
The Fabry-Perot Cavity

We will consider for simplicity a symmetric Fabry-Perot cavity. The boundaries of the
Fabry-Perot are air (outside, medium 1) glass (inside, medium 2) interfaces. We will use
the following notations:

• t̃12 = transmission from outside (1) to inside (2)

• t̃21 = transmission from inside (2) to outside (1)

• r̃12 = reflection from outside (1) to inside (2)

• r̃21 = reflection from inside (2) to outside (1).

The incident field is a plane wave of amplitude unity.

Field transmission

T = t̃12t̃21e
−ikd

+t̃12t̃21
(
e−2ikd · r̃21r̃21

)
e−ikd

+t̃12t̃21e
−ikd

(
e−2ikd · r̃21r̃21

)2
+ . . .

= t̃12t̃21e
−ikd 1

1− r̃221e
−2ikd

. (1)

Interface properties

For an asymmetric interface:

t̃12t̃21 − r̃12r̃21 = 1 (2)

and
r̃12 = −r̃∗21 (3)

Equation (2) implies that we can do the following substitution in Eq. (1:

t̃12t̃21 = 1 + r̃12r̃21 = 1− |r12|2 = 1−R. (4)

The result for the field transmission is:

T (Ω) =
(1−R)e−ikd

1−Reiδ
(5)

where
δ(Ω) = 2φr − 2k(Ω)d (6)
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Field reflection

R(Ω) =

√
R

(
eiδ − 1

)
1−Reiδ

.

(7)

One can easily verify that, if — and only if — kd is real:

|R|2 + |T |2 = 1 (8)

Equations (5) and (7) are the transfer functions for the Fourier transform of the field.
The dependence on the frequency argument Ω occurs through k = n(Ω)Ω/c.

Examples

Transmission for a train of pulses.
Fabry-Perot as a frequency filter.

Transfer functions

A transfer function is the mathematical representation of the relation be-
tween the input and output of a system.

R(Ω), T (Ω) are examples of transfer functions for the field Ẽ(Ω).
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Frequency Filter

Referring to Eq. (5), δ = −2k(Ω).d for normal incidence. For clarity, we will neglect the
phase shift on reflection.

One can use either angular or cyclic frequencies:

δ = −2nd

c
Ω (9)

δ = −4πnd

c
ν (10)

There are two important parts in the transmission: its periodicity, i.e. the transmission
takes the same value for increments of δ by 2Nπ. This is called the free spectral range.
In angular frequencies:

∆Ωfsr =
πc

nd
(11)

In cyclic frequencies:

∆νfsr =
c

2nd
(12)

The next important dependence is close to the peak transmission, which corresponds
to δ = 0 or 2Nπ. The best approach is to make the approximation of small δ in the
trigonometric function.

WARNING One cannot make the approximation of δ small in T̃ and thereafter cal-
culate T = |T̃ |2. One has to FIRST calculate T , and THEREAFTER make the approxi-
mation of small δ. The intensity transmission factor T is:

T =
1

1 + 2R
(1−R)2

cos δ
. (13)

The approximation cos δ ≈ 1− δ2/2 in Eq. (13) yields:

T ≈ 1

1 + R
(1−R)2

δ2
. (14)

Making the approximation of small δ in Eq. 5 first gives you a different result. The
FWHM of this Lorentzian is:

∆δres =
2(1−R)√

R
. (15)

This relation leads directly to the definition of the finesse, which is the ratio of the free
spectral range (2π) to the linewidth:

F =
π
√
R

1−R
. (16)
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For the use of the Fabry-Perot as a Filter, one can define the FWHM in angular frequency

or cyclic frequency:

∆Ωres =
c(1−R)

nd
√
R

(17)

∆νres =
c(1−R)

2πnd
√
R

(18)

Fabry-Perot Cascade

Let us assume that the thinnest practical Fabry-Perot to be of 100 µm thickness. The
corresponding free spectral range is ∆νfs1 = 1.5 · 1012 Hz. The bandwidth that needs to
be filtered is often much larger. Let us assume a “square” bandwidth that covers exactly
(2N + 1)∆νfs1 We dan arrange to have the transmission peak of index zero just outside
the band, the transmission peak of index 1 just inside, the transmission peak of index
N + 1 in the middle, index 2N + 1 just inside and index 2N + 1 just outside.

We want to built a filter that leaves only one peak transmitted in that range. Let us use
a Fabry Perot of approximately twice the thickness, and the same finesse. “Approximately
twice the thickness” implies a free spectral range of

∆νfs2 = ∆νfs1

(
1− ϵ

2

)
. (19)

Since the finesse is the same:

∆νres2 ≈
1

2
∆νres1. (20)

We look now for conditions that will tell us what the minimum ∆νres1 should be in
order to have only the central peak surviving in the superposition of the two Fabry-Perots.
The first condition is that the second peak from the center of the thicker FP does not
overlap with the first peak away from the center of the thinner one:

∆νfs1 − 2∆νfs2 ≥ ∆νres1

ϵ×∆νfs1 ≥ ∆νres1 (21)

The second condition is that the outer transmission peaks do not overlap:

(2N + 1)∆νfs2 −N∆νfs1 ≥ ∆νres1[
1

2
− (N +

1

2
)ϵ
]
∆νfs1 ≥ ∆νres1 (22)

which can be satisfied if ϵ < 1/(2N + 1).
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Transmission/reflection for a monochromatic Gaussian

beam

For a Gaussian beam:
E = E0e−r2/w2

(23)

The Fourier transform along the transverse dimension is:

E(∆k) =
∫ ∞

−∞
E(r)ei∆krdr ∝ e−(∆k)2w2/4. (24)

In the Fabry-Perot transmission function, we write k⃗ = k⃗0 + ∆⃗k, with the vector ∆⃗k
orthogonal to the vector k⃗0. In the Fabry-Perot transmission function:

δ = 2φr − 2k⃗0.d⃗− 2∆⃗k.d⃗ = 2φr − 2k0d cos θ + 2∆kd sin θ = δ0 + 2a∆k, (25)

with a = d sin θ To first order, we can neglect the variation of θ as compared to ∆k,
putting all the variation in ∆k.

The transmission of a Gaussian beam to a Fabry-Perot — in k − space is:

e−(∆k)2w2/4 × (1−R)e−i(k⃗0.d⃗+2a∆k)

1−Rei(δ0+2a∆k)
(26)

One can get a lot of information from this expression, without having to make the inverse
Fourier transform to the position space. The phase factor k⃗0.d⃗ + 2a∆k disappears when
on takes the absolute value square. The important phase factor is in the denominator:
δ0 + 2a∆k. ∆k varies essentially in the range ±1/w.

Near normal incidence

Depending on the exact angle of incidence, δ0 can be close to 0 or π. The term 2a∆k =
2∆kd sin θ varies between ±2(d/w) sin θ. Starting with no fringe, there will be one fringe
across the beam if 2(d/w) sin θ ≥ 2π, i.e. narrow beam (w small) and/or long FP (d
large).
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