
1 Difference Frequency Generation

This derivation is based on a method developed for birefringently phase matched second harmonic
generation [1]. It is adapted to the problem of quasi phase matched difference frequency generation.
To include the frequency dependence of the index of refraction to all orders, the difference frequency
generation in the PPLN crystal is modeled in the frequency domain. Therefore, Maxwell’s prop-
agation equations for the three fields are converted from the time to the frequency domain. The
equations can be separated within the reasonable assumption that the Fourier spectra of the pulses
at the three frequencies do not overlap.

Some of the equation manipulations and substitutions detailed below have numerical rather than
physical reasons. For numerical convenience, it is desirable to shift all spectra to zero frequency,
and deal only with the spectral components that are covered by the pulses. Since these spectra
represent pulses propagating at the group velocity of the respective pulses, in the laboratory frame,
the phase factor of each Fourier component will take very large values with increasing distance z,
making numerical computation unnecessary challenging. It is therefore desirable to subtract any
giant constant phase factor (which has no physical significance) as well as choose a retarded frame
of reference, propagating at the group velocity of one of the pulses. Since the pump pulse repetition
rate is the primary clock of this system, it is natural to chose a frame of reference for the three
pulses moving at the pump group velocity.

The Fourier transform of Maxwell’s wave equation can be written [2] as:
[

∂2

∂z2
+

Ω2

c2
εr(Ω)

]
Ẽ(Ω, z) = −µ0Ω2P̃NL(Ω, z) (1)

where
εr(Ω) = 1 + χ(1)(Ω). (2)

is the relative dielectric constant, and Ẽ(Ω, z) is the total electric field, which includes the pump field
centered at ωp, the signal field centered at ωs and the idler centered at ωi. The three frequencies
are related by

ωp = ωs + ωi. (3)

In the nonlinear part of the polarization P̃NL we consider only the χ(2) terms that are associated
with the three interacting waves. Each of these terms has to fulfill the wave equation separately. If
we also assume that the second order susceptibility χ(2) does not depend on frequency, the nonlinear
polarizations can be decomposed in three contributions, respectively centered at ωp, ωs and ωi to
yield for the nonlinear polarizations in a uniform medium:

P̃NL
p (t, z) = 2ε0χ

(2)Ẽs(t, z)Ẽi(t, z)

P̃NL
s (t, z) = 2ε0χ

(2)Ẽp(t, z)Ẽ∗
i (t, z)

P̃NL
i (t, z) = 2ε0χ

(2)Ẽp(t, z)Ẽ∗
s (t, z). (4)

The crystal considered, however is not uniform. It has a domain reversal grating for quasi phase
matching. As a consequence χ(2) reverses sign after a propagation through the crystal of one half
times the grating period g (g ≈ 30µm). It is common practice to approximate this sudden domain
reversal by a sinusoidal modulation of χ(2) so that

χ(2) → χ(2)ei∆kz. (5)

∆k = 2π/g is the k-vector of the quasi phase matching grating with grating constant g. A more
accurate treatment can be done by developing the exact square modulation function into a Fourier
series [3]. This treatment reveals, that the approximation of sinusoidal modulation leads to an
overestimation of the strength of the interaction by a constant factor of 2/π. With these modifications
we can write for Equations (4) in the frequency domain

P̃NL
p (Ω, z) =

χ(2)ε0
π

∫
Ẽs(Ω′, z)Ẽi(Ω− Ω′, z)ei∆kzdΩ′
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P̃NL
s (Ω, z) =

χ(2)ε0
π

∫
Ẽ∗

i (Ω′, z)Ẽp(Ω + Ω′, z)e−i∆kzdΩ′

P̃NL
i (Ω, z) =

χ(2)ε0
π

∫
Ẽ∗

s (Ω′, z)Ẽp(Ω + Ω′, z)e−i∆kzdΩ′. (6)

Inserting these three polarizations into the wave Eq. (1), and grouping terms of the same central
frequency, leads to the set of three equations:

(
∂2

∂z2
+

Ω2

c2
εr(Ω)

)
Ep(Ω, z) = −ε0µ0Ω2χ(2)

π

∫
Es(Ω′, z)Ei(Ω− Ω′, z)ei∆kzdΩ′

(
∂2

∂z2
+

Ω2

c2
εr(Ω)

)
Es(Ω, z) = −ε0µ0Ω2χ(2)

π

∫
E∗

i (Ω′, z)Ep(Ω + Ω′, z)e−i∆kzdΩ′

(
∂2

∂z2
+

Ω2

c2
εr(Ω)

)
Ei(Ω, z) = −ε0µ0Ω2χ(2)

π

∫
E∗

s (Ω′, z)Ep(Ω + Ω′, z)e−i∆kzdΩ′. (7)

A description in complex spectral amplitude ãp,s,i(Ω, z) and fast varying spectral phase −ik(Ω)z is
next chosen for each pulse:

Ẽp,s,i(Ω, z) =
1
2
ãp,s,i(Ω, z)e−ik(Ω)z (8)

Substituting this in Equations (7) and using the condition

k2(Ω) =
Ω2

c2
εr(Ω). (9)

imposed by Maxwell’s wave equation, leads to a set of three differential equations for the evolution
with distance of the three complex spectral amplitude functions:

∂

∂z
ãp(Ω, z) =

−iΩ2χ(2)

4πc2k(Ω)

∫
ãs(Ω′, z)ãi(Ω− Ω′, z)ei[−k(Ω′)−k(Ω−Ω′)+k(Ω)+∆k]zdΩ′ − i

2k(Ω)
∂2

∂z2
ãp(Ω, z)

∂

∂z
ãs(Ω, z) =

−iΩ2χ(2)

4πc2k(Ω)

∫
ã∗i (Ω

′, z)ãp(Ω′ + Ω, z)ei[k(Ω′)−k(Ω′+Ω)+k(Ω)−∆k]zdΩ′ − i

2k(Ω)
∂2

∂z2
ãs(Ω, z)

∂

∂z
ãi(Ω, z) =

−iΩ2χ(2)

4πc2k(Ω)

∫
ã∗s(Ω

′, z)ãp(Ω′ + Ω, z)ei[k(Ω′)−k(Ω′+Ω)+k(Ω)−∆k]zdΩ′ − i

2k(Ω)
∂2

∂z2
ãi(Ω, z).

(10)

It has been shown [1] that the second derivative is generally negligible, consistent with the slowly
varying envelope approximation, even down to a few optical cycles. For convenience of numerical
computation, the various spectral envelopes should be centered at the origin of the frequency axis,
which is achieved by defining the shifted functions

Ẽp,s,i(Ω, z) = ãp,s,i(Ω + ωp,s,i, z)
kp,s,i(Ω) = k(Ω + ωp,s,i) (11)

Ωp,s,i = Ω− ωp,s,i. (12)

In the set of equations that follows, the frequency argument takes symmetric values with respect to
the origin, positive and negative, over a range of a few inverse pulse durations.

∂Ẽp(Ωp)
∂z

=
−iω2

pχ(2)

4πc2kp(Ωp)

∫ ∞

−∞
Ẽs(Ω′s)Ẽi(Ωp − Ω′s)e

i(−ks(Ω′s)−ki(Ωp−Ω′s)+kp(Ωp)+∆k)zdΩ′s

∂Ẽs(Ωs)
∂z

=
−iω2

sχ(2)

4πc2ks(Ωs)

∫ ∞

−∞
Ẽ∗i (Ω′i)Ẽp(Ω′i + Ωs)ei(ki(Ω

′
i)−kp(Ω′i+Ωs)+ks(Ωs)−∆k)zdΩ′i

∂Ẽi(Ωi)
∂z

=
−iω2

i χ(2)

4πc2ki(Ωi)

∫ ∞

−∞
Ẽ∗s (Ω′s)Ẽp(Ω′s + Ωi)ei(ks(Ω′s)−kp(Ω′s+Ωi)+ki(Ωi)−∆k)zdΩ′s (13)
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Here the condition (3) has been used to convert, for example:

ãi(Ω− Ω′, z) = Ẽi(Ω− Ω′ − ωi)
= Ẽi(Ωp + ωp − Ω′s − ωs − ωi)

= Ẽi(Ωp − Ω′s). (14)

In order to simplify notation and numerical treatment we can introduce the quantities

k′p,s,i(Ωp,s,i) = kp,s,i(Ωp,s,i)− kp,s,i(0) (15)

to separate the constant k-vectors at the pulses center frequencies from the remaining k dependence
that varies throughout each pulse. The quasi phase matching grating responsible for ∆k is assumed
to have a grating constant g that ensures phase matching at the center frequencies, such that

kp(0)− ks(0)− ki(0) + ∆k = 0. (16)

To condense the notation, the following quantities are introduced:

Ap =
−iω2

pχ(2)

4πc2kp(Ωp)

As =
−iω2

sχ(2)

4πc2ks(Ωs)

Ai =
−iω2

i χ(2)

4πc2ki(Ωi)
(17)

S(Ωs) = Ẽs(Ωs)e−ik′s(Ωs)z

I(Ωi) = Ẽi(Ωi)e−ik′i(Ωi)z

P(Ωp) = Ẽp(Ωp)e−ik′p(Ωp)z (18)

to obtain the coupled equations for the field amplitudes from Equations (13):

∂Ẽp(Ωp)
∂z

= Ap (S ∗ I) (Ωp)eik′p(Ωp)z

∂Ẽs(Ωs)
∂z

= As (I ? P) (Ωs)eik′s(Ωs)z

∂Ẽi(Ωi)
∂z

= Ai (S ? P) (Ωi)eik′i(Ωi)z. (19)

Here the operator ∗ describes a convolution and ? a cross-correlation. The indices n(Ωp,s,i) are
required to calculate kp,s,i. They are obtained from a Sellmeier equation [4].

The change of electric field for each pulse due to the 3 wave interaction is obtained by integrating
the set of Equations (19) over the thickness of the OPO crystal, given a set of initial fields at z = z0.
The solution of this integration however does not include the effect of the linear dispersion of the
crystal on the phase of each individual pulse, because the transformation (8) has removed the effect
of dispersion. This transformation has to be reversed after each integration step in order to get the
complete electric field. For propagation from z0 to z1 the reverse transformation is a multiplication
by exp[ik′j(Ωj)(z1 − z0)] where j takes the value p, s or i. It is in addition desirable to use a frame
of reference moving with the group velocity of the pump pulse:

Ẽp(Ωp, z1) = Ẽp(Ωp, z0)ei(k′p(Ωp)− dk′
dΩ |Ωp

Ωp
2 )(z1−z0)

Ẽs(Ωs, z1) = Ẽs(Ωs, z0)ei(k′s(Ωs)− dk′
dΩ |Ωp

Ωp
2 )(z1−z0)

Ẽi(Ωi, z1) = Ẽi(Ωi, z0)ei(k′i(Ωi)− dk′
dΩ |Ωp

Ωp
2 )(z1−z0). (20)

The first order term in k that is subtracted in each term above corresponds indeed to a displacement
in time due to the lower group velocity in the crystal. Since it is common to all three pulses it is
not relevant here.
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