
Laser Physics I — test I
Wednesday, 1 p.m., October 25, 2023

1 Isotope separation by radiation pressure

Figure 1: Deflection of atomic beam by radiation pressure.

Lithium has 2 isotopes, of atomic mass 6 and 7. Consider an atomic beam of lithium, irradiated
transversely by pulses of frequency exactly resonant with the transition frequency of 7Li around 670 nm.
The light pulses travel back and forth in a laser cavity (mode-locked laser), in a time much shorter than
the fluorescence lifetime T1. In a steady state situation, one pulse (a “π” pulse) puts N atoms in the
excited state, loosing N photons in the process. As it comes back after being reflected by mirror M2, all
N atoms are returned to the ground state, and the pulse has regained the N photons. No energy has been
lost by the circulating pulse. The atoms have returned to the ground state, but they have gained kinetic
energy through momentum exchange with the photon.
You have created energy!!!?????

Note that the number N is irrelevant in this problem, so you can choose N = 1 (interaction with a
single atom).

1. Calculate the recoil velocity of one atom that has absorbed a photon of light.

2. Calculate the corresponding kinetic energy of that atom.

3. While investors may pay $$$$ for that scheme, explain how/why the energy is conserved, and
what is the loss process.

4. Demonstrate quantitatively that the energy is conserved (at best).
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1.1 Problem lithium - solution

The atomic mass of lithium is 7. The frequency corresponding to the wavelength of 670 nm is ω =
2πc/λ = 2.8 · 1015 s−1. The recoil velocity of the atom is calculated from the equality of momenta:
Mv = h̄ω/c.
Lithium mass in kg:

M =
7 · 10−3

6.022 · 1023

Photon energy: 1, 24/0.67 eV

v =
h̄ω

Mc
=

1.0545 · 10−34 × 2.8 · 1015 × 6.022 · 1023

7× 3 · 108 × 10−3
= 0.085m/s. (1)

The kinetic energy of the atom is:

M
v2

2
=

h̄ω

Mc2
h̄ω

2
= 4.2 · 10−29J. (2)

The fraction of the photon energy is h̄ω
Mc2

= 3.06 · 10−10.
The energy corresponding to the Doppler shift is:

h̄∆ωD = h̄
v

2c
ω =

h̄ω

Mc2
h̄ω = 4.2 · 10−29J, (3)

which is the single recoil energy. The factor 1/2 because we take the average between the velocity before
and after the photon impact.

If the light pulse were to be sent back, the beam would recover a photon of a lower energy [by the
amount given by Eq. (3)], while the atom would double its kinetic energy, and the energy would be
conserved. After a number of cavity round-trips, the atoms my no longer be at exact resonance with the
laser radiation because of velocity of the lithium atoms.

Two level systems 9/13 slides 50-51; Review slide 9-10-13-14.
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2 Phases

Consider the optical arrangement of Fig. 2(a) where a beam of field amplitude E0 is incident from the
left. The beam splitter is 50%.

1. What is the (complex) field reflection R̃0 and transmission T̃0?

2. A thin saturable absorber with small signal absorption coefficient α0 is inserted in the ring [Fig. 2(b)].
What is the saturated absorption coefficient?

3. A beam is sent at normal incidence through an interface between two media of index n1 and n2

[Fig. 2(c)]. Find relations between the field reflection r̃ and transmission t̃.

{c)

Figure 2: (a) What is the (complex) field reflection R̃0 and transmission T̃0? (b) Write an expression for the
saturated absorption coefficient as a function if the intensity I incident from the left. (c) Find relations between
the field reflection t̃ and transmission t̃ for a beam sent at normal incidence through the interface between media
of index n1 and n2.

2.1 Solution

The Fresnel formulae apply to simple interface between two dielectrics. You cannot make a 50% beam
splitter that way! The phase relations that we derived are more general and important. No interferometer
would work without them.

(a)
This is nearly identical of the situations of slide 8 of the review. In slide 22 of the introduction (also slide
25) we derived from energy conservation:

r̃∗t̃+ r̃t̃∗ = 0

which implies:
cos(φr − φt) = 0

meaning the phase shift in reflection and transmission are at 90 degrees from each other.

1. R̃ = r̃t̃+ t̃r̃
R̃ = r̃2 + t̃2 = 0 because these two terms are 180 degree out of phase (2 × 90 degrees). All the
energy is thus reflected; none is transmitted.
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2. Counter propagating beams:
α =

α0

1 + 3 Ii
Is

where Ii = I/2 is the intensity inside the ring. Slide 22 of the review.

3. Same derivations as in slide 8 of the review and slide 22 of the introduction, except that medium 2
has index n2.

(r12t
∗
21 + r∗12t21) + n2(r21t

∗
12 + r∗21t12) = 0

2.2 Fabry-Perot

Some of you picked out of a book the formula for intensity transmission. I insisted that this is not general,
since the absolute value squared of the reflectivity does not carry any phase information!
Review slides 3 and 25. The Fourier transform of the single side exponential was treated in 2 homeworks.

The Fourier transform of E is:

Ẽ(Ω) =
∫ ∞

0
e−(0.1+iΩ)tdt =

10

1 + 10iΩ
(4)

where Ω is in units of 1012 s−1. For the Fabry-Perot:

T =
(1−R)eidΩ/c

1−Re−2idΩ/c
. (5)

We know that d = 1 mm, and the finesse is 100, which corresponds to R = 97%. The speed of light
being 0.3 mm/ps, d/c = 3.3333ps. The Fabry-Perot transmission function is thus:

T =
(1−R)ei3.33Ω

1−Re−i6.66Ω

≈ ei3.33Ω

1 + 6.5iΩ

where we have expanded the exponential to first order, and divided numerator and denominator by (1−
R). The Fourier Transform of the transmitted field is:

Ẽtr =
10

1 + 10iΩ

ei3.33Ω

1 + 6.5iΩ

=
10ei3.33Ω

1 + 16.5iΩ− 65Ω2
(6)

The half-width of the two Lorentzians are ∆Ωp = 0.1 ps−1 for the pulse, and ∆ΩFP = 0.15 ps−1 for
the Fabry-Perot. The product of both functions therefore does not extend beyond ∆Ω = 0.03 ps−1. For
these limits, we have:

65× (0.03)2 ≈ 0.06

6.5× 0.03 ≈ 0.195

We can neglect the term 0.06 as compared to 1 + 0.195. With this approximation, the inverse Fourier
transform of Eq. (6) is:

Etr = e−
(t−3.33)

16.5 . (7)

Note that the delay of 3.33 ps is simply the traversal time of the Fabry-Perot (d/c). The initial 10 ps
pulse got stretched to 16.5 ps by the Fabry-Perot.
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