
Appendix A

Phase Shifts upon Transmission
and Reflection

Most often, phase shifts at interfaces are a simple consequence of energy conser-
vation. Conversely, the phase shift properties in simple devices can be used to
determine the direction of the flow of energy. A few simple examples are given
here.

A.1 The symmetrical interface

Figure A.1: Reflection and trans-
mission by an interface between two
identical media

Let us consider first the very simple situation
sketched in Fig. A.1. The interface can be a
mirror with a reflecting coating on the front
face and an antireflection coating on the back
face. We are only interested in fields propa-
gating outside the mirror. The energy con-
servation relation between the reflected (field
reflection coefficient r̃) and transmitted (field
transmission coefficient t̃) waves implies:

|r̃|2 + |t̃|2 = 1, (A.1)

where we assumed a unity field amplitude inci-
dent from the left.
Taking next a field incident from the right, we
have:

|r̃′|2 + |t̃′|2 = 1, (A.2)
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Another relation can be found by summing the intensities on both sides of the
symmetry line (dash-dotted line):

|r̃ + t̃′|2 + |r̃′+ t̃|2 = 2. (A.3)

Combination of Eqs. (A.1) and (A.3) leads to

2[r̃t̃′∗+ r̃′∗ t̃] = 0, (A.4)

which implies that the phase shifts upon transmission and reflection are comple-
mentary in the case of symmetric intefaces:

ϕr −ϕt =
π

2
. (A.5)

It is because of the latter phase relation that the antiresonant ring reflects back all
the incident radiation, and has zero losses if |r̃|2 = |t̃|2 = 0.5. In the case of zero
phase shift in transmission ϕt = 0, Eq. (A.4) implies r = −r′∗, which corresponds
to conservative coupling.

Note that Eq. (A.5) is not necessarily true if the structure is not symmetric, such
as for a Fabry-Perot with different coatings on both sides. In the case, Eq. (A.4)
has to be replaced by:

[r̃1 t̃2
∗+ r̃1

∗ t̃2 + r̃2 t̃1
∗+ r̃2

∗ t̃1] = 0, (A.6)

where the indices 1 and 2 refer to the reflection/transmittion of beam 1 and 2,
respectively. Equation (A.5) has then to be replaced by:

cos(ϕr1−ϕt2) + cos(ϕr2−ϕt1) = 0. (A.7)

A.2 Coated interface between two different
dielectrics

Figure A.2: Reflection and transmission by an inter-
face between air and a dielectric.

Let us consider – as in Fig. A.2
– a partially reflecting coating
at an interface between air (in-
dex 1) and a medium of in-
dex n. A light beam of am-
plitude E1 = 1/

√
cosθ1 is in-

cident from the air, at an an-
gle of incidence θ1. The trans-
mitted beam is refracted at
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the angle θ2, and has an am-
plitude t̃1/

√
cosθ1. The re-

flected beam has an amplitude
r̃1/
√

cosθ1. We take the ver-
tical (orthogonal to the figure)
dimension of the beam to be
unity, as well as the distance
covered by the beam on the in-
terface in the plane of the fi-
gure. To calculate energy con-
servation, we compare the products ni|Ẽ|

2A where ni = 1 left of the interface, ni = n
right of the interface, and A = 1×cosθ. As in the previous section, we will be con-
sidering a similar beam incident from the right, with an amplitude E2 = 1/

√
ncosθ2

incident at an angle θ2 on the dielectric/air interface. The choice of these incident
electric field amplitudes is such that the same “energy” products ni|Ẽ|

2A = A apply
on both sides of the interface, above the dash-dotted line in Fig. A.2.

Energy conservation leads to the relation:

|r̃1|
2 + |t̃1|2

ncosθ2

cosθ1
= 1, (A.8)

where we took into account the change in beam cross section upon refraction.
We have a similar energy conservation equation for a beam of amplitude E2 =

1/
√

ncosθ2 incident at an angle θ2 on the dielectric/air interface:

|r̃2|
2 + |t̃2|2

cosθ1

ncosθ2
= 1. (A.9)

From Eqs. (A.8) and (A.9) we get directly the relation:

|t1|2 · |t2|2 = T1T2 = (1− |r1|
2)(1− |r2|

2) = (1−R1)(1−R2) (A.10)

which is a trivial energy conservation equation. The amplitude of the reflection
coefficient is equal on both sides of the interface. Since |r̃1|

2 = |r̃2|
2, Eqs (A.8)

and (A.9) lead to:

|t1|

√
ncosθ2

cosθ1
= |t2|

√
cosθ1

ncosθ2
. (A.11)

The amplitudes of the transmission coefficients are not equal, but in the ratio
|t2|/|t1| = ncosθ2/cosθ1, a relation that satisfies Fresnel equations, and results sim-
ply from energy conservation.
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In order to find a relation between the phase shift upon transmission and re-
flection, we consider the energy conservation for light incident from the upper half
of the figure (the axis of symmetry being the dashed normal to the interface):

1 + 1 = cosθ1

∣∣∣∣∣∣ r̃1
√

cosθ1
+

t̃2
√

ncosθ2

∣∣∣∣∣∣2
+ ncosθ2

∣∣∣∣∣∣ r̃2
√

ncosθ2
+

t̃1
√

cosθ1

∣∣∣∣∣∣2 . (A.12)

Expanding:

2 = |r1|
2 + |r2|

2 + |t2|2
cosθ1

ncosθ2
+ |t1|2

ncosθ2

cosθ2

+(r̃1 t̃∗2 + r̃∗1 t̃2)

√
cosθ1

ncosθ2
+ (r̃2 t̃∗1 + r̃∗2 t̃1)

√
ncosθ2

cosθ1
(A.13)

Taking into account the energy conservation relations (A.8) and (A.9), leads to:

(r̃1 t̃∗2 + r̃∗1 t̃2)cosθ1 + (r̃2 t̃∗1 + r̃∗2 t̃1)ncosθ2 = 0. (A.14)

We can re-write Eq. (A.14)

2|r1||t2|
{
cos

(
ϕr,1−ϕt,2

)}
cosθ1 = −2|r2||t1|

{
cos

(
ϕr,2−ϕt,1

)}
ncosθ2. (A.15)

Equation A.14 leads also to the following trigonometric relations between phase
shifts upon transmission and reflection:

cos
(
ϕr,1−ϕt,2

)
cos

(
ϕr,2−ϕt,1

) = −1, (A.16)

which leads to the relation between phase angles:

ϕt,2−ϕr,1 = ϕr,2−ϕt,1 + (2n + 1)π. (A.17)

or
ϕt,1 +ϕt,2 = ϕr,1 +ϕr,2 + (2n + 1)π. (A.18)

The relations for normal incidence, where |r̃1| = |r̃2| and n1|t̃2| = n2|t̃1, are:

n1(r̃1 t̃∗2 + r̃∗1 t̃2) + (r̃2 t̃∗1 + r̃∗2 t̃1)n2 = 0.

ϕt,1 +ϕt,2 = ϕr,1 +ϕr,2 + (2n + 1)π.
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A.3 Matrix method

A.3.1 The “S ” matrix

Coatings play an important role in femtosecond optics, by shaping pulses through
the amplitude and phase of their reflection coefficient. Matrix methods have been
developed to predict all properties of a coating. A coated optical surface can be
modeled as a stack of simple thin interfaces separated by propagation in a dielec-
tric. The transmission and reflection of a right propagating field are the result from
the interference from all of the layers. To calculate these resultant fields, the right
moving and left moving waves must be recorded at each interface. At each simple
thin layer interface, the incoming fields (from each direction) are split according to
a scattering matrix S defined as:[

E2
E′1

]
=

[
t12 r21
r12 t21

] [
E1
E′2

]
. (A.19)

the electric field subscripts (1,2) describe whether the field is on the left or right
side of the interface, while the no prime and prime discern whether the field is
right-propagating or left-propagating, respectively. The coefficients syntax is such
that t12 and r12 describe the transmission and reflection coefficient of the wave
starting on side 1 while t21 and r21 describe the coefficients of a field incoming
from side 2.. The S matrix is a 2 × 2 matrix connecting an input column matrices
(incident fields) to an output one (transmitted and reflected fields). The first line of
each is a right moving field, and the second one a left moving field. The 2 × 2 S
matrix connects the input fields to the “output” fields

A.3.2 The “M” matrix

The elements of the S matrix have real physical significance; they are the field
reflection and transmission amplitudes of a layer. Unfortunately, the S matrix is
not useful for building up multilayer surfaces as these matrices cannot be casca-
ded. What is needed is a matrix defining each layer that can be multiplied by the
matrices corresponding to the other layers to create an effective total matrix for the
whole structure. Instead of equations defining the relationship between incoming
and outgoing fields at each layer, the equations need to define the relationship be-
tween the fields on the left and the right side of the layer (regardless of whether
they are incoming or outgoing). In other words, in order to cascade the matrix lay-
ers, the matrix equation needs to move through the surface spatially (left to right)
instead of causally (incoming to outgoing). Such a matrix is defined as the wave-
transfer, M, matrix. The column matrices it connects are bound to a surface, with
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as first line is a right moving field, and as second line a left moving field. The
relationship between the M and S matrices is,

M =

[
A B
C D

]
=

1
t21

[
t12t21− r12r21 r21
−r12 1

]
(A.20)

S =

[
t12 r21
r12 t21

]
=

1
D

[
AD−BC B
−C 1

]
. (A.21)

A.3.3 Calculating the multilayer transmission and reflection

In order to use the cascaded matrix method, each layer is defined using its physical
S matrix. Each S is converted into an M matrix, which are then multiplied together
to give an effective total MT matrix for the entire surface. This ultimate MT matrix
is converted back into a total S T matrix to extract the effective physical parameters
of the multilayer interface. Where the total effective scattering matrix, S T , has
elements that represent,

S T =

[
T R′

R T ′

]
, (A.22)

where T andR are the transmission and reflection coefficients for a beam incoming
to the front surface, and T ′, R′ are the similar coefficients for a beam incoming to
the back surface.

The matrices involved in the calculations of a coating are given in Table A.1.

Type Free Propagation Interface

S
(
e−inkd 0

0 e−inkd

)
1

n1 + n2

(
2n1 n2−n1

n1−n2 2n2

)
M

(
e−inkd 0

0 einkd

)
1

2n2

(
n1 + n2 n2−n1
n2−n1 n1 + n2

)
Table A.1: Multilayer matrices. The second column displays the propagation matrices
through a niform dielectric of index n and thickness d. The third column show matrices for
an interface between two media of index n1 and n2.

It can be verified that energy conservation and the phase relations derived in this
appendix are automatically satisfied by applying the matrix procedure. The matrix
calculation can also be applied to the Fabry-Perot to derive Eqs. (2.34) and (2.35).

.

.


