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Polarization rotation -- nonlinear

In nonlinear optics, 1 + 1 =31 (7?2?7777
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Application: Colliding pulse mode-locking




Cross phase modulation

The nonlinear index (Kerr effect) comes from: Py, = EX(B) EEE

Same K, different frequencies, or same frequency, different K. E =& ptwit + 5263”2’5
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Co-propagating beams in fibers:
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Polarization rotation

The nonlinear index (Kerr effect) comes from: Py, = EX(B) EEE

Same k, frequency, orthogonal polarization. E =& v + gyeiwt
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In an element of thickness d,,, this induced birefringence leads to a phase
change between the x and y components of the field vector

27 2mnady, T, 4 .
AR(t) = T (At — Angyy) = =2 €00 (0)]* — |0y (1) |

The phase shift is time dependent, and, in combination with another element, can represent an
intensity-dependent loss element. Consider a sequence of such birefringent element and a linear
polarizer. The incident pulse 1s

Eoz(t) Eo(t) cos a
g()y (t) — 50 (t) sin o



The pass direction of the polarizer is at a+90° resulting in zero transmission
through the sequence for low-intensity light (A® ~ 0). Neglecting a common
phase the field components at the output of the nonlinear element are

EL(t) = [Eo(t)cosal cos(wpt)
E,(t) = [Eo(t)sina]cos [wet + AD(1)].

Next the pulse passes through the linear polarizer. The total transmitted field
is the sum of the components from &, (¢) and &, (t) along the polarizer’s path
direction

Eout(t) = Eo(t) cos asin a {— cos(wyt) + cos [wet + ADP(t)]}

The total output intensity Io.:(t) = (£%(t)) is

o YA Towlt) = n(t) 5 [1— cos AR(r)] sin?(20).




Let us now assume a Gaussian input pulse I;, = Ipexp [—2(75/ 7'(;)2] and
parameters of the nonlinear element so that for the pulse center the phase dif-

ference
27'(' no d
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For this situation we obtain a transmitted pulse

— =5 (t =0) (sin® o — cos” a) = .

1 2
Tt (t) = §Im(t> {1 — COS {We_Q(t/TG) } } .

The transmission is maximum (= 1) where the nonlinear element acts like a
half-wave plate that rotates the polarization by 90°, lining it up with the pass
direction of the polarizer. For the parameters chosen here this happens at
the pulse center (t = 0). The phase shift A® is smaller away from the pulse
center producing elliptically polarized output and an overall transmission that
approaches zero in the pulse wings. Thus this sequence of elements can give rise
to an intensity dependent transmission similar to a fast absorber.
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The question of how to start the mode locking process is solved in several
ways. Experimentally, the Polarization Controllers (PC) have the greatest
effect, given sufficient gain in the cavity. By manually adjusting the 6
paddles, we can sometimes get lucky and find CWML pulses on the
oscilloscope. In practice, looking at the time trace does not get us close
enough. It is easy to miss the ML'ing by moving the PC too fast, or not fast
enough, etc.. We can monitor the optical spectrum and see the broadening of
the bandwidth in the output. The other method of starting the CWML is to
find the " "sweet spots'" on the box or the table and hitting those spots.
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Slab waveguide solution

Yod = kx,ldtan kx’ld/Q

Evanescent wave
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GROUP VELOCITY APPLIES ONLY TO LINEAR DIELECTRICS
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FIG. 5. Diagram of setup: 1 — laser mirror, 2 — polarizer,
3 —Kerr cell, 4 —laser ruby crystal, 5 — glass plate, 6 — co-
axial photocell, 7 — amplifier ruby crystal, 8 — Sl-14 oscillo-

scope, 9 —neutral light filters. The input mirror of the laser
is at the end of crystal 4.




The velocity of a pulse in a saturable gain medium
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¢ Speed of light in the gain

T, Pulse duration

o Small signal gain coefficient (per unit length)

v Loss coefficient (per unit length)

The velocity of a pulse in a ring fiber laser
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«y Small signal gain at the laser threshold P, Pump power at the laser threshold



Example of pulse velocity >> c in a fiber laser
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The velocity of a pulse in a saturable gain medium
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The velocity of a pulse in a ring fiber laser
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The velocity of a pulse in a ring fiber laser
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Parenthesis: the frequency comb
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