
Phase Shifts upon Transmission and Reflection

Most often, phase shifts at interfaces are a simple consequence of energy conservation. Conversely,
the phase shift properties in simple devices can be used to determine the direction of the flow of energy.
A few simple examples are given here.

0.1 The symmetrical interface

Figure 1: Reflection and transmission by an
interface between two identical media

Let us consider first the very simple situation sketched in
Fig. 1. The interface can be a mirror with a reflecting coating
on the front face and an antireflection coating on the back
face. We are only interested in fields propagating outside
the mirror. The energy conservation relation between the
reflected (field reflection coefficient r̃) and transmitted (field
transmission coefficient t̃) waves implies:

|r̃|2 + |t̃|2 = 1, (1)

where we assumed a unity field amplitude.
Another relation can be found by adding another inci-

dent field of amplitude 1 (beam 2 in the figure), and taking
advantage of the symmetry. Summing the intensities:

|r̃ + t̃|2 + |r̃ + t̃|2 = 2. (2)

Combination of Eqs. (1) and (2) leads to

2[r̃t̃∗ + r̃∗t̃] = 0, (3)

which implies that the phase shifts upon transmission and reflection are complementary:

φr − φt =
π

2
. (4)

It is because of the latter phase relation that the antiresonant ring reflects back all the incident radiation,
and has zero losses if |r̃|2 = |t̃|2 = 0.5.

1



0.2 Coated interface between two different
dielectrics

Figure 2: Reflection and transmission by an interface between air
and a dielectric.

Let us consider – as in Fig. 2 – a
partially reflecting coating at an inter-
face between air (index 1) and a me-
dium of index n. A light beam of am-
plitude E1 = 1/

√
cos θ1 is incident

from the air, at an angle of incidence
θ1. The transmitted beam is refracted
at the angle θ2, and has an amplitude
t̃1/

√
cosθ1. The reflected beam has an

amplitude r̃1/
√
cosθ1. We take the ver-

tical (orthogonal to the figure) dimen-
sion of the beam to be unity, as well
as the distance covered by the beam on
the interface in the plane of the figure.
To calculate energy conservation, we
compare the products ni|Ẽ |2A where
ni = 1 left of the interface, ni = n
right of the interface, and A = 1 ×
cos θ. As in the previous section, we
will be considering a similar beam inci-
dent from the right, with an amplitude
E2 = 1/

√
n cos θ2 incident at an angle

θ2 on the dielectric/air interface. The choice of these incident electric field amplitudes is such that the
same “energy” products ni|Ẽ |2A = A apply on both sides of the interface, above the dash-dotted line in
Fig. 2.

Energy conservation leads to the relation:

|r̃1|2 + |t̃1|2
n cos θ2
cos θ1

= 1, (5)

where we took into account the change in beam cross section upon refraction. We have a similar energy
conservation equation for a beam of amplitude E2 = 1/

√
n cos θ2 incident at an angle θ2 on the dielec-

tric/air interface:
|r̃2|2 + |t̃2|2

cos θ1
n cos θ2

= 1. (6)

From Eqs. (5) and (6) we get directly the relation:

|t1|2 · |t2|2 = T1T2 = (1− |r1|2)(1− |r2|2) = (1−R1)(1−R2) (7)

The amplitude of the reflection coefficient is equal on both sides of the interface. For the phase, the only
sign relation consistent with energy conservation in a Gires-Tournois interferometer, and with the known
phase shift on pure dielectric interfaces, is:

r̃1 = −r̃∗2, (8)

or, r1 = r2, with the relation between phase angles:

φr,1 = −φr,2 − π. (9)
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Since |r̃1|2 = |r̃2|2, Eqs (5) and (6) lead to:

|t1|
√

n cos θ2
cos θ1

= |t2|
√

cos θ1
n cos θ2

. (10)

The amplitudes of the transmission coefficients are not equal, but in the ratio |t2|/|t1| = n cos θ2/ cos θ1,
a relation that satisfies Fresnel equations, and results simply from energy conservation.

In order to find a relation between the phase shift upon transmission and reflection, we consider the
energy conservation for light incident from the upper half of the figure (the axis of symmetry being the
dashed normal to the interface):

1 + 1 = cos θ1

∣∣∣∣∣ r̃1√
cos θ1

+
t̃2√

n cos θ2

∣∣∣∣∣
2

+ n cos θ2

∣∣∣∣∣ r̃2√
n cos θ2

+
t̃1√
cos θ1

∣∣∣∣∣
2

. (11)

Expanding:

2 = |r1|2 + |r2|2 + |t2|2
cos θ1
n cos θ2

+ |t1|2
n cos θ2
cos θ2

+(r̃1t̃
∗
2 + r̃∗1 t̃2)

√
cos θ1
n cos θ2

+ (r̃2t̃
∗
1 + r̃∗2 t̃1)

√
n cos θ2
cos θ1

(12)

Taking into account the energy conservation relations (5) and (6), leads to:

(r̃1t̃
∗
2 + r̃∗1 t̃2) cos θ1 + (r̃2t̃

∗
1 + r̃∗2 t̃1)n cos θ2 = o. (13)

We can re-write Eq. (13)

2|r1||t2| {cos(φr,1 − φt,2)} cos θ1 = −2|r2||t1| {cos(φr,2 − φt,1)}n cos θ2. (14)

Equation 13 leads also to the following trigonometric relations between phase shifts upon transmission
and reflection:

cos(φr,1 − φt,2)

cos(φr,2 − φt,1)
= −1, (15)

which leads to the relation between phase angles:

φt,2 − φr,1 = φr,2 − φt,1 + (2n+ 1)π. (16)

or
φt,1 + φt,2 = φr,1 + φr,2 + (2n+ 1)π. (17)

Taking into account the relation Eq. (9) between phase angled in reflection:

φt,1 + φt,2 = 2nπ. (18)

We can thus conclude that the transmission from the two sides of the interface have complementary phase
angle. We do not find any relation between the phase in reflection and the phase in transmission. The
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phases in reflection on either side of the interface are related by Eq. (9). A final relation that is consistent
with the above and very useful in the calculation of the transmission of a Fabry-Perot is:

t̃1t̃2 = 1 + r̃1r̃2 = 1− |r|2 = T = 1−R. (19)

Combining Eqs (18) and Eq. (19) leads us to conclude that t̃1 = −t̃2. Multiplying Eq. (19) by its complex
conjugate is consistent with the energy conservation Eq. (7):

T1 · T2 = [t̃1t̃2] · [t̃1t̃2]∗ = [1 + r̃1r̃2] · [1 + r̃1r̃2]
∗

= 1 + r̃1r̃
∗
1 r̃2r̃

∗
2 + r̃1r̃2 + r̃∗1 r̃

∗
2

= 1 +R1R2 −R1 −R2 = (1−R1)(1−R2) (20)

where again we took into account the relation r1 = −r∗2. Finally, it can be verified that Fresnel equations
are satisfied by Eq. (19) for both polarizations. Note however that Fresnel relations apply to a single
interface where the phase shift in transmission is zero, and the phase shift on reflection 0 or π. The
situation is different for a multilayer coating deposited on a dielectric surface. It is somewhat surprising
that there is no relation implied through energy conservation between φr and φt.
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