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In the case of a linear medium, the forward and backward wave travel indepen-
dently. If, as initial condition, we choose ẼB = 0 along the line r + s = 0 (t = 0),
there will be no back scattered wave. If the polarization is written as a slowly
varying amplitude:

P̃ =
1
2
P̃Feiω` s +

1
2
P̃Beiω`r, (1.110)

the equations for the forward and backward propagating wave also separate if P̃F is
only a function of ẼF , and P̃B only a function of ẼB. This is because a source term
for P̃B can only be formed by a “grating” term, which involves a product of ẼBẼF .
It applies to a polarization created by near resonant interaction with a two-level sy-
stem, using the semi-classical approximation, as will be considered in Chapters 3
and ??. The separation between forward and backward travelling waves has been
demonstrated by Eilbeck [17, 18] outside of the slowly-varying approximation.
Within the slowly varying approximation, we generally write that the second deri-
vative with respect to time of the polarization as −ω2

` P̃, and therefore, the forward
and backward propagating waves are still uncoupled, even when P̃ = P̃(ẼF , ẼB),
provided there is only a forward propagating beam as initial condition.

1.2.3 Dispersion

For nonzero GVD (k′′` , 0) the propagation problem (1.96) can be solved either
directly in the time or in the frequency domain. In the first case, the solution is
given by a Poisson-integral [19] which here reads

Ẽ(t,z) =
1√

2πik′′
`

z

∫ t

−∞

Ẽ(t′,z = 0)exp
(
i
(t− t′)2

2k′′
`

z

)
dt′ (1.111)

As we will see in subsequent chapters, it is generally more convenient to treat linear
pulse propagation through transparent linear media in the frequency domain, since
only the phase factor of the envelope Ẽ(Ω) is affected by propagation.

It follows directly from the solution of Maxwell’s equations in the frequency
domain [for instance Eqs. (1.77) and (1.82)] that the spectral envelope after propa-
gation through a thickness z of a linear transparent material is given by:

Ẽ(Ω,z) = Ẽ(Ω,0)exp
(
−

i
2

k′′` Ω2z−
i

3!
k′′′` Ω3z− . . .

)
. (1.112)

Thus we have for the temporal envelope

Ẽ(t,z) = F −1
{
Ẽ(Ω,0)exp

(
−

i
2

k′′` Ω2z−
i

3!
k′′′` Ω3z− . . .

)}
. (1.113)
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If we limit the Taylor expansion of k to the GVD term k′′` , we find that an initi-
ally bandwidth-limited pulse develops a spectral phase with a quadratic frequency
dependence, resulting in chirp.

We had defined a “chirp coefficient”

κc = 1 +
M4

4〈t2〉20

[
dφ
dΩ

∣∣∣∣∣
ω`

]2

when considering in Section 1.1.5 the influence of quadratic chirp on the uncer-
tainty relation Eq. (1.67) based on the successive moments of the field distribution.
In the present case, we can identify the phase modulation:

dφ
dΩ

∣∣∣∣∣
ω`

= −k′′` z (1.114)

Since the spectrum (in amplitude) of the pulse | Ẽ(Ω,z) |2 remains constant [as
shown for instance in Eq. (1.112)], the spectral components responsible for chirp
must appear at the expense of the envelope shape, which has to become broader.

At this point we want to introduce some useful relations for the characterization
of the dispersion. The dependence of a dispersive parameter can be given as a
function of either the frequency Ω or the vacuum wavelength λ. The first, second
and third order derivatives are related to each other by

d
dΩ

= −
λ2

2πc
d

dλ
(1.115)

d2

dΩ2 =
λ2

(2πc)2

(
λ2 d2

dλ2 + 2λ
d

dλ

)
(1.116)

d3

dΩ3 = −
λ3

(2πc)3

(
λ3 d3

dλ3 + 6λ2 d2

dλ2 + 6λ
d

dλ

)
(1.117)

The dispersion of the material is described by either the frequency dependence
n(Ω) or the wavelength dependence n(λ) of the index of refraction. The deriva-
tives of the propagation constant used most often in pulse propagation problems,
expressed in terms of the index n, are:

dk
dΩ

=
n
c

+
Ω

c
dn
dΩ

=
1
c

(
n−λ

dn
dλ

)
(1.118)

d2k
dΩ2 =

2
c

dn
dΩ

+
Ω

c
d2n
dΩ2 =

(
λ

2πc

) 1
c

(
λ2 d2n

dλ2

)
(1.119)

d3k
dΩ3 =

3
c

d2n
dΩ2 +

Ω

c
d3n
dΩ3 = −

(
λ

2πc

)2 1
c

(
3λ2 d2n

dλ2 +λ3 d3n
dλ3

)
(1.120)
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The second equation, Eq. (1.119), defining the group velocity dispersion (GVD)
is the frequency derivative of 1/3g. Multiplied by the propagation length L, it des-
cribes the frequency dependence of the group delay. It is sometimes expressed in
fs2 µm−1.

A positive GVD corresponds to

d2k
dΩ2 > 0 (1.121)

1.2.4 Gaussian pulse propagation

For a more quantitative picture of the influence that GVD has on the pulse propa-
gation we consider the linearly chirped Gaussian pulse of Eq. (1.33)

Ẽ(t,z = 0) = E0e−(1+ia)(t/τG0)2
= E0e−(t/τG0)2

eiϕ(t,z=0)

entering the sample. To find the pulse at an arbitrary position z, we multiply
the field spectrum, Eq. (1.35), with the propagator exp

(
−i 1

2 k′′` Ω2z
)

as done in
Eq. (1.112), to obtain

Ẽ(Ω,z) = Ã0e−xΩ2
eiyΩ2

(1.122)

where

x =
τ2

G0

4(1 + a2)
(1.123)

and

y(z) =
aτ2

G0

4(1 + a2)
−

k′′` z

2
. (1.124)

Ã0 is a complex amplitude factor which we will not consider in what follows and
τG0 describes the pulse duration at the sample input. The time dependent electric
field that we obtain by Fourier transforming Eq. (1.122) can be written as

Ẽ(t,z) = Ã1 exp

−
(
1 + i

y(z)
x

) t√
4
x [x2 + y2(z)]


2 . (1.125)

Obviously, this describes again a linearly chirped Gaussian pulse. For the “pulse
duration” (note τp =

√
2ln2 τG) and phase at position z we find

τG(z) =

√
4
x

[x2 + y2(z)] (1.126)
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and
ϕ(t,z) = −

y(z)
4[x2 + y2(z)]

t2. (1.127)

Let us consider first an initially unchirped input pulse (a = 0). The pulse duration
and chirp parameter develop as:

τG(z) = τG0

√
1 +

(
z

Ld

)2

(1.128)

∂2

∂t2ϕ(t,z) =

 1
τ2

G0

 2z/Ld

1 + (z/Ld)2 . (1.129)

We have defined a characteristic length:

Ld =
τ2

G0

2k′′
`

. (1.130)

For later reference let also us introduce a so-called dispersive length defined as

LD =
τ2

p0

k′′
`

(1.131)

where for Gaussian pulses LD ≈ 2.77Ld. Bandwidth limited Gaussian pulses double
their length after propagation of about 0.6LD. For propagation lengths z� Ld the
pulse broadening of an unchirped input pulse as described by Eq. (1.128) can be
simplified to

τG(z)
τG0

≈
z
|Ld |

=
2|k′′` |

τ2
G0

z. (1.132)

It is interesting to compare the result of Eq. (1.128) with that of Eq. (1.65),
where we used the second moment as a measure for the pulse duration. Since the
Gaussian is the shape for minimum uncertainty [Eq. (1.57)], and since d2φ/dΩ2 =

−k′′z, one can derive the evolution equation for the mean square deviation of a
Gaussian pulse in a dielectric medium:

〈t2〉 = 〈t2〉0 +
d2φ

dΩ2

∣∣∣∣∣∣
0
〈Ω2〉0 = 〈t2〉 = 〈t2〉0 +

(k′′)2z2

〈t2〉0
. (1.133)

The latter equations reduces to Eq. (1.128) by substituting the relations between
mean square deviations and Gaussian widths [Eq. (1.58)]. If the input pulse is
chirped (a , 0) two different behaviors can occur depending on the relative sign of
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a and k′′` . In the case of opposite sign, y2(z) increases monotonously resulting in
pulse broadening, cf. Eq. (1.126). If a and k′′` have equal sign y2(z) decreases until
it becomes zero after a propagation distance

zc =
τ2

G0a

2|k′′
`
|(1 + a2)

. (1.134)

At this position the pulse reaches its shortest duration

τG(zc) = τGmin =
τG0
√

1 + a2
(1.135)

and the time dependent phase according to Eq. (1.127) vanishes. From here on the
propagation behavior is that of an unchirped input pulse of duration τGmin, that is,
the pulse broadens and develops a time-dependent phase. The larger the input chirp
(|a|), the shorter the minimum pulse duration that can be obtained [see Eq. (1.135)].
The underlying reason is that the excess bandwidth of a chirped pulse is converted
into a narrowing of the envelope by chirp compensation, until the Fourier limit is
reached. The whole procedure including the impression of chirp on a pulse will be
treated in Chapter ?? in more detail.

There is a complete analogy between the propagation (diffraction) effects of a
spatially Gaussian beam and the temporal evolution of a Gaussian pulse in a dis-
persive medium. For instance, the pulse duration and the slope of the chirp follow
the same evolution with distance as the waist and curvature of a Gaussian beam, as
detailed at the end of this chapter. A linearly chirped Gaussian pulse in a disper-
sive medium is completely characterized by the position and (minimum) duration
of the unchirped pulse, just as a spatially Gaussian beam is uniquely defined by
the position and size of its waist. To illustrate this point, let us consider a linearly
chirped pulse whose “duration” τG and chirp parameter a are known at a certain
position z1. The position zc of the minimum duration (unchirped pulse) is found
again by setting y = 0 in Eq. (1.124):

zc = z1 +
τ2

G

2k′′
`

a
1 + a2 = z1 + a

τ2
Gmin

2k′′
`

. (1.136)

The position zc is after z1 if a and k′′` have the same sign2; before z1 if they have
opposite sign. All the temporal characteristics of the pulse are most conveniently
defined in terms of the distance L = z− zc to the point of zero chirp, and the mi-
nimum duration τGmin. This is similar to Gaussian beam propagation where the

2For instance, an initially downchirped (a > 0) pulse at z = zc will be compressed in a medium
with positive dispersion (k′′ > 0).
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Figure 1.8: Propagation of a linearly chirped Gaussian pulse in a medium with GVD
[pulse shape (a), pulse duration for different input chirp (b)].

location of the beam waist often serves as reference. The chirp parameter a and the
pulse “duration” τG at any point L are then simply given by

a(L) = L/Ld (1.137)

τG(L) = τGmin

√
1 + [a(L)]2 (1.138)

where the dispersion parameter Ld = τ2
Gmin/(2|k

′′
` |). The pulse duration bandwidth

product varies with distance L as

cB(L) =
2ln2
π

√
1 + [a(L)]2 (1.139)

To summarize, Fig. (1.8) illustrates the behavior of a linearly chirped Gaussian
pulse as it propagates through a dispersive sample.

Simple physical consideration can lead directly to a crude approximation for
the maximum broadening that a bandwidth limited pulse of duration τp and spectral
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width ∆ωp will experience. Each group of waves centered around a frequency Ω

travels with its own group velocity 3g(Ω). The difference of group velocities over
the pulse spectrum becomes then:

∆3g =

[
d3g
dΩ

]
ω`

∆ωp. (1.140)

Accordingly, after a travel distance L the pulse spread can be as large as

∆τp =

∣∣∣∣∣∣∆
(

L
3g

)∣∣∣∣∣∣ ≈ L
V2

g
|∆3g| (1.141)

which, by means of Eqs. (1.93) and (1.140), yields:

∆τp = L|k′′` |∆ωp. (1.142)

Approximating τp ≈ ∆ω−1
p , a characteristic length after which a pulse has approxi-

mately doubled its duration can now be estimated as:

L′D =
1

|k′′
`
|∆ω2

p
. (1.143)

Measuring the length in meter and the spectral width in nm the GVD of materials
is sometimes given in fs/(m nm) which pictorially describes the pulse broadening
per unit travel distance and unit spectral width. From Eq. (1.142) we find for the
corresponding quantity

∆τp

L∆λ
= 2π

c
λ2
`

|k′′` |. (1.144)

For BK7 glass at 620 nm, k′′` ≈ 6.52692× 10−26s2/m, and the GVD as introduced
above is about 320 fs per nm spectral width and meter propagation length.

1.2.5 Complex dielectric constant

In general, the dielectric constant, which was introduced in Eq. (1.75) as a real
quantity, is complex. Indeed a closer inspection of Eq. (1.74) shows that the finite
memory time of matter requires not only ε, χ to be frequency dependent but also
that they be complex. The real and imaginary part of ε̃, χ̃ are not independent
of each other but related through a Kramers–Kronig relation. The consideration
of a real ε(Ω) is justified as long as we can neglect (linear) losses or gain. This
is valid for transparent samples or propagation lengths which are too short for
these processes to become essential for the pulse shaping. For completeness we


