Advanced Optics II, Homework 4 due Wednesday, March 4, 2021

1) Compare 3 methods of rotating linear polarization by 90°.

The three methods to be compared are:

- 1. A half wave plate
- 2. Two Rhomb prisms
- 3. 3 sheet polarizers (assuming 100% transmission in one direction, 0% in the orthogonal direction of the sheet).

Specific questions:

- a) How would you orient each element?
- b) Assuming all elements are antireflection coated, give the transmitted intensity for each of the three cases.
- c) Rank the three elements in terms of bandwidth.

2) Transmission through glass in a magnetic field

You are sending right circularly polarized light through 10 cm long cylinder of BK7 glass, at 500 nm. A magnetic field is applied along the axis of the cylinder. The change of index for right circular is $\Delta n_{+} = 2 \cdot 10^{-7} B$ where B is the field in Tesla, and $\Delta n_{-} = -2 \cdot 10^{-7} B$. Given a field of 10 Tesla,

- 1. what is the phase shift of right circular light sent along the axis of the glass?
- 2. What is the change in polarization for a *linearly* polarized beam sent along the axis of the glass?

3) Design a "bichromatic" quarter wave plate

The objective is to make a half plate at 780 nm which is simultaneously a full wave plate at 390 nm, with a quartz crystal. the ordinary and extraordinary indices are given below.

Wavelength	n_o	n_e	Δn
390	1.55846	1.567972	0.009512
780	1.53903	1.54789	0.00886

- 1. Find the shortest length for which this wave plate is rotating the polarization at 780 nm.
- 2. Find the shortest length for which this wave plate is leaving the polarization direction unchanged at 390 nm.
- 3. Find the thickness ℓ for which the wave plate has both functions simultaneously.