The Fabry-Perot Cavity

We will consider for simplicity a symmetric Fabry-Perot cavity. The boundaries of the
Fabry-Perot are air (outside, medium 1) glass (inside, medium 2) interfaces. We will use
the following notations:

e {1, = transmission from outside (1) to inside (2)
e {y = transmission from inside (2) to outside (1)
e 715 = reflection from outside (1) to inside (2)
e 79 = reflection from inside (2) to outside (1).

The incident field is a plane wave of amplitude unity.
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Interface properties

For an asymmetric interface:

1?12{21 - f12f21 =1 (2>

and

T2 = =Ty (3)

Equation (2) implies that we can do the following substitution in Eq. (1:
tiofoy = 1 + 719y = 1 — |ro° =1 — R. (4)

The result for the field transmission is:
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where
5(2) = 20, — 26()d (6)




Field reflection

R(Q) = VR( 1)
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One can easily verify that, if — and only if — kd is real:
IR +|T|" =1 (8)

Equations (5) and (7) are the transfer functions for the Fourier transform of the field.
The dependence on the frequency argument €2 occurs through k = n(2)2/c.

Examples

Transmission for a train of pulses.
Fabry-Perot as a frequency filter.

Transfer functions

A transfer function is the mathematical representation of the relation be-
tween the input and output of a system. i
R(€2), T(Q2) are examples of transfer functions for the field £(Q).



Frequency Filter

Referring to Eq. (5), § = —2k(2).d for normal incidence. For clarity, we will neglect the
phase shift on reflection.
One can use either angular or cyclic frequencies:
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There are two important parts in the transmission: its periodicity, i.e. the transmission
takes the same value for increments of § by 2N=w. This is called the free spectral range.
In angular frequencies:
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In cyclic frequencies:
c
A st = 5 3 12
Vi ond (12)

The next important dependence is close to the peak transmission, which corresponds
to 6 = 0 or 2Nmw. The best approach is to make the approximation of small § in the
trigonometric function.

WARNING One cannot make the approximation of 4 small in T and thereafter cal-
culate T = |T|%. One has to FIRST calculate 7', and THEREAFTER make the approxi-
mation of small . The intensity transmission factor 7 is:
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The approximation cosd ~ 1 — ¢6%/2 in Eq. (13) yields:
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Making the approximation of small ¢ in Eq. 5 first gives you a different result. The

FWHM of this Lorentzian is:
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This relation leads directly to the definition of the finesse, which is the ratio of the free
spectral range (27) to the linewidth:
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For the use of the Fabry-Perot as a Filter, one can define the FWHM in angular frequency
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Fabry-Perot Cascade

Let us assume that the thinnest practical Fabry-Perot to be of 100 pum thickness. The
corresponding free spectral range is Avg = 1.5 - 10'2 Hz. The bandwidth that needs to
be filtered is often much larger. Let us assume a “square” bandwidth that covers exactly
(2N + 1)Avg; We dan arrange to have the transmission peak of index zero just outside
the band, the transmission peak of index 1 just inside, the transmission peak of index
N + 1 in the middle, index 2N + 1 just inside and index 2N + 1 just outside.

We want to built a filter that leaves only one peak transmitted in that range. Let us use
a Fabry Perot of approximately twice the thickness, and the same finesse. “Approximately
twice the thickness” implies a free spectral range of
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Since the finesse is the same: )
AVresQ ~ §AVres1- (20)

We look now for conditions that will tell us what the minimum Av,.; should be in
order to have only the central peak surviving in the superposition of the two Fabry-Perots.
The first condition is that the second peak from the center of the thicker FP does not
overlap with the first peak away from the center of the thinner one:

Astl - 2Ast2

€ X Avgg AVres (21)

The second condition is that the outer transmission peaks do not overlap:
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which can be satisfied if e < 1/(2N + 1).



Transmission/reflection for a monochromatic Gaussian

beam
For a Gaussian beam: L
E=CEpe /v (23)
The Fourier transform along the transverse dimension is:
= r)et roe w?/a,
E(Ak < zAkrd (Ak)2w?/4 24

In the Fabry-Perot transmission function, we write k= k?o + Kk, with the vector Ak
orthogonal to the vector ky. In the Fabry-Perot transmission function:

§ = 20, — 2ko.d — 28k.d = 2, — 2kod cos O + 2Akdsin§ = &, + 2aAk, (25)

with a = dsin€@ To first order, we can neglect the variation of 6 as compared to Ak,
putting all the variation in Ak.
The transmission of a Gaussian beam to a Fabry-Perot — in k — space is:
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One can get a lot of information from this expression, without having to make the inverse
Fourier transform to the position space. The phase factor kg.d + 2aAk disappears when
on takes the absolute value square. The important phase factor is in the denominator:
do + 2aAk. Ak varies essentially in the range +1/w.

Near normal incidence

Depending on the exact angle of incidence, dy can be close to 0 or w. The term 2aAk =
2Akdsin 0 varies between +2(d/w)sin 6. Starting with no fringe, there will be one fringe
across the beam if 2(d/w)sinf > 27, i.e. narrow beam (w small) and/or long FP (d
large).



