
Polarization summarized

1 Cartesian representation

1.1 Linear Polarization

Polarization will in general be modified by propagation through an optical system (can
be a crystal, liquid, interferometer) that is not isotropic. The axis to be chosen should be
related to that optical system.

Figure 1: An initial (linear) polarization is sent through an optical system. The optical system
has some anisotropy associated with it, that will define the axis that we will chose to represent
all polarization.

The initial field in the axis defined by the optical system is defined by the projections
of the field on the axis:

Ex = Ex cosωt
Ey = Ey cosωt

where we choose the phase of the field to be zero on both axis, to define linear polarization.
The ratio of Ey/Ex determines the orientation of the electric field vector.

θ arctan
Ey
Ex
.

Dichroism

The polarization direction can be changed by attenuating selectively either the x or y
component. Dichroism is the selective absorption of one of two orthogonal components.
Control of polarization by selective losses of one component include:
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• Wire polarizer (E-field zero in a conductor → the grid passes the E-field orthogonal
to the wires.

• sheet polarizer (molecular version of the wire polarizer)

• Crystals with color center

• Brewster angle — no reflection in the plane of incidence

• Dielectric mirrors (non normal incidence)

Brewster angle: arctann. At Brewster angle, the reflected and refracted rays are
orthogonal.

Geometric Polarization rotation

A periscope can change the polarization from horizontal to vertical, simply based on the
fact that the electric field vector has to remain orthogonal to the k vector.

Different phase shifts along x and y

There are numerous optical components/systems that will produce a difference phase
shift along two orthogonal directions. The most common is a crystal, such as quartz. The
transmission through crystals with a different index of refraction parallel to the optics
axis and perpendicular to the optics axis gives:

Ex = Ex cos(ωt− kxz)

Ey = Ey cos(ωt− kyz) (1)

where kx = 2πnx/λ and ky = 2πny/λ. The two different indices of refraction result in a
difference phase for the Ex and Ey components after propagation through a thickness d of
material. A parallel face plate for which the difference in phase is (ky−kx)d = (2N+1)π/2
is called a quarter wave plate. Taking for instance kxd = 2Nπ, then according to Eq. (1)
the transmitted field is:

Ex = Ex cos(ωt)
Ey = Ey sin(ωt) (2)

This is the equation of the field describing a circle (if Ex = Ey) at an angular velocity
ω. A parallel face plate for which the difference in phase is (ky − kx)d = (2N + 1)π is
called a half wave plate. Taking for instance kxd = 2Nπ, then according to Eq. (1) the
transmitted field is:

Ex = Ex cos(ωt)
Ey = −Ey cos(ωt) (3)
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The electric field is linearly polarized, rotated by 90o. Such a 90o rotation occurs if the
optics axis of the waveplate is at 45o to the original linear polarization. The half wave
plate rotates a linear polarization, by twice the angle between the optics axis of the plate
and the original polarization vector. The operation is reversible: two passages through a
half wave plate (reflecting the beam back with a mirror) result in the original polarization.

A quarter wave plate transforms the linear to circular if the optic axis of the waveplate
is at 45o to the original polarization. Otherwise, the linear polarization is changed to
elliptical. Two quarter wave plates amount to a half wave. Thus by reflecting the beam
into the waveplate, one should have a rotation of the polarization by 90o is the optic axis
is at 45o.

N is the order of the waveplate. In general, N is a large number. A zero order
waveplate is difficult to manufacture. Waveplates are usually only good for a narrow
wavelength range.

An electro-optical modulator is a waveplate induced by an electric field. An electric
field can also orient molecules (Kerr cell). The Kerr cell was used to demonstrate the first
Q-switched ruby laser. The orientation can be much faster using intense and ultrashort
light pulses. A fast shutter can be made on this principle.

Stresses also introduce anisotropy in indices. This is used in fiber (nonlinear polariza-
tion mode-locking).

Phase shifts on reflection

Instead of the phase shifts ϕx = kxd and ϕy = kyd, ϕx and ϕy can simply be the phase
shifts in reflection. In that case, x may be the plane of incidence, and y normal to that
plane (or vice versa). A large differential phase shift takes place in total internal reflection.
A corner cube glass reflector generally transforms linear polarized light into near circular
polarized light. A Rhomb prism used two total internal reflections at 45o from the plane
of incidence to transform linear polarization into circular polarization. These prisms have
the advantage over quarter wave plates of being broadband.

The Fresnel Rhomb

In many circumstances, we need to control the polarization of beams accurately (say for
example to obtain optimal contrast in an interferometer). There are a number of optical
elements that can be used for this purpose. Their common feature is to introduce a phase
change between two orthogonally polarized light beams. This can be done, for example,
by utilizing the optical birefringence in crystals (which leads to the waveplates) or using
total internal reflection (TIR) at the interface between glass and air. Do not confuse TIR
with “critical angle”. TIR occurs at any angle above the critical angle. The reflection
amplitude is then always unity (= 100%), but the phase shift is a steep function of the
angle of incidence (above the critical angle).

The incident light is linearly polarized with the axis tilted 45◦ with respect to the edges
of the rhomb’s input face (i.e. half ⊥, half ||). The light undergoes two total reflections
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before it leaves the rhomb each giving a π/4 phase shift. Again, total reflection does not
mean that you have to be at the critical angle. Let us calculate the refractive index n
which the glass has to have for the output light to be circularly polarized. Assume a
symmetrical beam path as shown in Fig. 2 (with β = 90◦) and α = 45◦.

The angle of incidence (in the glass of index n) is θ. On the other side of the interface,
the index is 1, and the angle is θ2 which is given by Snell’s law:

n2 sin θ2 = sin θ2 = n sin θ (4)

and

cos θ2 =
√
1− n2 sin2 θ = i

√
n2 sin2 θ − 1 (5)

This implies that you have to replace sin θ2 by n sin θ and cos θ2 by i
√
n2 sin2 θ − 1 in

Fresnel equations, which become then complex numbers. The two Fresnel equations have
then the form:

r∥ =
cos(θ)− n cos θ2
cos(θ) + n cos θ2

=
a− ib

a+ ib
=

y

y∗
, (6)

r⊥ =
n cos(θ)− cos θ2
n cos(θ) + cos θ2

=
c− id

c+ id
=

z

z∗
(7)

It is easy to verify that |r|2 = 1 for both parallel and perpendicular condition, indepen-
dently of the angle provided θ ≥ θcritical

One notes that Eqs. (6) and (7) is the ratio of a complex number and its complex
conjugate, and thus the phase ϕ = 2δ where δ is the phase shift of y or z. The simple
approach is to compute tan(δ∥ − δ⊥) = tan±π/4 = ±0.41421 We have:

tan δ∥ =
−n

√
n2 sin2 θ − 1

cos θ

tan δ⊥ =
−
√
n2 sin2 θ − 1

n cos θ

The tangent of the difference angle is:

tan(δ∥ − δ⊥) =
tan δ∥ − tan δ⊥
1 + tan δ⊥ tan δ∥

Figure 2: The Fresnel Rhomb
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=
(−n2 + 1)

√
n2 sin2 θ − 1n cos θ

[
1 + n(n2 sin2 θ−1)

n cos2 θ

]

=
−(1− n2) cos θ

√
n2 sin2 θ − 1

n(n2 − 1) sin2 θ

=
− cos θ

√
n2 sin2 θ − 1

n sin2 θ

= −−
√
n2 − 2

n
(8)

where the last equation (8) is for the value θ = π/4. Taking the square of Eq. (8) yields
a simple second order equation in n, which has as solution

n =
t2 +

√
t4 = 8

2
= 1.5025, (9)

where t = tan π/4 = 0.4142.
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2 General ellipse: ellipticity and orientation

We take the general polarization ellipse to be given by:

Ex =
1

2
Ẽ1eiωt + c.c. = E1 cos(ωt+ φ1)

Ey =
1

2
Ẽ2eiωt + c.c. = E2 cos(ωt+ φ2) (10)

The equation of the ellipse is obtained by eliminating sinωt and cosωt from the 2 Eqs. (10).

Ex

E1
= cosωt cosφ1 − sinωt sinφ1

Ey

E2
= cosωt cosφ2 − sinωt sinφ2

Ex

E1
sinφ2 −

Ey

E2
sinφ1 = cosωt sin δ

Ex

E1
cosφ2 −

Ey

E2
cosφ1 = sinωt sin δ,

(11)

where δ = φ2 − φ1. Taking the sum of the squares eliminates the terms in ωt, yielding:

|Ex

E1
|2 + |Ey

E2
|2 − 2

ExEy

E1E2
cos δ = sin2 δ. (12)

That is the equation of an ellipse not aligned with the axis.
The ellipse referred to its principal axis (ξ, η) has the equation

Eξ = a cos(ωt+ φ0)

Eη = b sin(ωt+ φ0)

(13)

The transformation of axis is the rotation:

Eξ = Ex cosψ + Ey sinψ

Eη = −Ex sinψ + Ey cosψ (14)

In these axis we have indeed:

|Eξ

a
|2 + |Eη

b
|2 = 1. (15)

We plug the ellipse Eqs. (15) into Eqs. (14):

Eξ = a(cos(ωt) cosφ0 − sinωt sinφ0)

= E1 (cosωt cosφ1 − sinωt sinφ1) cosψ + E2 (cosωt cosφ2 − sinωt sinφ2) sinψ

Eη = b(sinωt cosφ0 + cosωt sinφ0)

= −E1 (cosωt cosφ1 − sinωt sinφ1) sinψ + E2 (cosωt cosφ2 − sinωt sinφ2) cosψ

(16)
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Figure 3: Polarization ellipse in lab frame (x, y), and in the frame of the ellipse (ξ, η).

Equate the coefficients of sinωt and cosωt → 4 equations. Manipulations of these 4
equations will be the clue to the final result. For the first two equations:

a cosφ0 = E1 cosφ1 cosψ + E2 cosφ2 sinψ (17)

a sinφ0 = E1 sinφ1 cosψ + E2 sinφ2 sinψ (18)

Taking the sum of the squares:

a2 = E2
1 cos

2 ψ + E2
2 sin

2 ψ + 2E1E2 sinψ cosψ cos δ (19)

For the next two equations (16):

b cosφ0 = E1 sinφ1 sinψ − E2 sinφ2 cosψ (20)

b sinφ0 = −E1 cosφ1 sinψ + E2 cosφ2 cosψ (21)

Taking the sum of the squares:

b2 = E2
1 sin

2 ψ + E2
2 cos

2 ψ − 2E1E2 sinψ cosψ cos δ (22)

The sum of Eqs (19) and (22) gives:

a2 + b2 = E2
1 + E2

2 . (23)

Another manipulation of the equations is to multiply Eq. (17) by (20) and Eq. (18) by (21)
to construct ab cos2 φ0 + ab sin2 φ0 to find:

ab = −E1E2 sin δ (24)
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An additional equation is obtained by finding from the equations two expression for the
ratio b/a [(20)/(17) and (21)/(18)]:

b

a
=

E1 sinφ1 sinψ − E2 sinφ2 cosψ

E1 cosφ1 cosψ + E2 cosφ2 sin psi

=
−E1 cosφ1 sinψ + E2 cosφ2 cosψ

E1 sinφ1 cosψ + E2 sinφ2

(25)

which, after multiplying by the denominators, gives:

(E2
1 − E2

2 ) sin 2ψ = 2E1E2 cos 2ψ, (26)

which gives us the inclination angle of the ellipse:

tan 2ψ =
2E1E2

(E2
1 − E2

2 )
. (27)

From Eqs. (23) and (24) we get:

a =
1

2

[√
E2
1 + E2

2 + E1E2 sin δ +
√
E2
1 + E2

2 − E1E2 sin δ
]

b =
1

2

[√
E2
1 + E2

2 + E1E2 sin δ −
√
E2
1 + E2

2 − E1E2 sin δ
]

(28)
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3 Circular basis

Let us assume a real axis along x and the imaginary axis along y.

E = E
{
aRe

iωt+iπ/4 + aLe
−iωt+iπ/4

}
(29)

This is equivalent to the cartesian form. Let us assume equal circular polarizations,
i.e. aR = aL. The x and y components are then:

Ex = Re{E} = E cos
π

4
cosωt

Ey = Imag{E} = E sin
π

4
cosωt

which is indeed equivalent to the cartesian representation of the linear polarization.
The representation for waves propagating through a transparent medium:

E = E
{
aRe

iωt+iπ/4−kRz + aLe
−iωt+iπ/4−kLz

}
(30)

In general:
E = aRẽR + aLẽL (31)

Relation to the cartesian coordinates:

aR =
1

2

√
E2
1 + E2

2 − E1E2 sin δ

aL =
1

2

√
E2
1 + E2

2 + E1E2 sin δ

(32)

To understand this relation, let us look at the example of Fig. 4. The black ellipse can
be decomposed into an x component of amplitude 2, and a y-component of amplitude
1 lagging by π/2. It can also be decomposed into a counterclockwise rotating vector of
length 1.5 (red) and a clockwise rotating vector of length 0.5 (blue). The right circular
amplitude is thus (a + b)/2 and the left circular (a − b)/2, where a and b are the major
and minor axis of the ellipse. This can also easily be seen from Eq. (13) of the ellipse in
its axis:

Eξ + iEη =
a

2

(
ei(ωt+φ0) + e−i(ωt+φ0)

)
+ i

b

2i

(
ei(ωt+φ0) − e−i(ωt+φ0)

)
=

a+ b

2
ei(ωt+φ0) +

a− b

2
ei(ωt+φ0)

= aRe
i(ωt+φ0) + aLe

−i(ωt+φ0) (33)

Equation (32) is the general case where we have substituted the expressions (28) for a
and b.
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Figure 4: Black ellipse = polarization ellipse. It is decomposed in x and y components, or
counter- and clockwise components

Rotation of linear polarization Linearly polarized light making an angle θ with the
axis x would be represented by:

Eξ = cos θ cosωt

Eη = sin θ cosωt

Eξ + iEη = eiθ cosωt =
1

2

[
ei(ωt+θ) + e−i(ωt−θ)

]
(34)

which indicates opposite phase shift of the right and left circular polarization.
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All the effects listed in the section on cartesian representation have their equivalent
here. Some materials have different absorption coefficient for left and right circular po-
larized beams. The equivalent of the Dichroism that changed kx versus ky, is “optical
activity”, or a different kR and kL. This will result in a rotation of the plane of polariza-
tion for linearly polarized light.

The most common device based on a difference in kR and kL is the Faraday rotator.
A magnetic field is applied along the axis of propagation k of the light. There is a sense
of rotation of free charges around the magnetic field (ev × B). A different index is seen
by the field rotating in the same direction as the charges, as compared to the counter-
rotating field. The plane of polarization is rotated by this device, as in the case of the
waveplate. There is however an essential difference. If light is retro-reflected back through
the Faraday rotator, the polarization continues its rotation with respect to the magnetic
field vector (not with respect to the k vector). In the case of the waveplate, the retro-
reflected light regains its original polarization. It is therefore possible with a Faraday
rotator to construct an optical isolator. If the Faraday rotator rotates the polarization
45o, the retro-reflected light will be rotated 90o, and can be eliminated with a polarizing
beam splitter.

3.1 Change in circular polarization by geometry

The polarization is changed from right circular to left circular upon retro-reflection, be-
cause the k-vector is reversed, and the polarization is defined with respect to the k-
vector. The polarization is however unchanged if the light is reflected by two metallic
mirrors forming a 90o angle.
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4 Stokes parameters (1852)

We take the general polarization ellipse to be given by:

Ex =
1

2
Ẽ1eiωt + c.c. = E1 cos(ωt+ φ1)

Ey =
1

2
Ẽ2eiωt + c.c. = E2 cos(ωt+ φ2) (35)

Only the phase difference δ − φ2 − φ1 is relevant. The Stokes parameters are defined by:

I = s20 = E2
1 + E2

2

Q = s21 = E2
1 − E2

2

U = s22 = 2E1E2 cos δ
V = s23 = 2E1E2 sin δ (36)

Only 3 are independent since s20 = s21 + s22 + s23. In terms of circular coordinates:

I = s20 = a2R + a2L
Q = s21 = 2aRaL cos δ

U = s22 = 2aRaL sin δ

V = s23 = a2R − a2L (37)

The terms I, Q, U, V refer to spherical coordinates Q, U, V on a sphere of radius I:

Q = I cos 2χ cos 2ψ

U = I cos 2χ sin 2ψ

V = I sin 2χ (38)

ψ is the inclination of the ellipse as defined previously. χ is the ellipticity defined as
χ = arctan b/a. This is the Poincare sphere, to represent a polarization state (really
equivalent to the Stokes parameters). Useful in crystal optics.

The Stokes parameters are also manipulated by matrices (the Mueller matrices). All
these representations have some shortcoming. Stokes parameter are time and space avera-
ged. and are intensity measurements. Jones matrices (1941) ignore the intensity, but are
local and adequate to treat interferences.

Maybe it is best to stick to the local — in time and space — field description?

4.1 Examples

Linear polarization V = 0. Why? δ = o, or aR = aL.
U = 0 along the axis
Q = 0 at 45 deg.

Poincare sphere: in the plane U −−Q.
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Circular polarization V = ±I, rest is zero.
Poincare sphere: the poles (right circular = north pole, left circular = south pole).

5 How to measure the polarization state?

5.1 Direct measurement

Figure 5: Measuring the polarization ellipse: a linear polarizer is rotated by an angle θ varying
over 360 degrees.

The most direct measurement of the polarization ellipse is to scan a linear polarizer
around a point. The result of this measurement is a scan of the intensity along the variable
direction θ. Taking the square root of that measurement is the polarization ellipse. The
normalized polarization ellipse leads to the Jones Matrix.

5.2 Measurement of Stokes parameters

See Schaefer et al, American Journal of Physics 75, 163 (2007).
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6 Modulation of polarization: Polarization gating

A multiple order quarter plate wave combined with a polarizer can be used as a frequency
filter, just as a Fabry-Perot. Another application of a multiple order plate is to modulate
the polarization of an ultrashort optical pulse. As will be shown in the following example,
a quarter wave plate designed for the center wavelength and the middle of the pulse maybe
a half wave plate for the leading and trailing edges of the pulse.

The chosen example is that of a crystalline quartz plate, through which a 35 fs duration
pulse at 800 nm is sent. At that wavelength, the extraordinary and ordinary indices of
quartz are ne = 1.53838, and no = 1.54727. On calculates that the corresponding wave
vectors are ke = 12.5µm−1 and ko = 12.08µm−1. If we choose a thickness of quartz of
1065.75 µm, the difference in optical path for the two axis is ∆nd = 11.75λ. This implies
a high order quarter wave plate. One can also consider the phase difference for the two
axis:

∆kd = 2π
∆nd

λ
= 23.5× π = 47

π

2

which implies a 47th order quarter wave plate.
Along the two axis, there is also a difference in transit time of ∆nd/c = 31.3 fs.
The 35 fs pulse has a bandwidth of 0.0938 · 1015 s−1. Let us consider the two points of

the pulse spectrum at half width from the center frequency, i.e. at ±∆Ω = 0.0469 · 1015
s−1, and calculate the difference in retardation with respect to the central frequency. The
dispersion of the extraordinary and ordinary k vector is:
dke
dΩ

= 5.21 · 10−15 s µm−1

dk0
dΩ

= 5.18 · 10−15 s µm−1

with a difference ∆k′ = 0.03 · 10−15 s µm−1. The difference in retardation with respect to
the central frequency is thus:

±∆Ω×∆k′ × d = ∆φ = 0.03× 0.0469× 1065.75 = 1.5 ≈ pi

2

. We have thus a 46 × π/2 (half wave) ahead of the pulse, which becomes a 46 × π/2
(quarter wave) in the middle, and a 48× π/2 (half wave) at the end.

Following with a zero order quarter wave, that gives a pulse that changes its polariza-
tion from circular to linear to circular. This has been used in the generation of attosecond
pulses. After tunnel ionization, re-collision can only occur for linearly polarized light.

All the above are rather coarse approximation, but it give on an idea of the principle
of polarization gating.

7 Nonlinear waveplates

The index of refraction is intensity dependent. This is called the Kerr optical effect, in
analogy with the Kerr electro-optic effect, in which the change of index in a liquid (CS2 for
instance) is proportional to an electric field, as a result of molecular alignment. The Kerr
effect has in general an electronic component (practically instantaneous) and a molecular
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component (molecular orientation). We write the index of refraction as: n = n0 + n2|E|2
or n = n0 + n̄2I. In terms of polarization:

PNL(ω) = ϵ0χ
(3)|E|2E = ϵ0χ

(3)E(ω)E(−ω)E(ω). (39)

Typical value for n2 is 10−16 cm2/W. For air, a bit less: 5 · 10−19 cm2/W. Note that this
latter value is not that insignificant: you can have short pulses propagating as self-induced
waveguides (filaments) with an intensity of 2·1013 W/cm2. The phase shift over a distance
of ℓ is ∆n = 2π∆nℓ/λ = 10−4× 104 × ℓ(cm) which is huge! Air as been demonstrated as
a “waveplate” by sending a strong pump pulse and a probe pulse polarized at 45o.

The third order susceptibility is not a scalar but a tensor:

Pi = ϵ0χ
(3)
ijkℓEjEkEℓ (40)

We consider degenerate interactions of the type χ(ω, ω,−ω, ω) and an isotropic medium,

which means that the coefficients χ
(3)
ijkℓ have to be independent of axis permutations. The

result of the “isotropy” condition, the nonlinear polarization can be written [1]

P = ϵ06χ1122(E · E∗)E + 3ϵ0χ1221(E · E)E∗ = ϵ0A(E · E∗)E +
1

2
ϵ0B(E · E)E∗. (41)

Coefficients “A” and “B” are “historical” notations [2], and are related to nonlinear
susceptibilities through A = 6χ1122 and B = 6χ1221. For molecular alignment B = 6A;
for electronic Kerr effect B = A, and B = 0 for electrostriction effect.

Since we are interested in propagation of elliptically polarized beam, it is more conve-
nient to present the field in the basis of of circular polarization.

E = E+σ̂+ + E−σ̂− (42)

where

σ̂+ =
x̂+ iŷ√

2

σ̂− =
x̂− iŷ√

2
(43)

It is easy to verify the following set of equations:

σ̂∗
± = σ̂∓

σ̂·
±σ̂± = 0

σ̂·
±σ̂∓ = 1. (44)

We can use these relations in the products appearing in Eq. (41).

E∗ · E = (E∗
+σ̂

∗
+ + E∗

−σ̂
∗
−) · (E+σ̂+ + E−σ̂−) = E∗

+E+ + E∗
−E− = |E+|2 + |E−|2

E · E = (E+σ̂+ + E−σ̂−) · (E+σ̂+ + E−σ̂−) = E+E− + E−E+ = 2E+E− (45)
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Substituting in Eq. (41), there will be a right circular component of the polarization and
a left circular one:

PNLϵ0A
(
|E+|2 + |E−|2

)
(E+σ̂+ + E−σ̂−) + 2ϵ0B(E+E−)(E

∗
+σ̂− + E∗

+σ̂−)

The polarization can also be written in terms of right and left circular components: PNL =
P+σ̂+ + P−σ̂−:

P± = ϵ0A|E±|2E± + ϵ0(A+B)|E∓|2E∗
±, (46)

Using the wave equation for plane wave propagation, the nonlinear polarization leads to
the following change in index:

n± ∼ n0 +
1

n0

[A|E±|2 + (A+B)|E∓|2]. (47)

The first consequence of Eq. (eq:deltan) is that the axis of the ellipse will rotate:

n+ − n− =
B

n0

(
|E−|2 − |E+|2

)
. (48)

The rotation is largest when the Kerr effect is due to molecular orientation (larger B
coefficient - in fact B = 6A in that case). If the polarization is linear, |E−|2 = |E+|2 and
there can be no rotation. If the polarization is circular.. obviously the “long axis” a circle
does not rotate. There is only an E+ or an E−, hence only n± = (A/n0)|E+|2

In the case of elliptically polarized light, the birefringence results in a change of field
propagation for the two components of E+ and E−. The two senses of rotation will
therefore focus at different rates. The weaker circular component increases in intensity,
making the circular polarization become more linear. One can thus conclude that circular
polarization is unstable.
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Angular momentum

The elementary particle corresponding to circularly polarized light is the photon, a spin-
ning field at frequency ω. We have seen that to the photon is associated an energy h̄ω,
and a linear momentum h̄ω/c. What about the angular momentum? It value is h̄. This
corresponds to a linear momentum of h̄ω/c × and arm of λ/(2π). The angular momentum
associated with a circularly polarized pulse of energy W is:

Nh̄ =
W

h̄ω
× h̄ =

W

ω
(49)

As in the case of the linear momentum, the angular momentum of the beam does not
depend on h̄, The kinetic energy associated with the beam of power P is P/ω.

One can construct beams with an helicoidal wavefront, such that the rays generate
a hyperboloid. Each ray will have a velocity component in a plane orthogonal to the
propagation direction of the beam. Each photon has thus associated with it a momentum
component in a plane normal to the propagation equal to:

h̄ω

c
sin θ

where θ is the inclination of the ray with respect to the propagation axis of the beam.
If that ray is at a distance r from the axis, there is an “orbital” angular momentum
associated with each photon:

h̄ω

c
sin θ × r.

This momentum is larger than the intrinsic angular momentum per photon (h̄), since the
“arm” r can be of the order of mm, rather than micron (λ/2π). The kinetic energy in
rotation associated with such a beam of power P is

P

h̄ω

h̄ω

c
sin θr =

P

c
sin θr.
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