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Referring to Fig. 2-26, region 2 is free space and the properties of region 1 are He, =
1 and ez, = 9. The net electric field at the boundary (d = 0) is 30/0 V/m. Use the
phasor method to calculate E,, and H,, atd = 1 cm and 2 cm if the wave frequency is
1250 MHz. How far from the boundary is the first magnetic field maximum?

Regions 1 and 2 of Fig. 2-26 containb nonmagnetic dielectrics with &, = 6 ang
€z, = 3. Calculate the reflection coefficient and SWR for a wave propagating from
region 1 toward the dielectric interface.

A 500 MHz incident wave propagates as shown in Fig. 2-26. Region 1 contains 3
lossless insulator and region 2 is free space. Determine ir, and e, if the SWR ip
region 1 is 1.60 and the wavelength is 35 cm. Assume €r; > i,

An electromagnetic wave with a power density of 5.0 W/m? impinges on a dielectric
boundary causing a SWR of 1.90. Calculate the power density of the wave transmitted
into the dielectric.

Calculate the SWR for the cases of 25 percent and 50 percent power reflected at a
dielectric boundary.

Referring to Fig. 2-29, 6, = 35° and region 2 is free space. What is the minimum

value of index of refraction for region 1 that results in no transmission into the free
space region?

3-1 CIRCUIT REPRESENTATION OF TRANSMISSION LINES

3

Transmission-Line
Theory

The theory of electric waves along uniform transmission lines is reviewed in this
chapter. A uniform line is defined as one whose dimensions and electrical properties
are identical at all planes transverse to the direction of propagation. The analysis in-
cludes a study of the reflection characteristics of terminated lines. The results allow
us to apply ac circuit concepts to lines whose lengths are not negligible compared to
the operating wavelength. (The restriction regarding line lengths was discussed in
Sec 1-1). An interesting consequence of this analysis is that the impedance of a cir-
cuit can be dramatically altered by the addition of a small Jength of transmission
line. This impedance transforming property of a line is a powerful design tool at
microwave frequencies. Several illustrative examples are given in this and
subsequent chapters.

Transmission lines provide one method of transmitting electrical energy between
two points in space, antennas being the other (Appendix F). Figure 1-4 shows four
types of lines used at microwave frequencies. The open two-wire line is the most
popular at the lower frequencies, the TV twin-lead being a familiar example. UHF
and cable TV systems utilize low-loss coaxial cable as a transmission line. Modern
microwave practice involves considerable use of coaxial lines at frequencies up to
30 GHz and hollow waveguides from 3 to 300 GHz. i

_In principle, any transmission line. can be analyzed by solving Maxwell’s equa-
tions and applying the appropriate boundary conditions for the particular line ge-
ometry. An example of this is the analysis of hollow waveguides described in Sec.
5-5. A simpler technique that utilizes ac circuit concepts is given in this-chapter. As
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Transmission-Line Theory Chap, 3

mentioned in Sec. 1-2, this technique was introduced by Lord Kelvin and developed
fully by Oliver Heaviside. Essentially, it is an extension of ac circuit theory to lineg
having distributed circuit elements. A disadvantage of this method is that it reveals
little about the electromagnetic field pattern or other possible modes of propagatiop,
However, it does describe the impedance and propagation characteristics of the line
for the principal mode of transmission and hence is of considerable engineering
The following quantities may be defined for a uniform transmission line.

R’ = Series resistance per unit length of line (ohm/m)
G’ = Shunt conductance per unit length of line (mho/m)
L’ = Series inductance per unit length of line (H/m)

C' = Shunt capacitance per unit length of line (F/m)

The quantity R' is related to the dimensions and conductivity of the metallic cop-
ductors. Because of skin effect, it is also a function of frequency. G’ is related to the
loss tangent of the insulating material between the conductors.! L’

» While C' is associated with the charge on
the conductors. Expressions for the distributed elements of various transmission lines
are given in Chapter 5.

With this concept of distributed elements, a uniform tra
‘modeled by the circuit representation in Fig. 3—1. The line is pictured as a cascade
of identical sections, each Az long. Each section consists of series inductance and re-
sistance (L'Az and R 'Az) as well as shunt capacitance and conductance (C'Az and

nsmission line may be

& F+AS

RAz LAz p =
N
e - -l— v owt .]_ M Pl =

: V+av To load
A -,—C'Az =

=
=}
g
[}
3
I}
=
~
o
=

AAAA
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+z direction

Figure 3—-1 Circuit representation of a uniform transmission line.

't is important to note that G’ is not the reciprocal of R, They are independent quantities, R’

being related to the properties of the two conductors and G’ to the characteristics of the insulating mate-
rial between them.
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Circuit Representation of Transmission Lines-

i i t at the in-
he time-varying voltage and curren
figure, V and ¥ represent t -
fI 3 tlrilr(:/e sgection while V" + AV and $ + A9 represent the outputhvalues(;’r}l‘tl(l)r
= = f 7 direction is taken as horizontal and to the r}ght, tl_lat is, fro;n t le]t gelr:rrents
posm:/jethe load. Also indicated are the assumed positive directions for the ¢
towar :

i V(;;l;l%;isﬁg Kirchhoff ’s voltage and current laws to the line section yields

39
V= (R'AD$ + (L'A)— + (V + AV)

and
d pm .
9 = (G'A)V + AY) + (C’Az)a(ﬂf + AV) + (9 + A%)

Simplifying and recognizing that as Az — 0, V" + AV — V' results in the following
partial differential equations.

3

V.
G (5 )
0z at

—— =R'$ + L' and

dz

i d equation and eliminating
1 f the first equation and 9/9¢ qf the secon . i
?; /t zlz( l:r%dagza\; /%z ot, a secc?nd-order differential equation for voltage is obtained.

2V _ e L we v oo Ry (3-2)
9zt ar ot

Solving for current in a similar manner yields
82§=LIC,@‘+(R’C,+G,L’)§"2+R,G'\g} (3_3)
8z2 at? ot

i - her with
The solution of either of these second-order equations and Eq. d(3 1),i ;(e)gt?:?; with
the electrical properties of the generator and load, allow us to ete;munif_orm -
taneous voltage and current at any time ¢ and any place z along the

ssion line. ’ = = h
mlssu)l*{loil'r;;e case of perfect conductors (R’ = 0) and insulators (G’ = 0), the

above equations reduce to

9
2 RESTA 82_5’ g9 (3-4)
AL I -
while Egs. (3—1) reduce to i
| : 09
oV , 09 _99 _ LV (3-5)
B 3 and 5z ot

. . ' I
i 1 equations for a lossless line. A
i —4) and (3-5) represent the differentia : ool '
El(i)ltlagt;loﬁesza(ﬁlinis are( never without loss, there are many in which it is sufficiently

i ts an excellent approximation. _
the lossless solution represen : : -
Small]g;itations (3—4) are forms of the well-known wave equation of mathematic

it i ' th
physics. We have already encountered it in Eq. (2-45). It was shown that the
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solution represented electromagnetic waves traveling in the plus and minus z
directions with a velocity given by Eq. (2-53). The solutions of Egs. (3—4) also
represent traveling waves. In this case, they are voltage and current waves that travel

with a velocity given by

1
= At 3-6
v VL'C' (2

In general, Eqgs. (3-4) are satisfied by single-valued functions of the form

f@ £ VL'C'z), where the plus sign indicates propagation in the negative z direc-
tion and the minus sign propagation in the positive z direction. To understand the
meaning of these solutions, assume Y = f(@t — VL'C' z). At the point z = O, the
voltage versus time function is given by V' = f(¢). Further down the z axis at a
pointz =z, V. = f(t — VL "C’ 2,), which is exactly the same as f (¢) except that
it has been time delayed by 2 = VL'C’ 2. Thus, it appears that the voltage versus
time function at z = 0 has moved to z = 21 with a velocity v = z,/ta = 1 /VL'C',
which is exactly Eq. (3-6). By a similar argument, the f(t + VL'C' z) solution
represents a voltage function traveling in the negative 2 direction. In like manner,
the solutions of the current equation may be interpreted as forward and reverse trav-

eling current functions h ‘

aving the same velocity as the voltage. A similar conclusion
was arrived at regarding the € and 3 waves discussed in Sec. 2—4, the explanation

ated € and vice versa. The voltage and current waves also travel

being that € gener
with the same velocity since V" and $ generate each other. A physical explanation is

presented in the next section to show the reasonableness of this conclusion.
Another result given in Sec. 2—4 is that the ratio of & to ¥ for the traveling
waves is a constant (1) which is a function of the electric and magnetic properties of
the medium. Similarly, the ratio of ¥ to § for a traveling wave on a transmission
line is a constant. This constant is called the characteristic impedance (Zo) of the

line. For a lossless line, it is given by

I
7= \/—C—, ohms (3-7)

To verify this expression, let Y = filu) and 9 = fo(w), where
u=t— VL'C'z Since

oV ofi 0 — f
.__=_f_‘l._li=—- L'C’_ai and —_— i e ¢ — IS ——
u at ou ot ou

substitution into the first of Eqgs. (3-5) yields VL'C " 3fi/ou = L' f>/du. Integra-
tion with respect to « and simplifying results in fil f=YV1$ =VL'/C, which is

Eq. 3-7).

It will be shown that Z 1s'a function of the cross-sectional dimensions of the
line as well as_the electrical -properties ;of the insulating material between the

conductors.

Sec. 3-2 Transients on a Transmission Line
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3-2 TRANSIENTS ON A TRANSMISSION LINE

We have
ok gfcz?tn th’;lt) voltaggand current waves travel along a transmission line with the
. givinlg yéddit?ophifs.lca'l }allrgument presented here is intended to verify this fact
\ nal insight into i :
i gl the process of wave propagation along uniform
Figure 3- ¥ i i
i tir i §h2aass£i(;§ls ta 20 V gat'teliy ;wth an internal resistance of 100 ohms con
o an infinitely long transmission li i -
e ly long t 1ssion line with Z, = 100 oh
equivalen:hg ﬁgpre shows thq same circuit with the transmission line replaced b n:is
i tlr;:]mt. representation. When the switch is closed, a voltage appearsyi
i Zta:) t; e input of the transmission line. However, it cannot appear instan?;-
er points along the line, since that 1d requi ‘ !
L e 3 would require a sudden change in
pacitances. Furthermore, since it i i
i . ' s e 1t 1s current that deliver
tancesc ;:i?e 1to the capacitances, a sudden increase in current through the insd:::(-:
e p:sio be n;ecessarg. Since inductance opposes a current change and ca
. $ a voltage change, the voltage and ¢ i i :
: ) urrent re fi i
=l hange quire a finite time
propagate along the transmission line. The propagation process can be described Ir(:

}—* +2z direction

(a) Transmission-line circuit

?( L'Az L'Az L'Az

C'az == C'Az S To infinity "

+ ]
—

— 20V
(e

’<—Az—>

(b) Equivalent circuit representation

Figure 3-2 A dc source connected to an infinitely long, lossless line.
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Transmission-Line Thedry Chap. 3
the following manner. When the switch is closed, the first inductance generates g
back emf, in accordance with Lenz’s law, to initially oppose an increase in current,
Eventually, however, current flows through L 'Az and charges the first shunt capaci-.
tance C'Az to a voltage V. The charged capacitor now acts like a voltage source ang
forces current through the next inductor. This charges the next capacitor and the
process continues down the line. From this argument, it is apparent that voltage cre-
ates current and vice versa, thus requiring that they travel together along the trans.
mission line. Since the line is infinitely long, only forward traveling waves of voltage
and current exist and their ratio is given by Z, (100 ohms in this case). As time pro-
gresses, the battery continues to supply the current needed to charge the never-end-
ing line of shunt capacitances. Thus, in the steady state, the infinite line presents
an impedance of Z, to the battery. The current supplied by the battery ig
20/(Re + Zo) = 0.10 A. With half of the 20 V dropped across Ry, the voltage at
the input to the line is 10 V. This 10 V voltage wave and its accompanying .10 A
current wave travel in the positive z direction with a velocity given by Eq. (3-6).
Let us now look at some examples of finite length lines with various termina-
tions,
An open-circuited line. Consider the case of a 20 V battery with R; =
100 ohms connectéd to an open-circuited, lossless transmission line. This situation,
with specific values of /, v and Zo, is shown at the top of Fig. 3-3. With the initially
open switch closed at ¢t = 0, the voltage at the input to the line immediately becomes
10 V. This occurs because at the first instant, the dc source has no indication that the
line is not infinite in length and hence sees an input impedance Z, = 100 ohms.?
Thus at r = 0+ (that is, immediately after closing the switch), the current and
voltage at the input to the line are 20/(Rc + Zy) = 0.10 A and 10 V, respectively.
These values remain constant unti] the battery has some indication (via a reflected
wave) that the line is not infinite in length. With the velocity given as 2 X 108 m/s,
it takes 10 ns for V and I to trave] halfway down the 4 m line. This situation is
shown in part a of Fig. 3—-3. Part » shows the waves at 1 = 20— ng (that is, slightly
less than 20 ns). When the waves arrive at the open circuit, something must happen
since two contradictory impedance requirements exist. First, the V/I ratio for the
quires an infinite impedance since current must be zero.
waves (V-, ) allows both of these requirements to be
satisfied. Thus at the load end (z =4 m),
Vi=V*+vy- and

IL=1+—1_=O

where the + and — superscripts indicate forward and reverse traveling waves.? V,
and /, represent the voltage and current at the load end once the forward traveling
waves have arrived, which occurs at ¢ = 20 ns. The condition that 7, = 0 requires’

*Since Z, represents the impedance of the line when the switch is first closed, it is sometimes
referred to as the surge impedance of the transmission line.

*The reason for the minus sign in the equation for 1, is that for the forward and reverse traveling
waves, I* and /- are oppositely directed.

Sec. 3-2

V (volts)

V (volts)

Transients on a Transmission Line

Rg=1000 '~
+

—20V

0 Lossless transmission line

Zy=1009;,v=2X 108 m/s  Open circuit

L————. l=4m———->‘

— +z direction
z=0

V (volts)
o

2

meters
z (meters) z( )

(a) At r=10ns (b) At t=20—ns

V (volts)

2

z (meters)
z (meters) ( )

(¢) At t=30ns (d) Att=40ns

Figure 3-3 Voltage and current waves on an open-circuited transmission line.
(The switch is closed at ¢ = 0.)
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that I~ = I" = 0.10 A. Also, with V' = I"Zoand V- =12y, V™ = V' =10V,

Therefore at t = 20 ns, I = Oand V., = 20 V.
If we define the reflection coefficient at the load as

V- I
V+ I+ ( 8)
then for the open-circuit case, I': = +1. The open-circuit condition at the load end

thus creates reflected voltage and current waves of 10 V and 0.10 A, respectively.

These waves travel in the negative z direction with the same velocity as the forward

waves. Parts ¢ and d of Fig. 3-3 show the resultant voltage and current (due to the
sum of the + and — waves) at ¢ = 30 and 40 ns. As the wavefront of the 10V,
0.10 A reflected wave moves to the left, it leaves behind a net voltage of 20 V and a
net current of zero. Since Re = 100 ohms, both Ohm’s law and the condition that
V-/I" = 100 ohms are satisfied at ¢ = 40 ns, and hence no reflections are required
at the generator. The process thus ends and a steady state is achieved with V = 20V
and I = 0 everywhere on the transmission line. In other words, after 40 ns, the dc
source finally sees the open circuit and behaves accordingly. If the open circuit were
replaced by a short circuit, then for ¢ > 40 ns, the conditions everywhere on the
line would be V = 0 and I = 20/Rs = 0.20 A (Prob. 3-3).

FLE

Consider now the case of a finite length
transmission line terminated with a pure resistance. This situation is shown at the top
of Fig. 3—4, where R, is the terminating or load resistance. As before, closing the
switch initiates a 10 V, 0.10 A forward traveling wave. At ¢ = 20 ns, the wave ar-
rives at the load end. Since R, # Zo, Ohm’s law can only be satisfied by assuming
reflected waves. Thus at z=4m, V.=V +V and L, =1" -1 =

Resistively terminated lines.

(V* — V7)/Zs. Ohm’s law requires V./I. = R, and hence

Yy +
viev 1+ D (3-9)

R.=Zooi—r
LTSy -y LI

Solving for the load reflection coefficient yields

RL = Z()
= -10
R+ Z, (=18

quation and Eq. (2—83) which describes the
gnetic wave. In the next section, Egs. (3-9)
mplex impedances when the source excitation
s, T, is real and can take on any value be:
tween —1 and +1. If R, = 0 (short circuit), [, = —1, while if R, = > (open cir-
cuit), I'' = +1. For the special case when R, = Zo, I, = 0 and therefore no
reflected waves are generated. What this means is that when the forward voltage and
current waves arrive at the load, Ohm’s law is automatically satisfied and reflections
are not required. Referring to the circuit in Fig. 3-4 with R, = 100 ohms, the
steady-state condition is reached after 20 ns, namely, V = 10 Vand I =0.10 A

I

Note the similarity between this e
reflection coefficient for an electroma
and (3—10) are extended to include co
is sinusoidal. For resistive termination
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R.=1000 '= 0 Lossless transmission line

[

— 20V Zy =100, v =2X 10* m/s

V (volts)
V (volts)

G

- 4 e

I (amps)
I (amps)

y ~ }o.ozA

Z (meters) z (meters)
(a) At t=10ns (b) At =30
=30ns

lIgIIle 3-4 Voltage and current waves 101 ﬂle circuit Shown When 1?[ = 150 Oll"ls
a
(Ihe SW ltCh 18 CIOSCd at ¢ O')

everywhere along the line. Note that in a
voltagg anfi current are those expected frorﬂ ;hgcs:eaerIS;ssi,s t(ilfetlslteeaccijr);-lfitta S
- ‘Fig‘o;_sfe; rn(:)nv:/ [tahe cgse where R, = 150 o_hms for the circuit shown at the top
L and 0.10 o thq. (ﬂ—lO), I'L = 0.20. With the forward wave again equal to
el Parts. ; an& be_ freF.ected voltage and current are 2 V and 0.02 A, respec-
i i Ato 3 ig. 3—4 shows the voltage and current along the line at
i) h i ta= IQ ns, only the forward traveling waves exist, having ar-
Ry = e 3 way point of the 4 m line. At ¢ = 30 ns, the reflected waves
s =g 4grﬁtse(nzrt)(:hl:)a‘:i)trz:;eledﬂhalf\zay back toward the generator end of the
_ , the reflected waves arrive at i
;;mt=v<§tage and current gverywhere along the line become lche\/lr;?)‘c]it(?.r(l)% t/};e rSei?::le-
G 0, no reflection is required at the generator end and the steady s.tate is

achieved after 40 ns. Agai ‘
feed o - Again, the final values are those expected from a dc analysis of
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Multiple reflections on a transmission_ line. From the al;ot\;e; C?:?)Sr’x Sn 11;
clear that when Rg = Zo, the steady state is achieved after one roun A Ir) \ one_;va
le). On the other hand, if Ry = Zo, the stegdy sFate occurs afte y

?ruz;) %%n;;; iﬁ our example). Let us now explore the situation when neither Rg nor R,

is equal to the characteristic impe
i)sczgr at both ends of the line and the steady-state values are approached only as ¢

infinite. o ' .
becom:: 1: smeciﬁc example, consider the circuit at the top of Flg. 3. 5, where
R = 200 ohr:ns R, = 25 ohms, and Zo = 100 ohmis. When the switch is closed at

G — )

¢ = 0, the 90 V source sees 200 ohms in series with the characteristic impedance of

=0 Lossless transmission line

Rg =200 Q
L l—_——«/wv—?‘ .

— 90V Z,=100Q,v=2%X10%m/s

6V

-6V
wave L~

V (volts)

~~
w1
=
o
>
A
~

2
z (meters) z (meters)

(a) At £ =30ns (b) At t=50ns

20 108V 12V

/ )Iave

V (volts)
V (volts)

meters
z (meters) z( )

(c) At t=70ns “(d) Att=90ns

i i isti inated transmission line.
_5 Multiple reflections on a resistively terminat
;oig:r:o% 2hms uR?= 200 ohms, and R, = 25 ohms. (The current waves are not

shown.)

dance Zo. The analysis will show that reflections

Sec. 3-2 Transients on a Transmission Line 67

the line. Therefore, the current and voltage at the input end of the line (z = 0) are
initially /* = 90/300 = 0.3 Aand V' = [* Z, = 30 V. After 20 ns, the V' and '
waves arrive at the load end where the reflection coefficient I, = —75/125 =
—0.6and hence V- =TI, V' = =18 Vand /- = I, I* = —0.18 A. At the end of
30 ns, the voltage between z = 2 m and z = 4 m is reduced to 30 — 18 = 12 V,
while the current has increased to 0.3 + 0.18 = 0.48 A. The progress of the
voltage wave along the line is shown in Fig. 3-5 for ¢ = 30, 50, 70, and 90 ns. Let
us observe the voltage wave as time marches on. At the end of 40 ns, the —18 V
wave arrives at the input where it sees an impedance R = 200 ohms. Since
Rc # Zo, a reflection occurs at the generator end. By analogy with I',, the generator
reflection coefficient I'¢ is given by

RG_ZO

I's Re T Z (3-11)
For Rz = 200 ohms, I'c = 1/3 and hence a —6 V wave is rereflected toward the
load end. At+ = 50 ns, it has progressed halfway down the line, leaving behind it a
voltage of (30 — 18 — 6) = 6 V. This is shown in part b of the figure. At ¢ =
60 ns, the —6 V wav\e arrives at the load which generates a reflected wave of
value (—6)I", = +3.6 V. The situations at 70 and 90 ns are also shown in the figure.
Note that at + = 90 ns, another forward traveling wave exists having a value
(+3.6)I'c = +1.2 V. This process continues indefinitely with the amplitude of the
rereflected waves getting smaller and smaller. A plot of voltage versus time at any
fixed point on the line would show that, in the limit, the voltage becomes the ex-
pected dc value (namely, 90 R./(Rc + R.) = 10 V). Such a plot at z = 0, the input,
is shown in Fig. 3-6. Every step in voltage represents the arrival and generation of
reflected waves at the input. After five round trips (200 ns), the voltage is within
0.10 percent of the steady-state value.

o (volts)

V..

9.993V /

| | |
o 160 200

Figure 3—6 Input voltage versus time for the line shown in Fig. 3-5.

The space-time diagram developed by Bewley (Ref. 3—6) is a graphic aid in
determining the voltage and current as a function of either time or position along the
line. Figure 3—7 shows the diagram for the circuit conditions in Fig. 3-5. The ab-
scissa indicates position along the line and the ordinate represents the time scale,
! = 0 being the moment that the switch is closed. For reference, the values of I's
and I'; are given at the top of the diagram. The lines sloping downward and to the
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z (meters) —> r,=-056

130 .
Figure 3-7 Space-time diagram for
§ 140 the transmission-line circuit shown in
0 : 1 4 Fig. 3-5.

right represent forward traveling waves, while those sloping down and to the left
represent reverse waves. The voltage and current values for the particular wave are
shown above and below the sloping line. As ‘explained, the load end creates
reflections equal to T, of the arriving wave. Generator reflections are equal to I'
times the value of the wave arriving at the generator end.

To illustrate, Fig. 3—7 will be used to determine the voltage and current at
z = 2 m. Each intersection of a sloping line with the vertical z = 2 m line repre-
sents the arrival of a wavefront. For ¢ < 10 ns, no intersection exists and hence
both V and I are zero. For 10 < < 30 ns, there is one intersection which means
v =30Vandl = 0.30 A. Fort > 30ns, the voltage is the sum of all the forward
and reverse waves that have passed the z = 2 m location. For example, at# = 80 ns,
vVv=30—-18-6+36= 9.6 V. The current may be determined in a similar
manner except that current values associated with reverse waves must be subtracted
from those associated with the forward waves. For example, at t = 80 ns, I =
0.30 — (—0.18) + (—0.06) — (+0.036) = 0.384 A. The diagram may also be

used to determine voltage and current versus z for a fixed time by drawing a hori-

‘zontal line corresponding to the particular value of time. The sum of the voltages

above the line correspond to the voltage at that point on the line. The same applies
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Figure 3-7 Space-time diagram f9r
the transmission-line circuit shown in
Fig. 3-5.

i forward traveling waves, while those sloping down .and to the left
;g::esr:r?tr i:;:rSe waves. The vogltage and current value§ for the particular crvave z:re
shown above and below the sloping line. As “explained, tl}e load en l<:rea It:.s
reflections equal to T’ of the arriving vlvlave. Genteratordreﬂectlons are equal to l¢

imes t ! wave arriving at the generator end.

i ’i‘geil‘;?llsl::a?g, trl':‘gg. 3-7 will t%e used to determine thc? voltage and f:urrent at
; = 2 m. Each intersection of a sloping line with the.ygrtlcal.z = 2.m line r;pre-
sents the arrival of a wavefront. For ¢t < 10 ns, no mter.se,ctlon §x1sts z}nd ence
both V and I are zero. For 10 <1 < 30 ns, there is one 1n§ersect10n whlct; mean(s1
Vv =30V and/ = 0.30 A. Forz > 30ns, the voltage is the sum‘of all the_oir;:)var
and reverse waves that have passed the z = 2 m location. For exam_ple, atr =t _rlls,
V =130—18 — 6 + 3.6 = 9.6 V. The current may be determined in a 51m1t a;
manner except that current values associated with reverse waves mus;— be spbtra;: <
from those associated with the forward waves. For example', at t = 80 ms, l:e
0.30 — (—0.18) + (—0.06) — (+0.036) = 0.384 A. The .dnagram may al_s;)l <
used to determine voltage and current versus z for a fixed time by drawmg al or1s
zontal line corresponding to the particular value of time. The sum of the voltage

above the line correspond to the voltage at that point on the line. The same applies

v
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to the current except that, as before, reverse-traveling current waves must be sub-
tracted from forward-traveling current waves. _

The space-time diagram may be extended to transmission lines having disconti-
nuities and branches (Chapter 3 of Ref. 3-7).

It is interesting to note that the voltage shown in Fig. 3-6 is oscillatory as it
approaches its final value. The period of this ringing effect is 80 ns (twice the round-
trip time) and hence its reciprocal is the natural resonant frequency of the circuit,
namely, 12.5 MHz. Since v = 2 X 10® m/s, this means that the line is A/4 long at
the resonant frequency. Thus we see that by connecting a dc source to a transmission
line, high frequency oscillations are possible. Granted, the oscillation is heavily
damped in this example, but the damping can be reduced by increasing the magni-
tude of both reflection coefficients. In faci, if they are both unity, the oscillation will
continug indefinitely (Prob. 3—6). In other words, a configuration consisting of two
large reflections separated by a‘length of transmission line has the properties of a

resonant circuit. Most of the microwave resonators described in Chapter 9 have
exactly this configuration.

3-3 SINUSOIDAL EXCITATION OF TRANSMISSION LINES

Let us now turn to the important case of uniform transmission lines with sinusoidal
excitation. Since our interest is in the steady-state solution, the rms-phasor method,
reviewed in Sec. 1-4, will be employed.
Equations (3—1) resulted from a distributed circuit analysis of the uniform
transmission line described in Fig. 3—1. Written in phasor form, they become
dv dl
T (R"+ jwL)I = Z'1 and S (G'+ jwC')V=Y'V (3-12)
where Z' = R’ + jwL' is defined as the series impedance per unit length and
Y= G' + jwC’ is defined as the shunt admittance per unit length.
Differentiating the first equation with respect to z and substituting —Y 'V for
d1/dz yields the following second-order differential equation.
sz ’ ’

Its phasor solution may be written as

(3-13)
V=Vie ™+ Vger”=V* + V™ (3-14)
where 7 is the propagation constant and given by

y=VZY' = VR + juL')G' + jwC')

(3-15)

In general, y is complex and may be written as y = a + jB, where as explained in

Sec. 2-6 a is the attenuation constant (Np/ length) and B is the phase constant
(rad/length).




