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away from resonance, under the influence of an optical oscillating field at ω, the
motion of the electron follows the frequency of the applied field, in phase, and is
thus d = d0 cosωt. At a point of observation at a distance R from the dipole, the
field due to the dipole is:

∆E =
q2

4πR2

[
1−

R2

(R+d)2

]
≈

2q2d
4πR3 (3.27)

Putting that in Maxwell’s propagation equation:

∂2E
∂z2 −

1
c2

∂2(E+∆E)
∂t2 = 0 (3.28)

or
∂2E
∂z2 −

1
c2

∂2E
∂t2 =

1
c2

∂2∆E
∂t2 =

ω2

c2 ∆E. (3.29)

Using:

E =
1
2
Eei(ωt−kz)

∆E =
1
2
∆Eei(ωt−kz)

we find:

−2ik
∂E

∂z
−2i

ω

c2

∂E

∂t
=
ω2

c2 ∆E, (3.30)

and
∂E

∂z
+

1
c
∂E

∂t
= −i

ω

2c
∆E, (3.31)

Even though we started from a ∆E in phase with the applied field, after insertion
in the propagation equation it appears that its envelope is adding 90 degrees out of
phase with the applied field, as is the case of an index of refraction.

It appears as if, by the time the electron re-radiates, the wave has already moved
by a distance of λ/4.

3.3 Semi-classical approach to light matter interaction

In a semi-classical approach, the field is treated classically, and the atom quan-
tum mechanically. The basic physics is essentially the same as discussed in the
previous classical section: the electromagnetic field of light excites the motion of
electrons bound to the atom. The electrons being bound to the atom/molecule, the
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re-radiation into the field is that of the dipole term in Eq. (3.10). In that dipole radi-
ation term, the only varying parameter is the distance d between charges, which is
found by solving the time dependent Schrödinger equation for the atomic system,

Hψ = iℏ
∂ψ

∂t
, (3.32)

where the Hamiltonian H is the atomic system Hamiltonian H0 perturbed by the
dipolar term:

H = H0+ (qd)E. (3.33)

The atomic system is characterized by a set of energy levels ℏωk, eigenvalues of
the equation:

H0ψk = ℏωkψk. (3.34)

The wave function solution ψ is found by inserting in Eq. (3.32) the expansion:

ψ(t) =
∑

ak(t)ψk, (3.35)

and solving for the coefficients ak(t). The reaction field per electron (qd(t)/ϵ0) that
radiates back into the applied field is calculated by taking the expectation value of
the position r:

∆E = ⟨ψ|qr|ψ⟩/ϵ0. (3.36)

The polarization P = ϵ0∆E is in general defined by a differential equation, where
the driving term is the total electric field applied to the atomic system, which can
have components at different frequencies. The initial conditions are given by the
state of the system prior to the application of the field. In practical situation, the
total field may be given by a combination of m pulses a various frequencies:

E(t) =
1
2

j=m∑
j=1

{
Ẽ j(t)eiωℓ, j−k⃗ j ·⃗r

}
(3.37)

where some of the fields Ẽ j may be generated from the time dependent polarization.
One should not forget that the interaction will always have a particular aim, which
is either to create a particular state of matter characterized by the wave function ψ
[or equivalently the set of time dependent coefficients ak(t)], or create a particular
reaction field ∆E(t) or polarization P(t). In the latter case, one will want to com-
press or modulate the applied field, or create new frequency components. One will
generally seek a particular combination of atomic system (levels) and fields de-
pending on the goal that one seeks to achieve, most often seeking near resonance
or proximity of certain transition frequencies between levels and light frequencies.
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Figure 3.3: (a) The main approximation in this approach is to consider the interaction
of the light only with n levels connected by a combination of photons of frequency ωℓ, j.
The important parameters are the dipole moments of the transitions, and the detunings
∆ωk,ℓ = ωk,ℓ −

∑ j=k
j=1ωℓ, j. (b) A typical problem will be to create an inversion with a stack

of unequally spaced levels, or for a “Romeo” to reach the balcony of his “Juliet” with a
lousy ladder. The solution (c) is the multiphoton approach.

We will first investigate the situation of cascade transitions, applicable when
each photon of frequency ωℓ,k finds a near resonance with a pair of levels, as
sketched in Fig. 3.3(a). An example of related physical situation is to excite a
stack of rotational levels. These levels are in general an anharmonic ladder. A sin-
gle pulse excitation may only reach to the first step, as illustrated by the “Romeo”
of Fig. 3.3(b) trying to reach his “Juliet” with an anharmonic ladder. The smart ap-
proach that can be taken is to create a properly timed and phased sequence of pulses
or “Romeos” to reach the top of the ladder, as in Fig. 3.3(c). Rotational level inver-
sion can be engineered with ultrashort IR pulses [12]. They are also taking place
in the propagation of ultrashort intense pulses in air [13]. Cascade excitation can
be exploited to create a complete population inversion in atomic vapors [14].

Situations can be created where most detuning — except one — can be ne-
glected. The interaction with the off-resonant levels can be considered nearly in-
stantaneous: the response time is of the order of the inverse of the detuning. One
can find a stationary (“adiabatic”) solution for the coefficients ak associated with
the off-resonant levels. The interaction reduces to a set of differential equations in-
volving the near resonant levels, which, for times sufficiently short that relaxation
effects (radiative and non-radiative decays, collisional relaxation) are negligible,
can often be represented by a “Bloch vector” model. We will see under which
condition these equations reduce first to rate equations, next to the classical non-
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resonant instantaneous linear and nonlinear polarization.
Semi-classical approach applied to cascade excitation of multilevel systems One
can also use a multiple wavelength source, each wavelength of the source being
resonant with successive dipole transitions. If in addition the sum of the n pho-
ton frequencies is resonant with a particular level, we have a case of “cascade
n-photon resonance”. This problem can be solved formally in all generality from
Schrödinger’s equations. From the general solution, we can particularize to the
case of identical fields, off-resonance intermediate levels, multiphoton resonance.P
For simplicity, we will limit ourselves here to a three-level system. The procedure
followed here is easily generalized to n-levels.

We consider a bichromatic laser pulse described by:

E(t) = E1(t)cos[ωℓ,1t+φ1(t)]

+ E2(t)cos[ωℓ,2t+φ2(t)]+ . . . . (3.38)

Note that we are not using at this point the complex notations. As it is often the case
in nonlinear optics, one has to be careful to include both the positive and negative
frequencies at the onset.

The relevant three level system is sketched in Fig. 3.4. The detunings are de-
fined as:

∆1 = ω01−ωℓ,1

∆2 = ω02− (ωℓ,1+ωℓ,2) (3.39)

Figure 3.4: Sketch showing the three levels 0, 1 and 2, the light frequencies ℏω1ℓ and
ℏω2ℓ and the detunings.

The coupling with the multilevel (three) system is through the dipole interac-
tion term in the time dependent Schrödinger equation:

Hψ = iℏ
∂ψ

∂t
, (3.40)
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with:
H = H0+H′ = H0− p ·E(t) (3.41)

where p is the dipole moment. The wave function ψ is written as a linear combi-
nation of the wave function of the unperturbed atomic system ψk:

ψ(t) =
∑

k

ak(t)ψk (3.42)

which leads to a system of differential equations for the coefficients ak(t):

dak

dt
= −iωkak +

∑
j

i
2ℏ

pk, j[Ẽ1eiωℓ,1t + Ẽ2eiωℓ,2t + c.c.]a j (3.43)

The “rotating frame” approximation for this particular situation is:

a0 = c0

a1 = e−iωℓ,1t c1

a2 = e−i(ωℓ,1+ωℓ,2)t c2 (3.44)

In substituting in Eqs. (3.43), it is important to keep only the slowly varying terms
(as compared to the light frequency or transition frequency). This is the step where
we see the importance of having defined the field as a real quantity, i.e. with both
positive and negative frequencies. The positive field frequencies combine with
negative going frequencies, and vice versa, to give:

dc0

dt
=

i
2ℏ

p1,0Ẽ1(t) c1

dc1

dt
= −i∆1c1+

i
2ℏ

p0,1Ẽ
∗
1(t)c0+

i
2ℏ

p2,1Ẽ2(t)c2

dc2

dt
= −i∆2c2+

i
2ℏ

p1,2Ẽ
∗
2(t)c1 (3.45)

or in general, applicable to a n-level system:

dck

dt
= −i∆kck +

i
2ℏ

pk−1,kẼ
∗(t)ck−1+

i
2ℏ

pk,k+1Ẽ(t)ck+1. (3.46)

This systems takes a simpler form is we define the Rabi frequencies as:

Ẽ1 =
i
ℏ

p1,0Ẽ1

Ẽ2 =
i
ℏ

p2,1Ẽ2. (3.47)

Substituting:
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dc0

dt
= 0+

1
2

Ẽ1c1+0

dc1

dt
= −

1
2

Ẽ∗1c0− i∆1c1+
1
2

Ẽ2c2

dc2

dt
= 0−

1
2

Ẽ∗2c1− i∆2c2

or in matrix form:

d
dt

 c0
c1
c2

 =


0 1
2 Ẽ1 0

− 1
2 Ẽ∗1 i∆1

1
2 Ẽ2

0 1
2 Ẽ∗2 −i∆2


 c0

c1
c2

 (3.48)

This is the basics of the treatment of a cascade of multilevel systems. The ex-
tension to a larger number of transitions is straightforward. A basic approximation
is that any level k is connected by a dipole transition to a level k+1 and k−1.

The system of equations (3.48) is easy to solve numerically. One is generally
not interested in expressing the results as a matrix of c coefficients, but instead
the 3× 3 matrix of the density matrix elements ρi j = cic∗j . The diagonal elements
cic∗i represent the populations of the level i. The off-diagonal elements cic∗j are a
measure of the amplitude excitation at the frequency ω j −ωi, and will be directly
connected to the polarization, as we have already seen in the case of the two level
system.

This matrix formalism is most useful in reaching a desired population distri-
bution. This approach can be used in systems where the density of levels is such
that one can generally find a “ladder” of levels to climb. An example of appli-
cation is given in reference [12]. It is shown how a properly phased sequence
of pulses can create a complete population inversion in the vibro-rotational level
structure of CH3F. It can also be applied to the less crowded level structure of
atomic transitions. The example of inverting a two-photon transition in sodium
vapor, with the purpose of creating a bichromatic articifial guide-star, is treated in
reference [14,15]. In the case of atomic transitions, the more often considered case
is to have the intermediate level – or intermediates levels – far off resonance. In
that case, the equation for that particular (or these particular) intermediate level(s)
can be considered to be steady state, and the system of equation is reduced. This is
the “adiabatic approximation”, which will be solved in Section 3.3.1.

3.3.1 Adiabatic approximation; multiphoton Bloch model

If the detuning of the intermediate level 1 is larger than the transition rates: the
second Eq. (3.48) can be considered to be in steady state, and one can solve for the
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coefficient c1:

c1 =
i

2∆1

(
E∗1c0−E2c2

)
. (3.49)

By substituting this solution in the other two equations, the three level system
has been reduced to a two-level system, where the ground and upper state are not
connected by a dipole transition. These equation can be represented by a “Bloch
vector” model, in which a “pseudo-polarization” vector rotates around a “pseudo-
electric-field” vector with an angular velocity given by a Rabi frequency that is
now proportional to the square of the electric field amplitude. Substituting the
solution (3.49) into the other two equations:

ċ0 =
i

4∆1

(
E∗1c0−E2c2

)
ċ2 = −

i
4∆1

E∗1E∗2c0+
i

4∆1
E2E∗2c2− i∆2c2 (3.50)

Defining:

Q̃2 = −ic0c∗2
W2 = c2c∗2− c0c∗0 (3.51)

leads to the following set of equations:

˙̃Q2 = i
{
∆2+

1
4∆1

[
|E1|

2− |E2|
2
]}

Q̃2−
E1E2

2∆1
W2

Ẇ2 =
1

2∆1
Re

[
E1E2Q̃∗

]
. (3.52)

We recognize here Bloch’s equations for a two-level system [16], if we define a
two photon Rabi frequency κ2E

2, where:

κ2 =
κ1κ2

2∆1
=

p01 p12

ℏ2∆1
. (3.53)

In general, more than one intermediate level may be involved in the calculation of
the two-photon Rabi frequency. This simply means than instead of the single term
in the right hand side of Eq. (3.53), there will be a sum over i, the latter designing
the index of an intermediate level with detuning ∆i [essentially replacing all indices
“1“ by “i” in Eq. (3.53)].

Note a small complexity appearing in the detuning: a time dependent detuning
∆ω2(t) has to be substituted to the constant detuning ∆2:

∆ω2(t) = ∆2+
1

4∆1

[
|E1|

2− |E2|
2
]
. (3.54)

The substitution leads to the Maxwell’Bloch multiphoton system of equations:
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˙̃Q2 = i∆ω2(t)Q̃2− κ2Ẽ
2W −

Q̃2

T2
(3.55)

Ẇ = Re
[
κ2Ẽ

2Q̃∗
]
−

W −W0

T1
(3.56)

∂Ẽ

∂z
= −α2Q̃2Ẽ

∗−
α

2
Ẽ+ηα2Ẽ3Q̃∗ (3.57)

∂Ẽ3

∂z
= −ηα2Q̃2Ẽ−

α3

2
Ẽ3 (3.58)

Q2 is the amplitude of some atomic “excitation” oscillating at the frequency of
the two-photon transition, or 2 ω. It is thus natural to expect that the field oppos-
ing the driving field (hence responsible for two-photon transition) is given by the
combination Q2Ẽ

∗ which would be the amplitude of an oscillation at the frequency
2ω−ω = ω. A rigorous derivation of the polarization shows that this is indeed the
case [17]. An additional contribution to a time varying polarization comes from the
fact that the atom has a different polarizability in the ground state versus the upper
state. Therefore, as the populations swing up and down under the influence of the
field, there will be a modulation of the polarization proportional to the population
difference. This has a negative impact on phase matching in third harmonic gen-
eration. A fourth equation has been added to the set (3.52), with the combination
of Q2Ẽ, expected to oscillate at the frequency 3ωℓ. This is the term responsible for
two-photon resonant third harmonic generation discussed in the next section.

The system of Eqs. (3.55) through (3.57) can easily be generalized to multi-
photon resonant interaction, where n- rather than 2- photons are near resonance
with two atomic levels [18, 19]. In most of the cases, a geometric representation
applies, as sketched in Fig. 3.5(a). The n-photon have created a matter excitation
at frequency nω, which is represented by a a three dimensional “pseudo-vector”
Q⃗(Qr,Qi,W), where W is proportional to the population difference between the res-
onant levels. The geometric interpretation of the Eqs. (3.55,3.56) is that the time
evolution of the vector Q⃗ results from a rotation of the Q⃗ around a pseudo-vector
E⃗(Er.Er,∆ω) with an angular velocity proportional to |E⃗|. The third component of
the pseudo-vector E⃗ is the detuning between nωℓ and the near resonant level, as
modified by an eventual Stark shift.

In the set of Eqs. (3.55) through (3.57), the phase φ(t) of the field does not
appear explicitly. An equivalent form of equations that is preferred for analytical
treatments is obtained by the substitution Q = (iu+ 3)exp(iφ). The geometrical
representation of the interaction is that given in Fig. 3.5(b), where the medium
resonance is described by the vector P⃗(u,3,W). Here also the motion of the vector
P⃗ is a rotation about the pseudo-electric field vector E⃗(En,0,∆ω − dotφ). This
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Figure 3.5: Bloch vector model for the near resonant interaction between light and an
atomic system. The first two components of Q⃗ are −iQr +Qi = ρ1n where ρ1n is the single-
or multi-photon resonant matrix element between the ground state and the resonant level.
In (a), the field is represented by its real and imaginary parts. In (b), the field is repre-
sented by its amplitude E and phase φ, and Q = (iu+ 3)exp(iφ). The closest analogy to the
generalized polarization is not an oscillating spring, but a gyroscope as represented in (c).

particular model will be dealt with in more details when discussing linear optics
as a limiting case of coherent interaction (Section 3.3.4). It is seen here that the
fundamental mechanical analogy of resonant excitation of matter by a light pulse is
not an harmonic force driving a spring near its resonance, but a gyroscope. Indeed,
as shown in Fig. 3.5(c), the vector P⃗ is represented by the shaft of a gyroscope of
angular momentum Iω, If a force F⃗ is applied to the cage of the gyroscope, the
axis P⃗ will precess following an equation of motion ∂P⃗/∂t ∝ P⃗× F⃗ .

3.3.2 Optimizing harmonic conversion

Long wavelength lasers being generally more efficient, frequency conversion by
harmonic generation is often used to generate shorter wavelength. Gases and
atomic vapors have often been used as nonlinear media because of their higher
damage threshold as compared to nonlinear crystals. The set of equations pre-
sented in the previous section provides a guide to the choice of nonlinear material.
If the medium has a two photon resonance, the generation length for a maximum
third harmonic generation will be reduced.In the set of Eqs. the function Q has a
maximum value, limited by the radius of the Bloch sphere. At the maximum value
of Q, the propagation equations appear to be describing just linear gain or linear
absorption.
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3.3.3 Coherent Raman scattering

It is essentially the same model/equations as in the previous section, with the level
2 “folded down”. The notations are Ẽ1 at ωℓ,1 for the Raman pump, Ẽ2 at ωℓ,2
for the Stokes signal; the ground level is “0”, the upper level (connected by dipole
transition) “1”, and the Raman transition is 0→ 2.

Stimulated Stokes Backward Raman Scattering

The system of Maxwell-Bloch equations reduces now to:

˙̃Qr = i∆ω2(t)Q̃r − κ2Ẽ1Ẽ
∗
2W −

Q̃r

T2

Ẇ = Re
[
κ2Ẽ1Ẽ

∗
2Q̃∗r

]
−

W −W0

T1

∂Ẽ2

∂z
−

1
c
∂Ẽ2

∂t
= −αsQ̃∗r Ẽ1

∂Ẽ1

∂z
+

1
c
∂Ẽ1

∂t
= −αpQ̃rẼ2

(3.59)

The fields, with their complete exponential dependence, are

E1 = Ẽ1ei(ωℓ,1t−k1z)

E2 = Ẽ1ei(ωℓ,2t+k2z)

(3.60)

The Raman excitation has the harmonic dependence:

Q̃ei[(ωℓ,1−ωℓ,2)t−(k1+k2)z] (3.61)

All these exponential dependence are consistent with the above equations.
The coefficients αs and αp should contain the respective optical frequencies, in

order to satisfy energy conservation.



166 CHAPTER 3. SEMI-CLASSICAL

3.3.4 Single photon coherent propagation

Whether we are dealing with molecular or atomic transitions, the situation can
arise where the ultrashort duration of the optical pulse becomes comparable with
– or even less than – the phase relaxation time of the excitation. In the frequency
domain, the pulse spectrum is broader than the homogeneous linewidth defined in
the first section of Chapter 3. If the pulse is so short that its spectrum becomes
much larger than the inhomogeneous linewidth, the medium response becomes
similar to that of a single atom. It may seem like a simplified situation when the
excitation occurs in a time shorter than all inter-atomic interaction. It is in fact quite
to the contrary: in dealing with longer pulses, the faster phase relaxation time of
the induced excitation simplifies the light matter response. One is used to dealing
with a steady state rather than the “transient” response of light-matter interaction.

We will start from the semi-classical equations for the interaction of near reso-
nant radiation with an ensemble of two-level systems inhomogeneously broadened
around a frequency ωih. The extension to multilevel systems will be discussed
in the next section. We refer to the book by Allen and Eberly for more detailed
developments [20].

In this section we chose a density matrix approach to derive the interaction
equations for a near resonant two-level system, of ground state |0⟩ and upper state
|1⟩, excited by the field E(t). The density matrix equation for this two-level system
is:

ρ̇ =
1
iℏ

[
H0− pE, ρ

]
(3.62)

where H0 is the unperturbed Hamiltonian, and p the dipole moment which is paral-
lel to the polarization direction of the field. Introducing the complex field through
E = Ẽ+ + Ẽ− in Eq. (3.62) leads to the following differential equations for the di-
agonal and off-diagonal matrix elements:

ρ̇11− ρ̇00 =
2p
ℏ

[
iρ01Ẽ−− iρ10Ẽ+

]
(3.63)

ρ̇01 = iω0ρ01+
ipẼ+

ℏ

[
ρ11−ρ00

]
(3.64)

where ω0 is the resonance frequency of the two-level system. It is generally con-
venient to define a complex “pseudo polarization” amplitude Q̃ by

iρ01 pN̄ =
1
2

Q̃exp(iωℓt) (3.65)

where N̄ = N̄0ginh(ω0 −ωih) and N̄0 is the total number density of the two-level
systems. The real part of Q̃ will describe the attenuation (or amplification for an
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initially inverted system) of the electric field. Note that Q̃ = iP̃ where P̃ is the
slowly varying polarization envelope defined in Fig. 3.5 1. Further we introduce a
normalized population inversion:

w = pN̄(ρ11−ρ00). (3.66)

The complete system of interaction and propagation equations can now be written
as:

˙̃Q = i(ω0−ωℓ)Q̃− κẼw−
Q̃
T2

(3.67)

ẇ =
κ

2
[Q̃∗Ẽ+ Q̃Ẽ∗]−

w−w0

T1
(3.68)

∂Ẽ

∂z
= −

µ0ωℓc
2n

∫ ∞

0
Q̃(ω′0)ginh(ω′0−ωih)dω′0. (3.69)

The quantity κE with κ = p/ℏ is the Rabi frequency. T1 and T2 are respectively
the energy and phase relaxation times. Most of the energy conserving relaxations
are generally lumped in the phase relaxation time T2. Equation (3.69) has been
obtained by integrating over the polarization of subensembles with resonance fre-
quency ω′0. The set of Eqs. (3.67)–(3.69) is generally designated as Maxwell–
Bloch equations.

Another common set of notations to describe the light-matter interaction uses
only real quantities, such as the in-phase (3) and out-of phase (u) components of
the pseudo-polarization Q̃, and, for the electric field Ẽ, its (real) amplitude E and
its phase φ. Defining

Q̃ = (iu+ 3)eiφ (3.70)

and substituting in the above system of equations leads to the usual form of Bloch
equations2 for the subensemble of two-level systems having a resonance frequency
ω0.

u̇ = (ω0−ωℓ − φ̇)3−
u

T2
(3.71)

3̇ = −(ω0−ωℓ − φ̇)u− κEw−
3

T2
(3.72)

ẇ = κE3−
w−w0

T1
(3.73)

1More details about the polarisation P̃ in the remainder of this section.
2These equations are the electric-dipole analogues of equations derived by F. Bloch [21] to de-

scribe spin precession in magnetic resonance.
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where the initial value for w at t = −∞ is

w0 = pN̄(ρ(e)
11 −ρ

(e)
00 ). (3.74)

The propagation equation Eq. (3.69), in terms of Ẽ and φ, becomes

∂E

∂z
= −

µ0ωℓc
2n

∫ ∞

0
3(ω′0)ginh(ω′0−ωih)dω′0 (3.75)

∂φ

∂z
= −

µ0ωℓc
2n

∫ ∞

0

u(ω′0)
E

ginh(ω′0−ωih)dω′0. (3.76)

The motion of the pseudopolarization vector P⃗ (initially pointing downwards
along the w axis) is a rotation around the pseudo-electric field vector E⃗ with an
angular velocity proportional to the amplitude of that vector. (b) In the complex
amplitude representation, the phase of the electric field determines the particular

vertical plane containing the pseudo-electric field vector ⃗̃E.
The vector representation of Feynman et al. [16], for the interaction equa-

tions is particularly useful in the description of coherent phenomena. The rep-
resentation is a cinematic representation of the set of equations (3.71), (3.72),
and (3.73). For simplicity, we consider first an undamped isolated two-level system
(T1 = T2 = T3 =∞), and construct a fictitious vector P⃗ of components (u,3,w), and
a pseudo-electric field vector E⃗ of components (κE,0,−∆ω). The detuning is de-
fined as ∆ω =ω0−ωℓ− φ̇. The system of Eqs. (3.71)–(3.73) are then the cinematic
equations describing the rotation of a pseudo-polarization vector P⃗ rotating around
the pseudo-electric vector E⃗ with an angular velocity given by the amplitude of the
vector E⃗ [Fig. 3.5(a)]. The vectorial form of Eqs. (3.71)- (3.73) is thus:

∂P⃗/∂t = E⃗× P⃗ (3.77)

Depending on whether the two-level system is initially in the ground state or in-
verted, the pseudo-polarization vector is initially pointing down or up. Since we
have assumed no relaxation, the length of the pseudo-polarization vector is a con-
stant of the motion, and the tip of the vector moves on a sphere. The conservation
of length of the pseudo-polarization vector can be verified directly from the set
of Bloch’s equations. Indeed, the sum of each equation (3.71), (3.72) and (3.73)
multiplied by u, 3, and w, respectively, yields after integration:

u2+ 32+w2 = w2
0 (3.78)

which is satisfied for each subensemble of two-level systems. As shown in Fig. 3.5(a),
a resonant excitation (∆ω = 0)) will tip the pseudo-polarization vector by an angle
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θ0 =
∫ ∞
−∞

κEdt in the (3,w) plane. For a sufficiently intense pulsed excitation, it is
possible to achieve complete population inversion when θ0 = π. The effect of phase
relaxation (homogeneous broadening) is to shrink the pseudo-polarization vector
as it moves around. To take into account inhomogeneous broadening, we have
to consider an ensemble of pseudo-polarization vectors, each corresponding to a
different detuning ∆ω.

A similar representation can be made for the system of Eqs. (3.67)–(3.68).
The pseudo-polarization vector is then the vector Q⃗(Qi,Qr,w) rotating around a
pseudo-electric field vector E⃗(κẼr, κẼi,−∆ω) [Fig. 3.5(b)]. Physically, the first two
components of the pseudo-polarization vector Q⃗ represent the dipolar resonant field
that opposes the applied external field (and is thus responsible for absorption).

3.4 From transient to stationary interaction

Most classical linear and nonlinear optics, which is treated in the next chapter,
treats the linear and nonlinear polarizations as being instantaneous. Therefore,
it be understood as a steady-state approximation of the equations covered in the
preceding sections.

3.4.1 Rate equations

We have seen how the semiclassical interaction in multilevel systems can be re-
duced to a two-level system, described by Bloch’s equations, if the near resonance
of a pair of levels dominates. The next most common situation is when dealing
with pulses long compared with the phase relaxation time. If the light field enve-
lope is slowly varying with respect to T2, Bloch’s equations reduce to the standard
rate equations. For pulses longer than the dephasing time T2, the two first Bloch
equations (3.71), (3.72) are stationary on the time scale of the pulse. Solving these
equations for u, 3, and substituting 3 into the third equation (3.73) for the population
difference, leads to the rate equation:

ẇ = −
E2(κ2T1T2)
1+∆ω2T 2

2

w
T1
−

w−w0

T1
= −

I
Iso f f T+1

w−
w−w0

T1
(3.79)

Equation (3.79) defines a saturation field at resonance Ẽs0 = 1/(κ
√

T1T2). Off reso-

nance, a larger field Ẽso f f = Ẽs0

√
1+∆ω2T 2

2 is required to saturate the same transi-
tion. To that off-resonance saturation field corresponds a saturation intensity Iso f f .

For pulses much shorter than the energy relaxation time τp≪ T1 and purely ho-
mogeneoulsy broadened media the rate equation (3.79) can be integrated together
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with the propagation equation (3.69) which yields for the transmitted intensity

I(z, t) = I0(t)
eW(t)/Ws

e−a−1+ eW(t)/Ws
(3.80)

In this last equation W(t)=
∫ t
−∞

I0(t)dt, and a=σ(0)
01 w0z/p is the linear gain/absorption

coefficient. Equation (3.80) corresponds can be written in terms of photon flux F:

F(z, t) = F0(t)
e2σ01W̄0(t)

e−a−1+ e2σ01W̄0(t)
(3.81)

where W̄0(t)=
∫ t
−∞

F0(t′)dt′ = 1/(ℏωℓ)
∫ t
−∞

I0(t′)dt′ (I0 intensity of the incident pulse),
cf. Eqs. (1.29), (1.30), and

a = σ01∆N(e)z (3.82)

is the absorption (∆N(e) < 0) or amplification (∆N(e) > 0) coefficient corresponding
to a sample of length z. W̄0(t) is a measure of the incident pulse energy (area)
density until time t in units of (photons)/cm2. The total incident energy den-
sity is ℏωℓW̄0(t = ∞) = ℏωℓW̄0,∞ = W0. The transmitted energy density W(z, t) =
ℏωℓW̄(z, t) is obtained by integrating Eq. (3.81) with respect to time and can be
written as

W(z, t) = ℏωℓ

∫ t

−∞

F(z, t′)dt′ =Ws ln
[
1− ea

(
1− eW0(t)/Ws

)]
, (3.83)

where Ws = ℏωℓ/(2σ01) is the saturation energy density of the medium. With
Eq. (3.79), in the limit τp≪ T1, we can express the population inversion as

∆N(z, t) = ∆N(e)e−2σ01W̄(z,t) =
∆N(e)

1− ea[1− eW0(t)/Ws]
. (3.84)

Femtosecond pulse propagation through a homogeneously broadened saturable
medium in the limit of T2 ≪ τp ≪ T1 is completely determined by two parame-
ters: the saturation energy density Ws and the linear absorption (gain) coefficient a.
Equation (3.80) is particularly useful in calculating pulse propagation in amplifiers,
as further detailed in Chapter 8.1.

3.4.2 Steady-state approximation: linear and nonlinear optics

Steady state solutions of the first two Bloch’s equation (field variations slow com-
pared to T2 lead to the rate equation (after insertion of these solutions in the third
Bloch equation).

Q̃ =
κẼT2w

1− i∆ωT2
. (3.85)
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or, in terms of u and 3:

u = −
∆ωT2κET2w
1+∆ω2T 2

2

(3.86)

3 = −
κET2w

1+∆ω2T 2
2

. (3.87)

Substituting 3 in the third Bloch equation (3.73) leads to the rate equation discussed
in the previous Section [Eq. (3.79)]

Linear optics is the steady state solution of all three equations.

u = −
∆ωT2κET2w

1+∆ω2T 2
2 + κ

2E2T1T2
(3.88)

3 = −
κET2w

1+∆ω2T 2
2 + κ

2E2T1T2
(3.89)

w =
w0(1+∆ω2T 2

2 )

1+∆ω2T 2
2 + κ

2E2T1T2
=

w0

1+ I
Iso f f

(3.90)

where we used the off-resonance saturation intensity defined in Eq. (3.79).

3.5 Small motions at the bottom of the sphere

Bloch’s equations can be solved analytically in the weak short pulse limit, i.e., for
pulses that do not induce significant changes in population and have a duration
short compared to the phase relaxation time T2. The interaction equation (3.67)
can be written in the integral form:

Q̃(t) =
∫ t

−∞

κEwe−i[(ω0−ωℓ)t′−φ(t′)]dt′ (3.91)

For weak pulses w ≈ w0) and the right hand side of Eq. (3.91) at t =∞ is propor-
tional to the Fourier transform of κẼw. Thus we have:

|Q̃|2 = u2+ 32 = κ2w2
0|Ẽ(ω0−ωℓ)|2 (3.92)

≈ −2w0(w∞−w0) (3.93)

where Ẽ(ω0 −ωℓ) is the amplitude of the Fourier transform of the field envelope
at the line center frequency ω0. The last equality results from the conservation of
the length of the pseudo-polarization vector (u2 + 32 +w2 = w2

0 = constant). The
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approximation is made that the change in population is small: w2
∞ = [w0 + (w∞ −

w0)]2 ≈ w2
0+2w0(w∞−w0). The final expression is:

(w∞−w0) = −
κ2w0

2
|Ẽ(ω0−ωℓ)|2. (3.94)

This is a close connection to linear optics. Equation (3.92) tells us that the am-
plitude of the dipolar field that opposes the applied field is proportional to the
Fourier component of the applied field at the dipole resonant frequency. The form
of Eq. (3.94) is of equal physical importance, since it relates the energy absorbed
by the two-level system to the spectral intensity of the light at the resonance fre-
quency. The approximations made to arrive to this conclusion are more general
than the steady-state approximations of the previous section.


