume for now that we are close to resonance, and that the frequency dependence
of the gain is negligible near the Fabry-Perot resonance. The expression (74) for the
Fabry-Perot with gain becomes:

T (Ω) =
(1−R)e−ikd

1−RG(Ω) cos δ − iRG(Ω) cos δ
(76)

Close to resonance, and assuming for simplicity that the phase shift on reflection is zero,
δ = (Ω − Ω0)P/c = (Ω − Ω0)τRT is small; cos can be replaced by unity, and sin by the
angle. In addition, R ≈ 1. Thus, the expression for the gain reduces to:

Eout

Ein

= g̃(Ω) =
1−R

1− G + iG(Ω− Ω0)τRT

. (77)

The gain clamps at unity, for the free running oscillation. However, there is still gain for an
external signal applied near resonance, as sketched in Fig. 6. The intensity amplification
for the signal injected near resonance is: The intensity amplification for the injected signal
is:

|g̃(Ω)|2 ≈ (1−R)2

[(Ω− Ω0)τRT ]2
=

1

[(Ω− Ω0)τc]2
, (78)

where τc = τRT/(1−R) is the lifetime of the cavity.
The free-running oscillation has an output intensity I0. The externally applied signal

has an intensity I1 at a frequency ω1, and produces an output intensity |g̃(ω1)|2I1, inde-
pendently of the output of the oscillator at ω0. If that intensity exceeds I0, the externally
applied signal will saturate the gain, and there will only be an oscillating signal at the
frequency ω1. Lock-in occurs if the amplified injected signal exceeds the free-running
oscillation:

|g̃(ω1)|2I1 =
I1

[(Ω− Ω0)τc]2
≥ I0 (79)

which leads to the detuning range in which the external source of intensity I1 is sufficient
to “lock” the frequency of the oscillator to ω1:

ω − ω0 <
1

τc

√
Iinj
I0

. (80)
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Figure 6: Regenerative gain near the cavity resonance. The hatched region indicates lock-in.

This is for an externally applied signal. In the case of a laser gyro, two signals of different
frequency circulate inside the resonator in opposite sense of circulation. There is frequency
difference ∆ω due to rotation of the cavity around an axis perpendicular to the cavity
between these two intracavity beams. If ΩR is the rotation rate of the laser, ∆ω = RΩR,
where R = 4A/λP (P = laser perimeter, A its area and λ the wavelength). Scattering at
intracavity element (for instance the mirrors) couples one beam (for instance the clockwise
circulating) into the other (the counterclockwise). If the laser has an output power I0, the
internal intensity is I0/(1−R). If r is the scattering coefficient per round-trip, a fraction r
or the internal intensity in one direction is injected into the other. That internal injection
of rI0/(1−R) corresponds to an external injection rI0/(1−R)2, which corresponds to I1
above. We find the condition for lock-in by substitution in Eq. (79):

|g̃(ω1)|2I1 = |g̃(ω1)|2rI0/(1−R)2 =
rI0

[(Ω− Ω0)τRT ]2
≥ I0. (81)

Lock-in in a laser gyro occurs thus for ∆ω ≈ r/τRT .

22


